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Abstract. Methods are presented for automatically constructing coarse spaces of low dimension
for domain decomposition algorithms. These constructions use equivalence classes of nodes on the
interface between the subdomains into which the domain of a given elliptic problem has been sub-
divided, e.g., by a mesh partitioner such as METIS; these equivalence classes already play a central
role in the design, analysis, and programming of many domain decomposition algorithms. The coarse
space elements are well defined even for irregular subdomains, are continuous, and well suited for
use in two-level or multi-level preconditioners such as overlapping Schwarz algorithms. An analysis
for scalar elliptic and linear elasticity problems reveals that significant reductions in the coarse space
dimension can be achieved while not sacrificing the favorable condition number estimates for larger
coarse spaces previously developed. These estimates depend primarily on the Lipschitz parameters
of the subdomains. Numerical examples for problems in three dimensions are presented to illustrate
the methods and to confirm the analysis. In some of the experiments, the coefficients have large dis-
continuities across the interface between the subdomains, and in some, the subdomains are generated
by mesh partitioners.
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1. Introduction. Coarse spaces are at the heart of many domain decomposition
algorithms. Building on the foundation laid in [18], we have an ongoing interest in
the development of coarse spaces based on energy minimization concepts begun in [9].
Several different problem classes have been studied in recent years, including com-
pressible and almost incompressible elasticity, [11, 12], problems in H(div), [32], and
two-dimensional problems with subdomains with irregular shapes, [10, 25], including
problems in H(curl), [6, 7, 14]. We also note that there has been much complemen-
tary work to address problems with multiple materials inside individual subdomains
over the last decade, see, e.g., [19, 21].

The purpose of this study, which is a substantial extension of a conference paper,
[15], is to develop and study a family of low dimensional coarse spaces for scalar
elliptic and elasticity problems. We will focus on problems in three dimensions. The
basic idea involves the use of certain equivalence classes of nodes on the interface, i.e.,
nodes that belong to more than one subdomain boundary. Subdomain faces, edges,
and vertices can easily be defined in terms of equivalence classes of finite element nodes
on the interface between subdomains. Coarse degrees of freedom are then associated
with some of these classes and the coarse basis functions are obtained from discrete
harmonic, energy minimizing extensions of Dirichlet data given on the subdomain
boundaries. For a domain partitioned into subdomains with vertices in the interior of
the domain, the equivalence classes relevant to the coarse basis functions are simply
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defined in terms of one degree of freedom for a scalar elliptic problem and six for
linear elasticity for each such vertex.

Our analysis for scalar elliptic and linear elasticity problems will reveal that sig-
nificant reductions in the coarse space dimension can often be achieved without sacri-
ficing the favorable condition number estimates for larger coarse spaces. This can be
important when the memory and computational requirements associated with larger
coarse spaces are prohibitive due to the use of large numbers of processors on a par-
allel computer. A multi-level approach could be used in such cases, but this may
not always be the best possible solution. In addition, smaller coarse spaces are likely
to become more important as future computing architectures move to less memory
per core [1]. Algorithms like those in this study have been applied to linear systems
originating from large scale structural dynamics analyses [34].

We are principally concerned with overlapping Schwarz methods in this paper,
but our new coarse spaces can also replace the coarse spaces of many of the iterative
substructuring algorithms of [36, Chapter 5]. We note that the overlapping Schwarz
algorithms have the advantage that they are well defined for problems for which only
the assembled stiffness matrix is available while many other domain decomposition
algorithms require knowledge of the matrices that represent the contribution of indi-
vidual subdomains to the system.

We note that an earlier study on FETI–DP algorithms for compressible elasticity
in three dimensions, [27], had a similar purpose of eliminating as many primal con-
straints as possible while maintaining the best possible bounds for the convergence
rate of the algorithm. We note that the primal constraints define the global, coarse
space component for this class of domain decomposition algorithms. In the final sub-
section of that paper, a relatively complicated recipe is provided which reduces the
dimension of the primal space to about six times the number of subdomains; the
well-known null space property, cf. [35, p. 132], shows that this indeed is about the
minimum given that the six rigid body modes span the null space of the elasticity
operator.

The development of theory for domain decomposition algorithms has often fo-
cused on issues related to large discontinuities of the coefficient. Thus, for iterative
substructuring algorithms, based on non-overlapping subdomains, a number of results
have been developed for elliptic problems where the coefficients are constant or vary
slowly inside the subdomains but without any restrictions on their variation across
the interface between the subdomains; see, e.g., [36, Chapters 4–6] and [27]. Many of
these algorithms are well-defined for arbitrary subdomains although the theory has
been fully developed mostly for subdomains that are tetrahedral or the unions of a
few large tetrahedra. In contrast, the theory for two–level additive Schwarz meth-
ods is developed only for constant coefficients in Chapter 3 of the same monograph.
However, the classical coarse spaces for these Schwarz algorithms have been shown to
be stable for quasi–monotone coefficients in [17]; for a related condition, see Assump-
tion 1 of this paper. The result in [17] considerably expanded the class of subdomain
coefficients for which results quite similar to those for constant coefficients became
possible. This was followed by a number of studies of problems with large variations
of the coefficients inside the subdomains, see, e.g., [20] and [37]. In all this work,
the main focus is on the construction and analysis of the coarse spaces. A recent pa-
per, [28], is focused on handling irregular subdomains and effective massively parallel
computing.

We note that the issue on the effects of jumps in the coefficients across the in-
terface is closely related to bounds for weighted L2−projections as considered in [2]
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and [38]. A counterexample for three dimensions, given in the latter paper, involves
a number of subdomains which have a subdomain vertex in common; two of the
subdomains have only that vertex in common and they are surrounded by subdo-
mains with much smaller diffusion coefficients. In this paper, we are able to relax the
condition of [17] for scalar elliptic problems; cf. Assumption 2. For linear elasticity,
more stringent conditions, similar to those of [17], will be required; see Assumption 1.
We have experimental evidence that the elasticity problems indeed require a stronger
assumption; see Table 6. While we are unable to handle coefficients as in the coun-
terexample of [38], we are able to include the well-known case of three-dimensional
checker-board distributions for scalar elliptic problems. Thus, we are able to partially
close the gap in the theory between the assumptions on the coefficients that have
existed between the iterative substructuring algorithms and overlapping Schwarz al-
gorithms with all of their coarse space elements tied to subdomain vertices. We note
that we could eliminate these assumptions on the coefficients by expanding the coarse
space by basis functions related to subdomain edges as in [12]. We also note that the
use of additional basis functions related to subdomain faces instead of edges is likely
to require some assumptions on the coefficients of the subdomains; see [24, 26] for a
discussion of FETI–DP algorithms primarily using face constraints.

Results similar to those of [12] have recently been developed for almost incom-
pressible elasticity in [4, 5] where the coarse space is a conventional one based on a
coarse triangulation of Ω; the Lamé parameter µ is essentially assumed to meet the
requirements of Assumption 1 of this paper. In contrast to the algorithm of those
studies, the coarse spaces of this study are also well defined for quite arbitrary sub-
domains generated, e.g., by a mesh partitioner. In our analysis, we have focused
on the compressible case but we have found in numerical experiments, reported in
Table 8, that our algorithm appears to be viable even when we approach the incom-
pressible limit. We note that in our earlier work, [12], we have enriched our coarse
spaces by adding a coarse degree of freedom for each subdomain face in the almost
incompressible case; we also report on numerical results with such enlarged coarse
spaces.

