
Written Qualifying ExamTheory of ComputationFall, 1996Friday, September 27, 1996This is nominally a three hour examination, however you will beallowed up to four hours. All questions carry the same weight.There are seven questions. You are to answer the following sixquestions: the �rst �ve questions and one of the last two ques-tions.� Please write your name on the outside envelope, but not onany if the exam booklets.� Please answer each question in the numbered booklet providedfor that question.Read the questions carefully. Keep your answers brief. Assumestandard results, except where asked to prove them.
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Problem 1 [10 points]Let U be an ordered collection of weighted items, i.e. U = fs1; s2; � � � ; sng, with s1 <s2 < � � � < sn, and where si has weight wi (an integer), for 1 � i � n. Describe at ahigh level a single data structure that supports all four of the following operations, allrunning in time O(log n).(1) Insert item s with weight w.(2) delete item s.(3) Negate(low; high): For all items s in the range [low; high] (i.e. low � s � high),change the weight of s from its current value w to �w.(4) Max(low; high): Report the maximum weight of the items in the range [low; high].Problem 2 [10 points] The standard Tower of Hanoi Problem has three posts namedA, B, and C, and a stack of n rings that are initially all on post A. The rings have de-creasing diameters, with the smallest ring located at the top of A. The rules for movingthe rings are:a) Only one ring may be moved at a time.b) A ring can only be moved from the top of one stack to the top of another.c) A ring can only be moved to an empty post or a post that has rings of largerdiameter, so that the the diameters are always increasing down a post.Consider the problem of moving the n rings from A to B in a way that uses as manymoves as possible without repeating any con�gurations (where two con�gurationsare counted as repeated only if each of the n rings is in an identical location for bothcon�gurations).i) 1 pt Compute by hand the largest number of moves for a slowest nonrepeating algorithm forn = 1, and n = 2.ii) 4 pts Present the algorithm for n rings, and be sure that it achieves the correct number ofcon�gurations for n = 1 and n = 2.iii) 2 pts Explain, in a sentence or two, why your recursive solution does not repeat any con�gu-rations.iv) 3 pts Present the recurrence equation for the exact number of ring moves used by your algo-rithm, and show that your solution uses the maximum number of rings moves withoutrepeating any con�guration of the n rings.Go to the next page2



Problem 3 [10 points]Let G = (V;E) be a directed graph with n vertices named 1; 2; 3; : : : ; n, and with edgesthat have the nonnegative weights Cost(i; j), for (i; j) in E. Assume that Cost(i; j) =1for (i; j) not in E. In the following path cost problems, it will be su�cient to show howto compute the costs; path recovery is not required.i) 1 pt Present an O(n3) time algorithm to solve the All-Pairs-Shortest-Paths problem for sucha graph.ii) 1 pt Let e1 = (a; b) and e2 = (c; d) be additional edges that are not in E, but which havevertices in V . We now de�ne a legal path from i to j to be any path built from edges inE [ f(a; b)g [ f(c; d)g where either all of the path edges are in G (i.e., neither e1 nor e2is on the path) or both e1 and e2 are on the path, and the edges are arranged so that atraversal along the path from i to j will visit edge e1 before e2. There is no requirementthat a legal path be cycle-free (i.e. simple). Explain how to postprocess the solution topart (i) to solve the All-Pairs-Shortest-Paths problem for legal paths for G plus thesetwo new edges. Assume that the costs of the two new edges are the nonnegative valuesXcost(a; b) and Xcost(c; d).iii) 1 pt Now solve the same problem as (ii) where there are the k pairs of additional edges(a1; b1); (c1; d1); (a2; b2); (c2; d2); : : :; (ak; bk); (ck; dk). For this part, a legal path eitherhas none of the new edges or contains just one pair (ah; bh) and (ch; dh) for the same h(plus edges from E) in the order described in part (ii).iv) 7 pts You are given the same graph G and set of k pairs of additional edges as in (iii).Now a legal path is one that has either none of the additional edges or has thepairs arranged