
Written Qualifying ExamTheory of ComputationSpring, 1999Friday, May 21, 1999
This is nominally a three hour examination, however you will beallowed up to four hours. There are six questions; answer all sixquestions. All questions arry the same weight.� Please print your name on the bak of your exam envelope nextto your exam identi�ation number. Do NOT write your name onthe exam booklets.� Use a separate booklet for eah question. The exam bookletshave been labelled by question number; pelase be sure to use theorret booklet for the question you are answering.Read the questions arefully. Keep your answers brief. Assumestandard results, exept where asked to prove them.

1

Problem 1 [10 points℄An n-permutation is a reordering of the integers 1; � � � ; n, whih we will store in the arrayP [1 : n℄ as follows: P [i℄ denotes the number mapped to the ith position, 1 � i � n.Thus the array P [1 : n℄ should ontain eah integer 1; � � � ; n exatly one.Consider the following algorithm for generating a random permutation.initialize: P [i℄ i for = i; � � � ; nfor i = n downto 1 dogenerate an integer j in the range [1; i℄ uniformly at random;swap (P [i℄; P [j℄)endShow that this algorithm generates eah possible permutation with probability 1=n!.Problem 2 [10 points℄The knapsak problem is the following. Given a knapsak of size S, and a olletion ofn items of sizes s1; s2; : : : ; sn, respetively, determine if there is a subset i1; i2; : : : ; ik ofthe items suh that kXh=1 sik = Sassuming S and si, i � 1 are positive integers.In general, the knapsak problem is NP-omplete. However, suppose S is boundedby n2; give a polynomial time algorithm for the knapsak problem in this ase, and in theevent that there is a solution, your algorithm should determine the subset i1; i2; : : : ; ik.Your answer, in addition to desribing an algorithm, should explain why the algorithmomputes the desired result, and should give a brief analysis of its running time.Problem 3 [10 points℄Let G be a direted graph in whih eah edge is olored, either red or blue. A red-bluepath is a path in whih the edges alternate in olor, starting with a red edge and endingwith a blue edge. Verties u and v are said to be red-blue strongly onneted if there arered-blue paths from u to v and from v to u.a. Show that red-blue strongly onneted is an equivalene relation.b. Let the equivalene lasses of the red-blue strongly onneted relation be alledred-blue strong omponents. By means of a redution to strong onnetivity, or other-wise, give a linear time algorithm to ompute the red-blue strong omponents. You mayassume a linear time strong omponents algorithm is given. Hint: For the redution,making two opies of eah vertex may be helpful.Go to the next page
2

Problem 4 [10 points℄Consider the following mahine: a 2-way p.d.a. It is similar to a p.d.a.; there are twodi�erenes. First, on eah move, it an move its input head either left or right on itsinput, the only restrition being that it remain between end markers (# and $) denotingthe start and �nish of its input. Seond, it aepts by entering an aept state.a. Desribe a deterministi 2-way p.d.a. that aepts the languageL1 = fxx j x 2 fa; bg�gDo not give state transitions; simply explain what your mahine does (e.g. \opy theinput to the stak...").b. Desribe a deterministi 2-way p.d.a. that aepts the languageL2 = faxbyx�y j x; y > 0gProblem 5 [10 points℄Let f(n) be a omputable funtion. The xth Turing Mahine loked with respet to f ,Mf(n)x is de�ned as follows: on input y, jyj = n, it �rst omputes f(n) and then simulatesMx(y) for f(n) steps. If Mx(y) halts, Mf(n)x (y) aepts and otherwise it rejets (but italways halts).a. Show that L2 = fx j 9y Mn2x (y) rejetsg is r.e.b. Show that L1 = fx j 8y Mn2x (y) aeptsg is not r.e.Problem 6 [10 points℄a. Let F be a 3-CNF formula. Funtion ount(F) returns the number of di�erentsatisfying assignments for F . Suppose that ount an be omputed in polynomial time.Then show how to �nd a satisfying assignment in polynomial time, if there is one, for3-CNF formula F .b. Let F1; F2 be 3-CNF formulas. Funtion Equal ount(F1; F2) returns True ifthe number of satisfying assignments for F1 and F2 are equal and False otherwise.Suppose that Equal ount runs in polynomial time. Then show how to �nd a satisfyingassignment in polynomial time, if there is one, for 3-CNF formula F . Hint: Let F 1 beF with variable x1 set to True and F 0 be F with x1 set to False (assuming F hasvariables x1; x2; � � � ; xn). If F is not satis�able, what is the value of Equal ount(F; F 1)and Equal ount(F; F 0)? What about if F is satis�able?
3

SolutionsSolution to Problem 1Consider a partiular permutation �. It is obtained by �rst swapping the orret iteminto P [n℄ and then orretly permuting the n� 1 items now in P [1 : n� 1℄. Indutively,the latter event ours with probability 1=(n�1)! and the former event with probability1=n, given an overall probability of 1=n!. For ompleteness, we should note that in thebase ase, n = 1, the one permutation ours with probability 1 = 1=1!.Solution to Problem 2Consider the following reursive algorithm for the knapsak problem.Proedure Knapsak (s; n; solution; Soln Part)(*solution is a boolean variable indiating if there is a solution*)(*Soln Part is an array used for reonstruting a solution*)if n = 1 thenif S = s1 thensolution TrueSoln Part(S; 1) 1elsesolution FalseSoln Part(S; 1) 0elseKnapsak (S; n� 1; solution; Soln Part)if solution = True thenSoln Part(S; n) Soln Part(S; n� 1)else if S � sn thenKnapsak (S � sn; n� 1; solution; Soln Part)if solution = True thenSoln Part(S; n) nendWe employ dynami programming to avoid repeated reursive alls. As S � n2, thereare O(n3) reursive alls, eah of whih takes O(1) time to evaluate, giving an O(n3)running time overall. The above reursive algorithm tries the two options of inludingand not inluding the item of size sn in the knapsak, and thus tries every distintpossibility.To obtain the items forming a solution if one exists the following reursive proedureis used.Proedure Print Solution (S; n; Soln Part)next item Soln Part(S; n)if next item > 0 thenPrint (next item)Print (S � snext item; next item � 1)end 4