To derive our final bounds for our domain decomposition algorithms, we also need
to consider the components associated with local problems defined on overlapping sub-
domains, Ω′i, which are often constructed by extending nonoverlapping subdomains,
Ωi, into which the given domain Ω, has been decomposed, by adding one or a few
layers of elements. Here no new ideas are required for a complete analysis; cf. [36,
Subsection 3.2] and the discussion in [13, Section 3]. Therefore, in this paper, we
will focus on developing new coarse spaces and on establishing bounds for the coarse
component, which are always required in the analysis of any Schwarz algorithm; see
[36, Subsection 2.3].

In the next section, we describe the nodal equivalence classes that are used in
the construction of the coarse spaces. Algorithms for generating the coarse basis
functions for different problem types are provided in Section 3. An analysis for scalar
elliptic equations is given in Section 4. In Section 5, the equations of linear elasticity
and Korn inequalities are introduced, and in Section 6 condition number bounds are
developed for that case. Finally, numerical examples are presented in Section 7.

2. Nodal Equivalence Classes and Coarse Nodes. We will focus on three-
dimensional elliptic problems approximated by nodal, low order, Lagrangian finite
element methods and we will consider a domain Ω partitioned into non-overlapping
subdomains Ω1, . . . ,ΩN . The subdomains, which are unions of elements, that form
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quasi–uniform meshes for each subdomain, will often have irregular boundaries, in
particular, if they have been generated by a mesh partitioner. Some of the tools
used in our analysis, such as a trace theorem, will require that the subdomains are
Lipschitz. The interface set of points common to two or more subdomain boundaries
is denoted by Γ and the local interface set of a subdomain boundary Ωi is denoted
by Γi := Γ ∩ ∂Ωi. We will also, at times, work with all nodes on the subdomain
boundaries ∂Ωi.

Let Sn denote the index set of the subdomains with node n on their boundaries.
Two nodes nj , nk are equivalent if Snj

= Snk
. As for FETI-DP or BDDC methods,

we partition Γ into nodal equivalence classes based on this equivalence relation. In
fact, we will also work with equivalence classes of nodes on ∂Ω. Thus, we have a nodal
equivalence class associated with each subdomain face; for an interior face it is given
by a set of nodes shared by just two subdomain boundaries. Similarly, we have an
equivalence class associated with each subdomain edge – a set of nodes on part of
the boundaries of faces and typically shared by three or more subdomains – and an
equivalence class with only one element associated with each subdomain vertex located
at the end of edges and typically shared by even more subdomains. For economy of
words, we will henceforth use the abbreviation nec for nodal equivalence class.

Let SN denote the index set of subdomains for any node of nec N . A nec Nj is
said to be an offspring of nec Nk if SNj

⊂ SNk
. Likewise, Nk is called an ancestor

of Nj in this case. A nec is designated a coarse node if it is not the offspring of any
other nec.

Let Mi denote the set of all necs of Ωi. We note that each nec in Mi is either a
coarse node or the offspring of at least one coarse node. Further, a coarse node c of
Ωi is also a coarse node of Ωj for all j ∈ Sc.

We note that for a decomposition into N cubic subdomains, the coarse nodes are
the subdomain vertices. If all necs are used directly in the construction of coarse basis
functions, as in [9], then there will be approximately (6/2 + 12/4 + 8/8)N = 7N necs
associated with the coarse space. Likewise, if only subdomain edges and vertices are
used, for this purpose, as in [12], then there are approximately (12/4 + 8/8)N = 4N
such necs. In contrast, the coarse space of this study is based on only about N coarse
nodes. We note that subdomain vertex nodes have the advantage of being shared by
more subdomains than subdomain edges and faces.

For linear elasticity, we will use six degrees of freedom for each coarse node. For
a domain subdivided into cubes, each interior subdomain vertex is shared by eight
subdomains and since the number of such subdomain vertices for a single subdomain
also equals eight, the number of coarse degrees of freedom contributed by a subdomain
will then equal six, the dimension of the space of rigid body modes attributed to a
subdomain.

But there are also other cases which can be made part of our framework, some
of which are quite simple to describe. Thus if our domain is just the union of two
subdomains that share a face, then there is just one coarse node associated with that
face. We note that such a pair of subdomains could also belong to a larger set of
subdomains. On the other hand if there are only three subdomains which have an
edge in common, in addition to faces that are shared by only pairs of them, then the
coarse node is represented by that edge. However, our analysis will be confined to the
case when the coarse degrees of freedom are associated with subdomain vertices.

3. Coarse Basis Functions. In this section, we describe how to construct
coarse basis functions for scalar elliptic and elasticity problems in three dimensions.
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The support of a coarse basis function associated with the coarse node c will be the
union of the closure of all Ωj with j ∈ Sc. The coarse basis functions will be contin-
uous across subdomain interfaces and we can therefore focus on a single subdomain
Ωi.

The first step is to obtain a partition of unity for the nodes on ∂Ωi. Let CN denote
the set of ancestor coarse nodes for nec N . If N is itself a coarse node, we then take
CN = N . For the simplest case, the partition of unity associated with a node n ∈ N
and a coarse node c ∈ CN is chosen as

(1) pnc = 1/|CN |.

One can easily confirm that
∑
c∈CN pnc = 1. We will refer to this choice as Option 1.

We note from (1) that pnc is the same for all n ∈ N and c ∈ CN ; in the case of
tetrahedral subdomains, the basis functions constructed will be built from the face
and edge functions, θF and θE , used extensively in the development of iterative sub-
structuring algorithms as in [36, Chapters 4-6]; see also Lemmas 1 and 2. This feature
causes large changes in the coarse basis functions across nec boundaries, resulting in
a logarithmic factor (1 + log(Hi/hi)) in our estimate of the energy of the coarse basis
functions; cf. [36, Lemma 4.25] for a bound of the energy of the classical face function
θF . Here, Hi is the diameter of Ωi and hi is the diameter of its smallest element. We
will show that we can obtain the same quality bound for Lipschitz subdomains by
providing generalizations of the bounds for the face and edge functions for subdomains
assumed only to be Lipschitz; see Lemmas 1 and 2.

In an attempt to avoid such a logarithmic factor, we will also consider a partition
of unity originating from linear functions rather than constants; it will be easy to see
that we will have success for a subdomain that is a tetrahedron. Define

a(n) :=
[

1 xn1 xn2 xn3

]
,

where xnj is the j-coordinate of node n. Let the matrix AN denote the row concate-
nation of the a(n) for all coarse nodes in CN . We note that the number of rows of AN
equals the number of ancestor coarse nodes for N and that there are four columns.
Here the origin of the local coordinate system is chosen as the centroid of the ancestor
coarse nodes of CN . With reference to (1), pnc is now chosen as

(2) pnc = a(n)A†N ec,

where A†N is the Moore-Penrose pseudo-inverse and ec a column vector with a single
nonzero entry of 1 in the row of AN corresponding to the coarse node c. We note that
if a(n) is replaced by only its first element, then (2) simplifies to (1). We also note
that there can be complications when the rows of AN are linearly or almost linearly
dependent; for the time being, we will first ignore this fact but will return to this issue
at the end of this section.