in any nested bracket (named parentheses) order, so that, for exam-ple, i; : : : ; a5; b5; : : : ; a2; b2; : : : ; c2; d2; : : : ; c5; d5; : : : ; a1; b1; : : : ; c1; d1; : : : ; j would be le-gal, but i; a1; b1; a2; b2; c1; d1; c2; d2; j would not be legal because the edge bracketing isnot nested. Present an e�cient postprocessing algorithm to solve the All-Pairs-Shortest-Paths problem for this restricted legal paths problem. Full credit will be awarded tosolutions that run in O(n3 + k2n2) time, although faster solutions are possible.Hints: For part iv) please note that the implicit language of legal paths is context freebut not regular; hence simple graph adaptations will not work. Use ideas from part (iii)plus the correctness and e�ciency schemas of the algorithm given for part (i).Go to the next page
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Problem 4 [10 points]i) 4 pts Consider the alphabet � = fN;D;Q;Wg. Intuitively,N says \deposit a nickel", D says\deposit a dime", Q says \deposit a quarter", and W says \withdraw �fteen cents". Aword x 2 �� is said to be valid if it represents a sequence of instructions that maintainsa nonnegative balance. Initially the balance is 0. Hence no valid word can begin withW . For instance, NDDQW is valid. Let L0 � �� be the language of valid words. Findthe exact place of L0 in the Chomsky Hierarchy (i.e., regular language, CFL, CSL, orrecursively enumerable).ii) 6 pts Suppose that the bank balance cannot exceed �fteen cents. That is, consider the subsetL1 � L0 representing all sequences whose balance is always between 0 and 15 cents.Give a regular expression that denotes L1. HINT: You get 70% credit if you only drawthe dfa.Problem 5 [10 points]Classify the following as recursive or r.e. but not recursive or co-r.e. but not recursiveor neither r.e. nor co-r.e.i) 2 pts L1 = fx j x is a string encoding the adjacency matrix of an undirected graph with aHamiltonian circuitg.ii) 3 pts L2 = fM#x#q j q is a reachable state of Turing Machine M on input xg.iii) 5 pts L3 = fx j 9y �Mx(y) # and y 2 TOTg.Hint: Show that TOT � L3. (TOT = fw j 8z �Mw(z) #g.)Problem 6 Answer either this problem or problem 7 but not both. [10 points]State whether the following are true or false, and give brief explanations, which can citestandard theorems as necessary.i) 3 pts (T/F) NPSpace=NSpaceii) 3 pts (T/F) Context Sensitive Languages are closed under complementation (i.e. L is a CSLif and only if �L is a CSL.)iii) 4 pts (T/F) P 6= Dspace(n2).If you select this problem, please circle the 6 on your booklet.Problem 7 Answer either problem 6 or this problem but not both. [10 points]i) 1 pt De�ne RP, randomized polynomial time.ii) 2 pts Let r be a free parameter. Show that if L 2 RP then there is a randomized algorithmA and a polynomial p(n), such that on input x of size n, A runs in time O(r � p(n)) and:(i) If x 2 L then A accepts x with probability at least 1� 1=2r.(ii) If x 62 L then A rejects x.iii) 7 pts Let L 2 RP. Show that L� 2 RP.Hint: x = x1x2 � � �xn 2 L�, n � 1, if and only if x1 � � �xi 2 L� and xi+1 � � � xn 2 L, forsome i, 0 � i < n.If you select this problem, please circle the 7 on your booklet.4



SolutionsSolution to Problem 1 The items s are stored in a 2-3 tree (or any other balancedtree), using the values s as the key. Some additional information is stored at the internalnodes in order to support operations (iii)-(v). At internal node v, the maximum andminimum values in the subtree rooted at v are stored. In addition, a marker value isheld; it indicates whether the values in v's subtree are to be negated.To perform an insertion, a path is traversed to a new item and the marks are pushedfrom the path to the path children: the e�ect of a negation is to complement the markerat each child and interchange their maximum and minimum values. We say the nodeson the path and the path itself have been cleaned. Now the insertion is performed in thestandard way.A deletion is similar; the path to the item to be deleted is cleaned. Now the item isdeleted in the standard way, except that when two nodes are combined, or their childrenshared, the nodes are �rst cleaned.The maximum and minimum values are maintained in the natural way as these op-erations are performed.Negate is performed as follows. By means of searches for the values low