For the array entry Soln Part(S; n) stores the highest index item in the solution tothe (S; n) knapsak problem omputed by our algorithm, if there is one. Clearly thisproedure runs in O(n) time.Solution to Problem 3a. We write u � v if u and v are red-blue strongly onneted. To show � is anequivalene relation we note:(i) u � u (by using zero length paths from u to u).(ii) u � v if and only if v � u (as the relationship is symmetri by inspetion).(iii) u � v and v � w implies u � w (this follows by onatenating the pair ofred-blue paths from u to v and from v to w and the pair from w to v and fromv to u yielding red-blue paths from u to w and from w to u, respetively).b. We build a direted graph G0 = (V1 [V2; E 0), where for eah vertex v in G thereare verties v1 2 V1 and v2 2 V2. A blue edge (u; v) in E produes edge (u1; v2) in E 0,and a red edge (w; x) in E produes edge (w2; x1) in E 0.Let C be the verties in a strong omponent of G1. Suppose C \ V1 omprisesthe verties v1i1 ; v1i2; � � � ; v1ik . Then vi1 ; vi2 ; � � � ; vik form a red-blue omponent of G andonversely. For u1 and v1 are in the same strong omponent of G1 if only if there arered-blue paths between u and v in G, i.e. u and v are in the same red-blue strongomponent.G1 is readily onstruted in linear time; together with a linear strong omponentsalgorithm and the trivial linear time mapping of strong omponents of G1 to red-bluestrong omponents of G, this yields a linear time algorithm for �nding red-blue strongomponents.Solution to Problem 4a. Step 1. Push jxj onto the stak.Simply read aross the input and for every two symbols read push one onto thestak (if there are an odd number of symbols in the input, rejet).Step 2. Move the read-write head distane jxj from the left end of the input.Use the stak ontents to ount distane jxj from the left end of the input:move the read-write head to the left end of the input; then repeatedly pop thestak and move the read-write head one position to the right, until the stak isempty.Step 3. Push a opy of the seond x onto the stak.Simply opy the right half of the input onto the stak.Step 4. Verify the left half of the input is also x.As in Step 1 and 2, move the read-write head to the middle of the stak (insteadof the stak bottom, in Step 2, use a marker suh as #). Now, after poppingthe marker, repeatedly pop the stak (whih holds xR) and math with the �rstx on the input, being read from the right and to the left.5

b. In turn, push x; 2x; � � � ; x � y a's onto the stak, on top of y � 1; y � 2; � � � ; 0 b's,respetively.Initially, y b's are plaed on the stak.The general iteration proeeds as follows:Move the read-write head to the rightmost b. Use the z a's on the stakto move the read-write head distane z to the right by popping all the a's (ifthe read-write head annot move that far, then rejet).Pop one b.Push z a's onto the stak by moving the read-write head bak to the rightmostb.Push x a's onto the stak (opy the string ax).The iteration in whih the string of b's on the stak is emptied will end with x � y a'son the stak. Now hek that this is the length of the string of 's.Solution to Problem 5a. Consider the following T.M. M whih as we will show aepts the language L2.M(x) in turn simulates Mn2x (y) for y = 0; 1; 2; � � � until a value of y is found for whihMn2x (y) rejets, in whih ase M(x) aepts (otherwise M(x) does not halt). ClearlyM(x) halts exatly if x 2 L2, and so L2 is r.e.b. We give a redution of �K � L1 or equivalently of K � L2. As �K is not r.e. thisshows L1 is not r.e. also.The redution is arried out by the omputable funtion f de�ned as follows.Mf(x)(y) = simulate Mx(x) for y simulation time;if it does not aept, then aept and otherwise rejetClearly Mf(x) runs in linear time, so Mn2f(x) omputes identially. If x 2 �K thenMn2f(x)(y) aepts on all inputs y, and otherwise it rejets for large enough y (those y'sthat permit Mx(x) to be simulated to aeptane). Thus �K � L1 as laimed.Solution to Problem 6Suppose we have a polynomial time omputable funtion Satis(F) that returnsTrueif F is satis�able and False otherwise. Then, if F is satis�able, a satisfying assignmentan be found in polynomial time as follows.6

Let x1; x2; � � � ; xn be the variables in F and let F (xn = True) and F (xn = False)denote F with xn set to True and False respetively.A satisfying assignment is found reursively as follows.Proedure Sat Assign(F)if n = 0 then returnif Satis(F (xn = True))then return(Sat Assign(F (xn = True)) [(xn = True))else return (Sat Assign(F (xn = False)) [(xn = False))a. Satis(F) is implemented as follows: Satis(F) = F if F has no variables; otherwise,Satis(F) = (Count(F) > 0).b. Note that ount(F) = ount(F 0) + ount(F 1) (if F has at least one vari-able). If F is not satis�able then ount(F) = ount(F 0) = ount(F 1) = 0 andso Equal ount(F; F 0) = True = Equal ount(F; F 1). Otherwise, as at least oneof ount(F 0) and ount(F 1) is greater than zero, and they annot both be equal toount(F), either Equal ount(F; F 0) = False or Equal ount(F; F 1) = False (or pos-sibly both).Thus Satis(F) is implemented as follows: Satis(F) = F if F has no variable; other-wise, Satis(F) = not(Equal ount(F; F 0) and Equal ount(F; F 1)).

7