We now show, by using standard results on Moore-Penrose pseudo-inverses, that∑
c∈CN pnc = 1 in case the number of rows of AN is 4 or more: Consider a linear

system of the form ANx = b, where b = (1, . . . , 1)T . We find that the solution is
(1, 0, 0, 0)T given that the first element of each of the rows of AN equals 1. The inner
product of a(n) and x will therefore always equal 1.

For the case when the number of rows of AN are only 3, we find that the same x
is a solution, but in order to show that this is the minimal norm solution provided by
the Moore-Penrose pseudo-inverse, we need to show that (1, 0, 0, 0)T is orthogonal to
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all elements in the null space of AN , which in this case has dimension 1. We therefore
consider the 3−by−3 matrix obtained from the second, third, and fourth columns of
AN . Since the sum of the rows of this matrix vanishes, by the choice of the coordinate
system, we can find a nontrivial null vector n̂, which we augment with a leading 0.
The resulting vector is clearly in the null space of AN and it is also orthogonal to
(1, 0, 0, 0)T .

The case when there are fewer than 3 rows of AN can be handled quite similarly;
we can find the right number of linearly independent null vectors with a leading 0.
Thus, we always find that

∑
c∈CN pnc = 1 and that we have a partition of unity.

The energy associated with a finite element function over Ωi is defined as Ei(u
(i)) :=

u(i)TA(i)u(i), where u(i) is a vector of nodal degrees of freedom (dofs) of the closure

of Ωi and A(i) the stiffness matrix for Ωi. Let R
(i)
n select the rows of u(i) for the

dofs of node n ∈ N , i.e., R
(i)
n u(i) is the vector of dofs for node n; in the case of a

scalar elliptic problem, there will be only one element, while for elasticity, there will

be three. Let N (i)
c denote the set of nodes on ∂Ωi, which have c as an ancestor coarse

node and define

(3) Ψic :=
∑

n∈N (i)
c

pncR
(i)
n

T
Nnc,

where the matrix Nnc is specified later for different problem types.

Let R
(i)
B and R

(i)
I select the rows of u(i) for the nodal dofs on ∂Ωi and the interior

of Ωi, respectively, and define

A
(i)
BB := R

(i)
B A(i)R

(i)
B

T
, A

(i)
IB := R

(i)
I A(i)R

(i)
B

T
, A

(i)
II := R

(i)
I A(i)R

(i)
I

T
.

The coarse basis function associated with the coarse node c is given by

Φic = Ψic −R(i)
I

T
A

(i)
II

−1
A

(i)
IB(R

(i)
B Ψic).

We note that the first term on the right hand side of this expression represents the
boundary data for the coarse basis function, while the second term represents its
energy-minimizing extension into the interior of Ωi.

For scalar elliptic equations, like the Poisson equation, we choose

Nnc =
[

1
]
.

For elasticity problems in three dimensions, Nnc is chosen as

(4) Nnc =

 1 0 0 0 xcn3 −xcn2

0 1 0 −xcn3 0 xcn1

0 0 1 xcn2 −xcn1 0

 ,
where xcnj is the j-coordinate of node n. We will assume that the origin of the
coordinate system is chosen as the centroid of the relevant coarse nodes. The first
three columns of Nnc correspond to rigid body translations, while the final three
columns correspond to rigid body rotations about the origin. We will denote these
six column vectors by ri, i = 1, 2, . . . , 6. We note that the expression for Nnc can be
adapted easily to accommodate finite element models with shell elements simply by
adding three more rows to Nnc.
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It is easy to see that the energy of basis functions originating from the formula
(2) will depend primarily on the norm of A†N . If there are four ancestor coarse nodes
that lie in a plane, then there will be one zero singular value and if one of these nodes
is moved slightly off the plane, there will be a small singular value and A†N will have
a large norm. We will therefore explore an alternative recipe for the construction of
the coarse basis functions. For the case of four coarse nodes, let di(n), i = 1, . . . , 4, be
the distance between a node n ∈ N on the face and ci, the ith ancestor coarse node.
We then assign the values

(5) pnci :=
1/di(n)

1/d1(n) + 1/d2(n) + 1/d3(n) + 1/d4(n)

to the node n. We note that not only do these functions take values in the interval
[0, 1] but by a simple computation, we also find that their gradients are bounded by
C/Hi. As a consequence, we can derive the same quality bound for the energy of the
resulting coarse basis functions; cf. (6). In our experiments with Option 2, we will use
formula (2) for all cases when there are three or fewer ancestor nodes and formula (5)
otherwise.

This approach resembles inverse distance weighting, a technique used for multi-
variate interpolation of data on a scattered set of points originating with [33]. How-
ever, our context appears to be quite different from that work. We note that we
apply the formula (5) only for a few coarse nodes at a time and that we use it only
to generate values at the nodes on the interface while the values in the interior of the
subdomains are provided by discrete harmonic extensions.

Remark 1. The coarse space in [10], a study of two-dimensional problems, is
obtained by choosing the subdomain vertices and edges as the coarse nodes, and using
the partition of unity given in (1). In contrast, the smaller coarse space of [13] is
obtained by choosing only the subdomain vertices as the coarse nodes and using a
partition of unity similar to the one given by (2). The algorithm with the smaller
coarse space was found to converge faster than the one with the larger coarse space.
Both these earlier papers concern problems in two dimensions and we were able to
develop a theory for quite irregular subdomains, which are only uniform in the sense
of Peter Jones, [22]. We note that the uniform domains include domains with fractal
boundaries and that an extension theorem holds for any uniform domain; for two
dimensions, it is a sufficient as well as necessary condition. The technical difficulties
for three-dimensional problems are more severe and we have, so far, had to confine
our study to Lipschitz subdomains.

4. Analysis of the Scalar Case. As pointed out at the end of section 2, our
framework can be used for coarse nodes which are not associated with subdomain
vertices, but our analysis will be restricted to that case. In this section, we develop
estimates for the energy of a coarse interpolant of u(i) for a scalar elliptic equation:
find u ∈ H1

0 (Ω), such that

a(u, v) = f(v) ∀v ∈ H1
0 (Ω, ∂Ω),

where
H1

0 (Ω) := {v ∈ H1(Ω) : v = 0 on ∂Ω},

and where

a(u, v) :=

∫
Ω

ρ(x)∇u · ∇vdx and f(v) :=

∫
Ω

fvdx.
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The diffusion coefficient ρ(x) > 0 is assumed to take on a constant value ρi in Ωi. We
will use the symbol u(i) for both a finite element function and its vector representation
in terms of nodal values in the closure of Ωi. Similarly, φic is the finite element function
counterpart of Φic.

The case of shape-regular tetrahedral subdomains is particularly simple. In this
case, the coarse basis functions for Ωi based on (2) are identical to those for the stan-
dard P1 linear tetrahedral element on ∂Ωi. Consequently, the coarse basis functions
are also identical to the standard shape functions throughout Ωi since a linear func-
tion minimizes the energy for boundary data given by a linear function. We then have
the standard estimate

(6) Ei(φic) ≤ CHiρi.

for Option 2.
This bound also holds for general Lipschitz subdomains for coarse basis func-

tions defined by (2): Let us first dilate the subdomain so that its diameter equals 1.
The gradient of any basis function can then be shown to have a constant, uniformly
bounded gradient. The result then follows by returning to the original coordinates.