and high,the O(log n) subtrees spanning the range [low; high] are identi�ed. These two paths andthe roots of these subtrees are cleaned. Then, at the root of each of these subtrees,the marker is set to negative and the maximum and minimum values are interchanged.Finally, on the two paths to the values low and high, the maximum and minimum valuesare updated.Max is performed as follows. Again, by means of searches for the values low andhigh, the O(log n) subtrees spanning the range [low; high] are identi�ed. These twopaths and the roots of these subtrees are cleaned. Then, the maximum of the maxima atthe roots of these O(log n) subtrees is reported.Clearly, each of these operations runs in O(log n) time.Solution to Problem 2 i) is implicitly answered in ii) and or iii).ii) Let TH(n;A;B;C) be the slowest, non-repeating algorithm that moves n rings fromA to B. Then the recursive solution is:procedure TH(n;A;B;C);f moves n rings from A to B gif n > 1 then TH(n� 1; A;B;C) endif;move top ring on A to C;if n > 1 then TH(n� 1; B;A;C) endif;move top ring on C to B;if n > 1 then TH(n� 1; C;B;A) endifend-TH.iii) The solution does not repeat positions because each of the three recursive calls movesn � 1 rings with the n-th ring on a di�erent post. Formally, the fact would follow frominduction; the base case is clear, and the above argument is exactly what is needed to gofrom the induction hypothesis for n� 1 to n.iv) The recurrence is easy: 5



T (n) = � 2; if n = 1;3T (n� 1) + 2; if n > 1.There are many ways to see that T (n) is the maximum number of moves. One way isto observe that T (n) + 1 = 3n. Since each ring can be on one of three posts, at anygiven time, there are 3n di�erent ways n rings can be assigned to the three posts. Asthe ordering of a �xed set of rings is determined by the ring diameters, 3n is the totalnumber of di�erent con�gurations. Thus there can be at most 3n � 1 moves before aposition is repeated.We could also let S(n) be the maximum number of ring moves that an algorithmcould use without repeating a con�guration. By applying our careful reasoning that gaveus the algorithm for TH, we would getS(n) � � 2; if n = 1;3S(n� 1) + 2; if n > 1.Solution to Problem 3 i) Use the Floyd-Warshall algorithm.initialize cost[�; �] with Cost(�; �)for k 1 to n dofor i 1 to n dofor j  1 to n docost[i; j] min(cost[i; j]; cost[i; k] + cost[k; j])endall.ii)forall i; j do Ccost[i; j] min(cost[i; j]; cost[i; a]+Xcost[a; b]+cost[b; c]+Xcost[c; d]+cost[d; j]) endfor.We must avoid using more than one edge-pair, which forces us to save the data in a newarray to preserve the values cost[i; a], cost[b; c], etc. iii) Same as (ii), but take the minover cost[�; �] and all k pairs of a{b, c{d edges.iv) Answer:repeat k timesfor l 1 to k dofor i 1 to n dofor j  1 to n dofor l 1 to k docost[i; j]  min(cost[i; j]; cost[i; al] + Xcost[al; bl] + cost[bl; cl] +Xcost[cl; dl] + cost[dl; j])endall.This is FW-like (or Bellman-Ford-like) in the updating. The solution to part (iii) is sureto install the deepest nested bracket where it is needed as a deepest bracket. Becausethe costs are positive, it cannot be that a path will require two instances of this edgepair, since : : : ; a; b : : : a; b : : : can be short-cut, as can : : : ; a; : : : ; a : : : ; b : : : ; b : : :. So the�rst pass of the k loop will install all (deepest) edge pairs in all path pieces that requirejust one edge pair. It should be evident that each iteration will make progress unless thesolution is already complete. How many iterations are needed? Consider a solution path.Let the nesting depth of a speci�c instance of an edge pair be the number of pairs thatcontain the instance. Let the nesting height of a speci�c pair p be depth of the deepestpair within the subpath restricted to be between the two edges of p. It is not di�cult6