The same bound also holds for coarse basis functions obtained by using (5) since
as we have already pointed out, the gradient of these functions are bounded by C/Hi.

For the case when the partition of unity is chosen as in (1), i.e., for Option 1, as
well as in some other arguments, we need two auxiliary results which are well known
for tetrahedra. We recall that we already have noticed that in this case a coarse basis
function can be written as a linear combination of face and edge functions as defined
in Lemmas 1 and 2.

Lemma 1. (face function) Let F be a face of a Lipschitz domain Ωi and define a
finite element function θF which equals 1 at all nodes on F , vanishes at all other nodes
of ∂Ωi, and which is discrete harmonic, i.e., has the minimum H1(Ωi)−semi-norm
of all functions with this Dirichlet data. Then,

|θF |2H1(Ωi)
≤ CHi(1 + log(Hi/hi)).

Here C is a constant.

This is [8, Lemma 4.7].
We need a similar result for subdomain edges.

Lemma 2. (edge function) Let E be an edge of a Lipschitz domain Ωi and define
a finite element function θE which equals 1 at all nodes of E, vanishes at all other
nodes of ∂Ωi, and is discrete harmonic. Then,

|θE |2H1(Ωi)
≤ CHi.

Proof. We only have to consider the function which equals 1 at the nodes of
E and vanishes at all other nodes of the closure of Ωi and use the fact that for a
Lipschitz subregion, there are at most CHi/hi nodes on E . Each nodal basis function
has a H1−norm squared of order hi. The discrete harmonic extension of the related
boundary values will provide a function with even smaller energy.

By using these two lemmas, we can conclude that for Option 1

Ei(φic) ≤ C(1 + log(Hi/hi))Hiρi.
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When we turn to estimates of the coefficients multiplying the coarse basis func-
tions in our interpolation formula, we will need a bound on the average over subdomain
edges of finite element functions. We obtain this bound by using the Cauchy-Schwarz
inequality and the following lemma, which generalizes [16, Lemma 3.1] to the case of
edges of Lipschitz subdomains. We note that this result can be considered a discrete
Sobolev inequality.

Lemma 3. Let u be any continuous, piecewise linear function on a Lipschitz sub-
domain Ωi of diameter Hi partitioned into a quasi-uniform mesh with a minimal mesh
size hi. Then for any edge E of the subdomain

‖u‖2L2(E) ≤ C(Ωi)(1 + log(Hi/hi))‖u‖2H1(Ωi)

and
‖u− ūE‖2L2(E) ≤ C(Ωi)(1 + log(Hi/hi))|u|2H1(Ωi)

.

Here ūE is the average of u over the edge E and C(Ωi) a constant independent of the
mesh size.

Proof. We follow the proof of [16, Lemma 3.1] closely, which in turn derives its
main idea from the proof of a well-known finite element Sobolev inequality in two
dimensions as provided in [3, Lemma 4.15]. In our previous proof for tetrahedral
subdomains, we considered the centroids cK of any element in Ωi with at least one
vertex of the edge E and constructed sets of planes through these centroids each
parallel to one of two faces of the tetrahedron; each intersection of any of these planes
with the tetrahedron also has an area on the order of H2

i . A similar construction
is clearly possible for any Lipschitz subdomain; we recall that the boundary of a
Lipschitz domain can be covered by a finite number of patches and that for each such
patch we can introduce a local coordinate system with one coordinate playing the role
of an average normal; the patch can then be represented by a Lipschitz function of the
remaining variables. In addition, this local part of the subdomain boundary can be
shifted a distance proportional to the diameter of the subdomain in the direction of
this normal while staying inside the subdomain. We also note that a local argument
in our earlier proof, borrowed from Brenner–Scott, provides an estimate of the value
of u at an edge node in terms of that for the value at the centroid of the related
element is still valid.

Let ūi, ūF , ūE denote the mean of a finite element function u over the subdomain
Ωi, a subdomain face F , and a subdomain edge E , respectively. For a face F of Ωi, it
follows from a trace theorem, which is valid for all Lipschitz domains, that

(7) ‖u‖2L2(F) ≤ CHi(‖∇u‖2L2(Ωi)
+H−2

i ‖u‖
2
L2(Ωi)

),

see, e.g., [29, Subsection 1.1.3], and from the Cauchy–Schwarz and Poincaré inequal-
ities that

(8) ρiHi|ūF − ūi|2 ≤ CEi(u(i)).

Similarly, for an edge E of Ωi, we find by using Lemma 3 and the Cauchy–Schwarz
and Poincaré inequalities that

(9) ρiHi|ūE − ūi|2 ≤ C(1 + log(Hi/hi))Ei(u
(i)).

We will now consider two different assumptions on the coefficient, ρ, of the scalar
elliptic problems. We will use the same assumptions for µ, one of the Lamé parameters,
when we consider linear elasticity problems.
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Assumption 1. Let c be any coarse node of Ωi and Sc be the index set of all
subdomains containing c on their boundaries. Select jc ∈ Sc such that ρjc ≥ ρj for
all j ∈ Sc. Assume that there exists a constant C and for any i ∈ Sc a sequence
{i = j0

c , j
1
c , ..., j

p
c = jc}, all in Sc, such that ρi ≤ Cρj`c and that Ωj`−1

c
and Ωj`c have a

subdomain face Fj`−1
c ,j`c

in common for all ` = 1, . . . , p and i = 1, . . . , N . In the case

that c ∈ ∂Ω, we also assume that ∂Ωjc ∩ ∂Ω contains at least one subdomain face.

In other words, Assumption 1 means that there is a face connected path between
Ωi and Ωjc such that the diffusion coefficient ρi is no greater than a constant times the
diffusion coefficient of any subdomain along the path. This assumption appears to be
essentially the same as the quasi-monotonicity assumption of [17]. If Assumption 1 is
satisfied, we will say that we have monotone face-connected paths.

Assumption 2. Using the same notation as in Assumption 1, assume that there
exists a sequence {i = j0

c , j
1
c , ..., j

p
c = jc}, all in Sc, such that ρi ≤ Cρj`c and Ωj`−1

c
and

Ωj`c have at least a subdomain edge in common for all ` = 1, . . . , p and i = 1, . . . , N .
In the case that c ∈ ∂Ωi also assume that ∂Ωjc ∩ ∂Ω contains at least one subdomain
edge.

We note that Assumption 2 is weaker than Assumption 1 since we have more
options of continuing at every step in the construction of a path. If Assumption 2 is
satisfied, we will say that we have monotone edge-connected paths.

Our analysis can closely follow the theory as developed in [36, Section 2.3]; the
main effort is directed to obtaining a good bound of the energy of the coarse compo-
nent, commonly denoted by u0, in the decomposition of an arbitrary element of our
finite element space.

Since the sum of the coarse basis functions for any subdomain Ωi equals 1, prior
to the imposition of essential boundary conditions, we find that

(10) Ei(
∑
c∈Mic

ūiφic) = 0.

We first consider the case when the boundary of the subdomain Ωi does not
intersect ∂Ω. The restriction of the coarse component to Ωi is then chosen as

(11) u
(i)
0 =

∑
c∈Mic

ūjcφic,

where ūjc is the average of u over the subdomain Ωjc , with jc chosen as in As-
sumption 1 and Mic the set of coarse nodes for Ωi. We note that the values of the
coefficients ūjc often will be imported from different neighboring subdomains.

We will next establish bounds for Ei(u
(i)
0 ). By using a face connected path as in

Assumption 1, and assuming Option 2, we start with

(12) ūi − ūjc = (ūi − ūFj0c j1c
) +

p−1∑
`=1

(ūF
j
`−1
c j`c

− ūF
j`cj

`+1
c

) + (ūF
j
p−1
c j

p
c

− ūjc),

where Fj`−1
c j`c

denotes the face common to Ωj`−1
c

and Ωj`c . Rewriting a term in the
sum as

(13) ūF
j
`−1
c j`c

− ūF
j`cj

`+1
c

= (ūF
j
`−1
c j`c

− ūj`c)− (ūF
j`cj

`+1
c

− ūj`c),
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and by using Assumption 1 and (8), we find that

ρiHi|ūi − ūjc |2 ≤ C
∑
j∈Sc

Ej(u
(j)).

It then follows from (6) that

Ei((ūi − ūjc)φic) ≤ C
∑
j∈Sc

Ej(u
(j)).

If Ωi is an interior subdomain, we then obtain, using (10),

Ei(u
(i)
0 ) ≤ C

∑
j∈Mis

Ej(u
(j)),

where Mis is the index set of all subdomains adjacent to Ωi and Ωi itself.
In case ∂Ωi intersects ∂Ω, we make a modification of the coarse interpolant (11)

by replacing the coefficients ūjc associated with coarse nodes on ∂Ω by the average
over the subdomain face or subdomain edge of Ωjc which exists according to the
assumptions. We easily obtain the same inequalities as before. We note that the terms
corresponding to coarse nodes on ∂Ω will simply vanish since the average over these
special subdomain faces or edges equals zero because of the zero Dirichlet condition
for the elliptic problem. This shows that the coarse interpolant belongs to the correct
finite element space.

Adding the contributions from all subdomains and noting that |Mis| ≤ C, we
see that the energy of our coarse interpolant is uniformly bounded by the energy of u
under Assumption 1,

(14)

N∑
i=1

Ei(u
(i)
0 ) ≤ C

N∑
i=1

Ei(u
(i)).

We can now replace the face averages in (12) and (13) by edge averages as in
Assumption 2. By using (9) instead of (8) in the previous development, we find under
the less restrictive Assumption 2 that

(15)

N∑
i=1

Ei(u
(i)
0 ) ≤ C(1 + log(H/h))

N∑
i=1

Ei(u
(i)),

where H/h := maxi(Hi/hi).
If the coarse basis functions originate from (1) rather than (2,5), then it follows

from elementary estimates and Lemma 3 that 1 + log(Hi/hi) will appear as an addi-
tional factor on the right-hand-side of (6). Thus, this additional factor will also be
present in (14) and (15).

With the estimates for our coarse interpolants in hand, we can now perform a
local analysis for an overlapping additive Schwarz algorithm using basically the same
approach as in [10] or [13]. This involves a partition of unity {ϑi}Ni=1 with 0 ≤ ϑi ≤ 1,
|∇ϑi| ≤ C/δi, and with ϑi supported in the closure of the overlapping subdomain Ω′i.
Here, δi is the thickness of the part of Ω′i which is common with its neighbors. Given
an estimate of the form

N∑
i=1

Ei(u
(i)
0 ) ≤ CΘ(H/h)

N∑
i=1

Ei(u
(i)),
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the resulting condition number estimate for the preconditioned operator is given by

(16) κ(M−1A) ≤ CΘ(H/h)(1 +H/δ),

where H/δ := maxiHi/δi. Comparing (16) with (14) and (15), we see that Θ(H/h) is
1, 1 + log(H/h), or even (1 + log(H/h))2 under Assumption 1 and Option 2, Assump-
tion 1 and Option 1 or Assumption 2 and Option 2, and Assumption 2 and Option 1,
respectively.

We note that these coarse spaces could alternatively be combined with local spaces
previously developed for iterative substructuring algorithms such as those of [18]; see
also [36, Chapter 5].

5. Compressible Linear Elasticity and Korn’s Second Inequality. We
now turn to the equations of linear elasticity. Let Ω ⊂ R3 be a domain with a Lipschitz
boundary, and let ∂ΩD, be a nonempty subset of its boundary ∂Ω, and introduce the
Sobolev space V := {v ∈ H1(Ω) : v|∂ΩD

= 0}. Here, H1(Ω) := H1(Ω)3. The linear
elasticity problem consists in finding the displacement u ∈ V of the domain Ω, fixed
along ∂ΩD and with a surface force of density g, along ∂ΩN := ∂Ω \ ∂ΩD, and with
a body force f :

a(u,v) := 2

∫
Ω

µ ε(u) : ε(v) dx+

∫
Ω

λ div u div v dx = 〈F,v〉 ∀v ∈ V.

Here λ(x) and µ(x) are the Lamé parameters, εij(u) = 1
2 ( ∂ui

∂xj
+

∂uj

∂xi
) is the linearized

strain tensor, and two inner products are defined by

(17) ε(u) : ε(v) :=

3∑
i=1

3∑
j=1

εij(u)εij(v), 〈F,v〉 :=

∫
Ω

3∑
i=1

fivi dx+

∫
∂ΩN

3∑
i=1

givi ds.

The Lamé parameters can be expressed in terms of the Poisson ratio ν and Young’s
modulus E:

µ =
E

2(1 + ν)
, λ =

Eν

(1 + ν)(1− 2ν)
=

2ν

1− 2ν
µ.

In our proofs, we will always assume that the Lamé parameters are constant in each
subdomain and denote their values in Ωi by µi and λi, respectively. The parameter
µi will play a role similar to that of ρi in the analysis of the scalar case. We will
also assume that we have a zero Dirichlet condition on all of ∂Ω just as for the scalar
elliptic problem.

We note that the factor 2ν
1−2ν is bounded for the compressible case for which

ν < 1/2. We note that we then have the upper bound

ai(u,u) ≤ 2(1 + νi)

1− 2νi
µi|u|2H1(Ωi)

,

where ai(u,v) is the contribution of Ωi to a(u,v). The ellipticity of this problem is
established by using Korn’s first inequality cf., e.g., [31].

In this study, we need to use Korn’s second inequality:

Lemma 4 (Korn’s second inequality). Let Ω ⊂ R3 be a Lipschitz domain of
diameter H. Then, there exists a positive constant C = C(Ω), such that

|u|2H1(Ω) +
1

H2
‖u‖2L2(Ω) ≤ C(Ω) (

∫
Ω

ε(u) : ε(u)dx+
1

H2
‖u‖2L2(Ω)) ∀u ∈ H1(Ω).
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There are several proofs; see, e.g., [31].
When analyzing linear elasticity, we need a replacement of Poincaré’s inequality:

Lemma 5. Let Ω be a Lipschitz domain. There then exist a constant C(Ω) such
that

inf
r∈RB

‖u− r‖2H1(Ω) ≤ C(Ω)

∫
Ω

ε(u) : ε(u)dx, ∀u ∈ H1(Ω).