to see that the height is at most k � 1, and the h'th iteration of the k-loop correctlycomputes all path costs for paths where the heights are at most h� 1.As in the F-W solution, the ordering of the outer loops matters. A solution path mayhave to revisit edges to get the shortest path.Solution to Problem 4 i) If the language L of valid instructions were regular, therewould be a dfaM that accepts L. LetM have n states. Consider the word x that consistsof a sequence of deposits so that the balance exceed 5n cents. Then xW [n] is a validsequence. Consider the words xW [i] for i = 0; : : : ; n, and let qi denote the state of Mafter reading xW [i], starting from the initial state. There must be two values j < k suchthat qj = qk. This means xW [j]W [m(k�j)]W [n�k] is valid for all m � 0. This is clearly acontradiction.To see that the language is context free, we note that the balance can be "counted" by aPDA that pushes a 5-cent token for every �ve cents deposited, and pops three tokens forevery withdrawl. A word is accepted if the PDA never attempts to pop an empty stack.ii) Notice that a withdrawl can only occur when the balance reaches 15 cents, at whichpoint the balance returns to zero. Thus the language will cycle through zero balancesbefore terminating with a balance of 0, 5, 10, or 15 cents. Quarters can be ignored. It isnot hard to see that the following de�nes these actions perfectly:((N3 +ND +DN)W )�(0 +N +N2 +N3 +D +DN +ND):Solution to Problem 5i) There is an exponential time algorithm for testing whether a graph has a Hamiltonianpath; consequently this is a decidable property and hence L1 is recursive.ii) L2 is r.e.: simply dovetail the simulations of M(x), checking whether they reach stateq, and list those strings M#x#q which are discovered to have this property. To see thatL2 is not recursive, it su�ces to note that this is essentially the halting problem: to testif My(x) halts, simply choose q to be the halting state of My and ask if M#x#q 2 L2.iii) We construct computable function f such that x 2 TOT if and only if f(x) 2 L3.Mf(x)(z) = ( # if z = x" if z 6= xAs TOT is neither r.e. nor co-r.e., the same is true of L3.Solution to Problem 6i) True. By Savich's Theorem, NSpace(f(n) � DSpace((f(n)2), for all well behavedfunctions f(n) � log n, including all polynomials. Consequently, NPSpace � PSpace.ii) True. By Immerman's Theorem, NSpace(f(n)) = Co-NSpace(f(n)) for all well be-haved functions f(n) � log n, including f(n) = n. By the CSLs are exactly the languagesaccepted by linear space nondetermistic Turing Machines, i.e. NSpace(n).iii) True. Suppose for a contradiction that P = DSpace(n2). By the Space HierarchyTheorem, DSpace(n2) � DSpace(n4) and DSpace(n2) 6= DSpace(n4). But we will showthat any L 2 DSpace(n4) is also in P = DSpace(n2), which yields the contradiction.7



Let Pad(L) = fx$i j x 2 L and i = jxj2 � jxjg, where $ is a character outside L'salphabet. Clearly, Pad(L) 2 DSpace(n2) (simply check the input has the right format,and then simulate the DSpace(n4) acceptor for L on the initial portion of the inputstring). Hence Pad(L) 2 P. To accept L in polynomial time, given input x, we �rstdetermine Pad(x) = x$jxj2�jxj, and then simulate the polynomial time acceptor of Pad(L).If Pad(L) is accepted in time O(nk), k � 1, then L is accepted in time O(n2k), which isalso polynomial time.Solution to Problem 7i) RP is the set of languages L such that L has a randomized polynomial time algorithmA accepting L, i.e.(a) if x 2 L, then A accepts x with probability at least 1/2.(b) If x 62 L, then A rejects x.ii) Let L 2 RP and let B be the randomized polynomial time algorithm accepting L.Suppose B runs in time p(n). Let A be algorithm B iterated r times, with A acceptingonly if B accepts on every iteration. ClearlyA achieves the desired probability of success.iii) Choose r to be 2 log n + 1. We test if xi � � � xj 2 L for all i; j, 1 � i � j � n. Thereare n2 strings being tested, and thus with probability at least one half all the reportedresults are correct; in any event all positive results are correct. Clearly each test runsin polynomial time, and thus the collection of tests requires polynomial time too. Now,by means of dynamic programming, we determine which strings x1 � � �xh 2 L�: thistakes time O(n) per index h, or time O(n2) altogether. Thus the overall running time ispolynomial. If the negative results of tests of membership in L were all correct, the sameis true of negative tests of of membership in L�; as this occurs with probability at least1/2, we conclude that if x 2 L� then x is accepted with probability at least 1/2. And ofcourse, if x 62 L� then this is correctly reported (for any incorrect tests of membershipin L only result in fewer strings being recognized as being in L�).
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