Here RB is the space of rigid body modes.

A proof can be found in [30, Section 6.3]
We note that this result has been used for similar purposes in [11, Lemma 5.2].

A number of variants of Korn’s inequalities is provided in [27, Section 6].

6. Analysis of Linear Elasticity. Turning to the analysis of the linear elastic-
ity case, we will always assume that Assumption 1 holds.

Associated with each coarse node c are six degrees of freedom and six coarse basis
functions directly associated with the six rigid body modes of formulas (3) and (4).
In our proof, we will rely on the fact that the sum of the basis functions of the coarse
nodes of any subdomain will give us the basis functions for the space of rigid body
modes. This follows from the fact that we have a partition of unity defined by the
pnc; see (1) or (2) and (5).

Estimates of the energy of the individual basis functions do not pose any chal-
lenges in addition to those of Section 4.

We need to decide how to replace the averages over the subdomains and the
subdomain faces that play an important part in the proof in the scalar case. They
are replaced by using two mappings into RB, the space of rigid body modes. We first
introduce, for k = 1, . . . 6, the functionals

g
(i)V
k (u) :=

∫
Ωi

u · rkdx∫
Ωi

rk · rkdx
and g

(i)F
k (u) :=

∫
F u · rkdA∫
F rk · rkdA

,

where F is a face common to two subdomains Ωi and Ωj .
To simplify or estimates, we replace the three rigid body modes r4, r5, and r6

by dividing these functions by Hi. This results in six functions spanning the space

of rigid body modes which all have an L2(Ωi)−norm on the order of H
3/2
i and an

L2(F)−norm on the order of Hi.
We next create two dual bases by using linear combinations

f
(i)V
k (u) :=

6∑
m=1

βkmg
(i)V
m (u) and f

(i)F
k (u) :=

6∑
m=1

γkmg
(i)F
m (u)

such that
f

(i)V
k (r`) = δ`,k and f

(i)F
k (r`) = δ`,k.

Using that the rigid body modes are linearly independent, we find that the coefficients
βkm and γkm are all of order 1. It then easily follows that

|f (i)V
k (u)| ≤ C‖u‖H1(Ωi)/Hi

and, by using the trace theorem (7), that

|f (i)F
k (u)| ≤ C‖u‖L2(F)/H

2
i ≤ C‖u‖H1(Ωi)/Hi.
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We can then replace ūF and ūi by

(18)

6∑
k=1

f
(i)F
k (u)rk and

6∑
k=1

f
(i)V
k (u)rk

and then follow the proof for the scalar case. We note that the linear functions of
(18) both reproduce any rigid body mode. Thus, we obtain

6∑
k=1

f
(i)F
k (u)rk −

6∑
k=1

f
(i)V
k (u)rk =

6∑
k=1

f
(i)F
k (u− r)rk −

6∑
k=1

f
(i)V
k (u− r)rk.

Each term of the sums can be bounded by ‖u − r‖H1/Hi. This allows us to use
Lemma 5 and complete the estimate just as for the scalar elliptic problem. Since we
use Assumption 1, we will have one (1 + log(H/h)) factor if we use Option 1.

7. Numerical Examples. Numerical results are presented in this section to
confirm the theory and to demonstrate the computational advantages of the small
coarse spaces. The number of conjugate gradient iterations (iter) to achieve a relative
residual tolerance of 10−8 for the solution of Ax = b and associated estimates of con-
dition numbers (cond) for the preconditioned operator are reported in the following
tables. With the exception of the almost incompressible elasticity example, the sub-
domains are discretized using lowest order hexahedral, Q1, nodal elements. Random
right-hand-side vectors b are used for all the examples, and table headings of Option 1
and Option 2 refer to the use of formulas in (1) and (2,5), respectively.

The first three examples are for a unit cube domain with homogeneous essential
boundary conditions on one of its faces. In the first example, the domain is decom-
posed into smaller cubic subdomains with the number of elements in each of the three
coordinate directions denoted by H/h. In addition to the coarse spaces of this study,
we also consider a larger one which uses vertex, edge, and face equivalence classes as
in [11]. We refer to this coarse space as the full one.

The results in Table 1 confirm that condition numbers are bounded independently
of the number of subdomains for all three coarse spaces. Notice also that the dimen-
sions of the small coarse spaces are significantly smaller than those of the full coarse
space. Further, we observe only a modest increase in iterations and condition numbers
when using the small coarse spaces.

The second example is identical to the first except that the subdomains are now
obtained using a mesh partitioner based on METIS, [23]. We note in some cases that
METIS may generate a relatively small number of disconnected subdomains. In such
cases, we treat each of the disconnected components as a separate subdomain. The
results in Table 2 also confirm scalability with respect to the number of subdomains.
The smaller coarse spaces are significantly smaller than the full ones, but not to the
same extent as for the regular decompositions in Table 1. Again, the numbers of
iterations and condition numbers are only slightly larger when using the small coarse
spaces.

The third example investigates the dependence of condition numbers on the ratio
H/h for a unit cube domain decomposed into 125 smaller cubic subdomains while
holding the overlap parameter H/δ = 4 fixed. Condition numbers from the top half
of Table 3 are plotted versus log(H/h) in Figure 1. Notice that the growth with
respect to log(H/h) appears to be consistent with the theory, and the line segment
slope for Option 2 is smaller than those for the other two coarse spaces.
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Table 1
Results for a unit cube decomposed into smaller cubic subdomains with H/h = 4 and overlap

H/δ = 4. The material properties are constant with ρ = 1 for scalar problems and E = 1, ν = 0.3
for elasticity problems. Coarse space dimensions are denoted by Nc.

full coarse space small coarse spaces
Option 1 Option 2

N Nc iter cond Nc iter cond iter cond
scalar problem results

64 279 29 15.1 27 36 21.8 34 20.4
216 1115 30 15.7 125 41 23.5 38 21.4
512 2863 31 16.0 343 42 24.4 38 21.9
1000 5859 32 16.2 729 43 25.0 39 22.2
1728 10439 32 16.3 1331 44 25.3 40 22.3

elasticity problem results
64 1485 33 15.0 162 42 20.7 40 18.6
216 5865 36 15.9 750 45 21.3 40 18.6
512 14973 37 16.4 2058 46 21.7 41 18.7
1000 30537 38 16.6 4374 46 21.8 42 18.6
1728 54285 38 16.7 7986 47 21.8 42 18.6

Table 2
Results for a unit cube decomposed into subdomains using a mesh partitioner. Material prop-

erties, numbers of elements for the meshes, and the overlap parameter are the same as those for
Table 1. Coarse space dimensions are denoted by Nc.

full coarse space small coarse spaces
Option 1 Option 2

N Nc iter cond Nc iter cond iter cond
scalar problem results

64 399 36 16.2 66 43 19.7 41 18.3
216 2500 39 18.3 590 42 20.5 40 18.0
512 5844 39 16.3 1450 44 19.5 43 17.9
1005 13151 41 18.5 3363 45 19.8 43 17.8
1729 24410 41 17.7 6426 45 19.9 43 18.5

elasticity problem results
64 1961 39 16.1 396 46 20.2 44 18.9
216 11064 41 17.3 3539 44 18.6 40 16.0
512 25869 41 15.8 8700 45 18.7 43 17.1
1005 56907 43 16.9 20178 45 18.2 44 17.2
1729 104172 43 17.2 38553 46 18.3 43 17.4

Table 3
Results for a unit cube decomposed into 125 smaller cubic subdomains with overlap H/δ = 4.

The material properties are constant with ρ = 1 for scalar problems and E = 1, ν = 0.3 for elasticity
problems.

full coarse space small coarse spaces
Option 1 Option 2

H/h iter cond iter cond iter cond
scalar problem results

3 27 12.3 34 17.5 33 16.5
6 35 18.2 38 24.5 35 21.1
9 38 21.9 41 28.8 36 23.4
12 39 24.5 42 31.8 37 24.9

elasticity problem results
3 32 13.0 39 17.1 36 15.4
6 40 16.9 45 22.0 40 18.2
9 43 19.4 48 25.0 42 19.7
12 45 21.2 51 27.1 44 20.7
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Fig. 1. Plot of condition numbers in top half of Table 3 versus log(H/h).

Table 4
Results for a unit cube decomposed into 64 smaller cubic subdomains with H/h = 12. The

material properties are constant with ρ = 1 for scalar problems and E = 1, ν = 0.3 for elasticity
problems.

full coarse space small coarse spaces
Option 1 Option 2

H/δ iter cond iter cond iter cond
scalar problem results

2 35 20.9 36 27.0 34 19.2
3 38 23.4 39 30.6 35 23.9
4 41 24.9 43 33.3 38 27.6
6 43 27.4 47 38.6 43 34.3
12 47 37.1 60 55.8 56 53.6

elasticity problem results
2 38 17.2 44 23.2 39 16.7
3 42 19.9 49 26.2 42 20.3
4 44 21.3 52 28.8 46 23.2
6 47 23.5 56 33.6 51 28.6
12 51 34.8 69 51.9 64 48.6

The fourth example deals with the dependence of condition numbers on the ratio
H/δ for a unit cube domain decomposed into 64 smaller cubic subdomains with H/h =
12. The results in the top half of Table 4 for condition numbers of the two smaller
coarse spaces are shown in Figure 2. The near linear growth of condition numbers
with respect to H/δ is consistent with the theory.

The next three examples investigate the dependence of condition numbers on
H/h for fixed H/δ = 4 and different arrangements of material properties. The scarlet
regions in Figure 3 have ρ = 104, E = 104 and ν = 0.3, while the gray regions have
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Fig. 2. Plot of condition numbers in top half of Table 4 versus H/δ.

ρ = 1, E = 1 and ν = 0.3.
The results in Table 5 correspond to upper left Figure 3 where there are always

monotone face-connected paths between the subdomains. Similarly, the results in
Table 6 correspond to upper right Figure 3 where some monotone paths between
subdomains are only edge-connected. As is evident in the table, this example demon-
strates the importance of having monotone face-connected paths when using the small
coarse spaces for elasticity problems. Finally, the results in Table 7 correspond to the
bottom two figures in Figure 3 where there exist neither monotone face-connected nor
edge-connected paths between the subdomains. Plotting condition numbers from the
top halves of these three tables versus log(H/h) in Figure 4 for the small coarse spaces
reveals that condition numbers for cases with face and edge connected paths appear
to have no greater than a linear dependence on log(H/h). Remarkably, results for
when neither face nor edge connected paths are present have the smallest condition
numbers. This case is not covered by our theory, and the asymptotic behavior for
larger values of log(H/h) is less clear than for the other two.

The next example deals with an almost incompressible elasticity problem dis-
cretized using 27-node quadratic, hexahedral, Q2 elements. Discontinuous linear, P1

pressures are statically condensed in this inf-sup stable mixed formulation of elas-
ticity to obtain a fully displacement-based element as described in [11]. Results are
presented in Table 8 for a unit cube mesh of 163 elements with essential boundary
conditions applied over the entire boundary and decomposed into either 64 cubic sub-
domains or 64 subdomains from a mesh partitioner. Although the results in Table 8
are less sensitive to Poisson’s ratio ν for the full coarse space, the performance of the
smaller coarse spaces remains satisfactory. As might be expected, the addition of a
single normal degree of freedom to each subdomain face for the smaller coarse spaces
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Fig. 3. Meshes with 2 cubic subdomains in each direction orthogonal to the domain axis for
H/h = 8. Scarlet regions have ρ = σ, E = σ, ν = 0.3, while the gray ones have ρ = 1, E = 1, and
ν = 0.3. The upper left and right figures have monotone face-connected and edge-connected paths,
respectively, while the bottom left one has neither. The lower right figure shows the lower left figure
with gray regions removed.

leads to improved results as ν approaches 1/2 as shown in the final four columns of
Table 8. We have yet to develop an accompanying theory, but the benefits of adding
the normal decree of freedom has been observed previously for a different coarse space
[12]. We note for regular arrangements of cubic subdomains that the coarse space di-
mension increases from about 6N to 9N with the addition of a face normal degree of
freedom since each faces is shared by two subdomains.

The final example concerns the use of preconditioners with symmetric multiplica-
tive corrections at the subdomain and coarse levels as opposed to the additive Schwarz
form considered thus far; see the discussion of such methods on [36, Page 38]. Our
interest in these preconditioners is motivated by the desire for inexact yet high quality
subdomain solvers for compute platforms with many cores per node. The idea here
is to replace a direct solver for a subdomain on a compute node with an approximate
one requiring much less memory. Application of such preconditioners requires one
coarse solve and two local solves for each subdomain per iteration, but can result in
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Table 5
Results for monotone face-connected paths between subdomains (see Figure 3 upper left) with

overlap H/δ = 4.

full coarse space small coarse spaces
Option 1 Option 2

H/h iter cond iter cond iter cond
scalar problem results

3 26 11.4 28 21.9 27 21.9
6 36 16.0 33 31.5 30 31.2
9 36 18.9 34 37.3 31 36.8
12 37 20.9 35 41.4 31 40.7

elasticity problem results
3 32 11.8 43 34.0 42 33.9
6 41 14.5 52 52.7 46 52.2
9 44 16.3 58 64.2 49 63.4
12 46 17.6 61 72.5 49 71.4

Table 6
Results for monotone edge-connected paths between subdomains (see Figure 3 upper right) with

overlap H/δ = 4. The symbol * means convergence was not achieved within 100 iterations.

full coarse space small coarse spaces
Option 1 Option 2

H/h iter cond iter cond iter cond
scalar problem results

3 26 10.8 40 49.3 40 45.2
6 34 13.7 44 76.1 44 59.1
9 37 15.4 46 95.5 45 67.4
12 38 16.6 48 111 46 73.3

elasticity problem results
3 39 15.0 100 1.46×104 * 1.33×104

6 50 21.7 100 1.93×104 * 1.42×104

9 56 25.9 100 2.25×104 * 1.48×104

12 59 29.0 100 2.48×104 * 1.52×104

significant improvements. For example, the numbers of iterations in the first row of
Table 1 are reduced from (29, 36, 34) to (8, 10, 9). Likewise, condition numbers are
reduced from (15.1, 21.8, 20.4) to (1.4, 1.8, 1.7); these results were obtained using
exact coarse and local solvers. We expect the use of inexact subdomain solvers to
play a more prominent role on future computing platforms.

As a final note, the small coarse spaces of this study can also be used success-
fully with iterative substructuring preconditioners like the one in [12] which also uses
overlapping Schwarz concepts. Due to page limitations, we are unable to present any
numerical results, but a small coarse space based on Option 1 has been used to solve
a wide variety of problems using the Sierra structural dynamics module [34]. There,
the iterative solver is called GDSW (Generalized Dryja Smith Widlund) since it uses
a coarse space built on the pioneering work in [18].
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Table 7
Results for bottom two figures in Figure 3) with overlap H/δ = 4. Here, there may not exist

either a monotone face-connected or edge-connected path between subdomains.

full coarse space small coarse spaces
Option 1 Option 2

H/h iter cond iter cond iter cond
scalar problem results

3 25 11.1 33 19.5 31 19.502
6 33 14.9 36 23.9 34 20.5
9 35 17.2 36 27.3 35 22.0
12 35 18.9 37 29.8 36 22.9

Fig. 4. Plot of condition numbers in top halves of Tables 5-7 for small coarse space Option 1.
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Table 8
Results for almost incompressible elasticity problem. The elastic modulus is E = 1 and Poisson’s

ratio increases from 0.3 to near the incompressible limit of 1/2. Results in the final four columns
in the table were obtained by including a normal degree of freedom (dof) for each subdomain face in
the coarse space.

full coarse space small coarse spaces
no face normal dof added face normal dof

Option 1 Option 2 Option 1 Option 2
H/h iter cond iter cond iter cond iter cond iter cond

decompositions into cubic subdomains
0.3 31 12.8 33 15.7 32 14.2 33 14.7 31 13.0
0.49 37 17.2 45 28.5 44 25.3 44 24.9 40 19.2
0.499 41 18.8 52 35.1 49 31.1 48 29.5 44 22.3
0.4999 43 19.6 60 39.6 59 38.8 54 33.2 48 24.5
0.49999 46 20.2 72 53.9 69 54.2 59 36.5 52 26.3

METIS decompositions
0.3 36 13.1 39 15.2 37 14.0 38 14.6 36 13.1
0.49 42 19.4 52 30.3 50 27.0 48 27.7 44 22.2
0.499 47 24.1 58 39.9 56 35.6 56 35.7 50 27.9
0.4999 50 26.4 65 46.6 62 41.2 62 41.2 54 31.6
0.49999 56 28.6 73 51.1 69 44.5 68 44.8 60 33.8

subdomains. Math. Comp. 85 (299), 1085–1111 (2016).
[8] Chung, E.T., Kim, H.H., and Widlund, O.B.: Two-Level Overlapping Schwarz Algorithms for

a Staggered Discontinuous Galerkin Method. SIAM J. Numer. Anal. 51(1), 47–67 (2013).
[9] Dohrmann, C.R., Klawonn, A., and Widlund, O.B.: A family of energy minimizing coarse

spaces for overlapping Schwarz preconditioners. In: U. Langer, M. Discacciati, D. Keyes,
O. Widlund, and W. Zulehner (eds.) Proceedings of the 17th International Conference
on Domain Decomposition Methods in Science and Engineering, held in Strobl, Austria,
July 3-7, 2006, no. 60 in Springer-Verlag, Lecture Notes in Computational Science and
Engineering, 247–254 (2007).

[10] Dohrmann, C.R., Klawonn, A., and Widlund, O.B.: Domain decomposition for less regular
subdomains: Overlapping Schwarz in two dimensions. SIAM J. Numer. Anal. 46(4), 2153–
2168 (2008).

[11] Dohrmann, C.R. and Widlund, O.B.: An overlapping Schwarz algorithm for almost incom-
pressible elasticity. SIAM J. Numer. Anal. 47(4), 2897–2923 (2009).

[12] Dohrmann, C.R. and Widlund, O.B.: Hybrid domain decomposition algorithms for compress-
ible and almost incompressible elasticity. Internat. J. Numer. Meth. Engrg. 82, 157–183
(2010).

[13] Dohrmann, C.R. and Widlund, O.B.: An alternative coarse space for irregular subdomains
and an overlapping Schwarz algorithm for scalar elliptic problems in the plane. SIAM J.
Numer. Anal. 50(5), 2522–2537 (2012).

[14] Dohrmann, C.R. and Widlund, O.B.: An iterative substructuring algorithm for two-dimensional
problems in H(curl). SIAM J. Numer. Anal. 50(3), 1004–1028 (2012).

[15] Dohrmann, C.R. and Widlund, O.B.: Lower Dimensional Coarse Spaces for Domain Decompo-
sition. In J. Erhel, M. Gander, L. Halpern, G. Pichot, T. Sassi, and O.B. Widlund (eds.)
Proceedings of the 21th International Conference on Domain Decomposition Methods in
Science and Engineering, held in Rennes, France June 25–29 2012. no. 98 in Springer-Verlag,
Lecture Notes in Computational Science and Engineering, 527–535 (2014).

[16] Dohrmann, C.R. and Widlund, O.B.: A BDDC algorithm with deluxe scaling for three-
dimensional H(curl) problems. Comm. Pure Appl. Math. 69, 745–770 (2016).

[17] Dryja, M., Sarkis, M.V., and Widlund, O.B.: Multilevel Schwarz methods for elliptic problems
with discontinuous coefficients in three dimensions. Numer. Math. 72, 313–348 (1996).

[18] Dryja, M., Smith, B.F., and Widlund, O.B.: Schwarz analysis of iterative substructuring algo-
rithms for elliptic problems in three dimensions. SIAM J. Numer. Anal. 31(6), 1662–1694
(1994).

[19] Galvis, J. and Efendiev, Y.: Domain decomposition preconditioners for multiscale flows in
high-contrast media. Multiscale Model. Simul. 8(4), 1461–1483 (2010).

[20] Graham, I.G. and Hagger, M.J.: Unstructured additive Schwarz-conjugate gradient method
for elliptic problems with highly discontinuous coefficients. SIAM J. Sci. Comput. 20 (6),



22 DOHRMANN AND WIDLUND

2041–2066 (1999).
[21] Graham, I.G., Lechner, P.O., and Scheichl, R.: Domain decomposition for multiscale PDEs.

Numer. Math. 106(4), 589–626 (2007).
[22] Jones, P.W.: Quasiconformal mappings and extendability of functions in Sobolev space. Acta

Math. 147 (1–2), 71–88 (1981).
[23] Karypis, G. and Aggarwal R. and Schoegel K. and Kumar V. and Shekhar, S.: METIS home

page, http://glaros.dtc.umn.edu/gkhome/views/metis.
[24] Klawonn, A., Rheinbach, O., and Widlund, O.B.: Some computational results for dual-primal

FETI methods for elliptic problems in 3D. Domain decomposition methods in science and
engineering. Springer Lect. Notes Comput. Sci. Eng. 40, 361–368 (2005).

[25] Klawonn, A., Rheinbach, O., and Widlund, O.B.: An analysis of a FETI–DP algorithm on
irregular subdomains in the plane. SIAM J. Numer. Anal. 46(5), 2484–2504 (2008).

[26] Klawonn, A., Widlund, O.B., and Dryja, M.: Dual-primal FETI methods with face constraints.
Recent developments in domain decomposition methods (Zürich, 2001). Springer Lect.
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