CSCI-GA 3520: Honors Analysis of Algorithms

Final Exam: Fri, Dec 19 2014, Room WWH- 312, 11:00-3:00pm.

- This is a four hour exam. There are six questions, worth 10 points each. Answer all questions and all their subparts.
- This is a closed book exam. No books, notes, reference material, either hard-copy, soft-copy or online, is allowed.
- Please print your name and SID on the front of the envelope only (not on the exam booklets). Please answer each question in a separate booklet, and number each booklet according to the question.
- Read the questions carefully. Keep your answers legible, and brief but precise. Assume standard results.
- You must prove correctness of your algorithm and prove its time bound unless stated otherwise. The algorithm can be written in plain English (preferred) or as a pseudo-code.
- The graphs are undirected in Problems 2, 5 and directed in Problems 1, 4.

Best of luck!

Problem 1 (Graphs are directed)

Suppose a CS curriculum consists of n courses, all of them mandatory. The pre-requisite graph G(V, E), |V| = n has a vertex for each course, and a directed edge from course v to course w if and only if v is a pre-requisite for w. Give an algorithm that computes the minimum number of semesters necessary to complete the curriculum. You may assume that a student can take any number of courses in one semester. The running time of your algorithm should be O(|V| + |E|).

Assume adjacency list representation of the graph. Assume that G(V, E) does not have a directed cycle.

Problem 2 (Graphs are undirected)

This problem requires the creation of a data structure that maintains connected components of a graph on vertex set $\{1, \ldots, n\}$. The graph initially has no edges and then m edges are added to it one at a time, at time steps $t = 1, 2, \ldots, m$. The edge added at step t is (x_t, y_t) where $x_t, y_t \in \{1, \ldots, n\}$ and $x_t \neq y_t$. Let G_t be the graph after adding the first t edges. Let C_t denote the size of the largest component of G_t .

- 1. Give an efficient algorithm that determines for each t whether or not x_t, y_t lie in the same connected component of G_{t-1} . The additional time, given the data structure at the end of step t-1, should be $O(\log n)$.
- 2. Extend your algorithm above to determine C_t in O(1) additional time.

Problem 3

You are given a string of n characters $s[1, \ldots, n]$, which you believe to be a corrupted text document in which all punctuation has vanished (so that it looks like "itwasthebestoftimes"). You wish to reconstruct the document using a dictionary, which is available in the form of a Boolean function $Dict(\cdot)$: for any string w, Dict(w) is true if w is a valid word, and false otherwise.

Give an algorithm that determines whether the string $s[1, \ldots, n]$ can be reconstituted as a sequence of valid words. The running time should be at most $O(n^2)$, assuming calls to $Dict(\cdot)$ take unit time.

Problem 4 (Graphs are directed)

You are given a directed graph G(V, E) with a non-negative weight function $\mathsf{wt} : E \to \mathbb{R}^+$ on its edges. The graph is presented in the adjacency list representation. A source vertex $s \in V$ is specified. The goal is to design an algorithm that finds the smallest weight of a path from s to every vertex in the graph.

1. One can of course use Dijkstra's algorithm. What is the data structure used and the running time (in terms of |V| and |E|) for an efficient implementation of Dijkstra's algorithm?

Just state the answer. No explanation necessary.

- 2. If all edges have unit weight, do you know a faster algorithm? Just state the answer. No explanation necessary.
- 3. Now suppose the weight function has the form wt : $E \to \{1, 2\}$, i.e. every edge has weight either 1 or 2. Design O(|V| + |E|)-time algorithm for the problem.

Problem 5 (Graphs are undirected)

Construct a graph G(V, E) at random as follows. Let V be a set of n vertices. For each pair of distinct vertices $u, v \in V$, let $(u, v) \in E$ with probability p, independently for all vertex pairs. That is, for each vertex pair (u, v), the pair is included as an edge with probability p and left out with probability 1 - p, independently for all vertex pairs. We intend to analyze the probability that the resulting graph happens to be connected.

For a subset $S \subseteq V$, $1 \leq |S| \leq \frac{n}{2}$, let \mathcal{E}_S be the event that there is no edge in G between the sets S and $V \setminus S$.

- 1. If |S| = j, what is $\Pr[\mathcal{E}_S]$?
- 2. Let \mathcal{D} be the event that G is disconnected. Can you express \mathcal{D} in terms of events \mathcal{E}_S ?
- 3. Can you provide an upper bound on $\Pr[\mathcal{D}]$ as a function U(p) of parameter p? *Hint: Union bound.*
- 4. What is the smallest value of p for which $U(p) \leq \frac{1}{1000}$?

The desired value of p should be in terms of number of vertices n. Give the smallest value you can. It is enough to be correct up to a constant factor. A rough calculation suffices and the proof need not be completely formal.

Problem 6

Let H(V, E) be a 3-uniform hyper-graph, i.e. V is a set of vertices and each hyper-edge $e \in E$ is a 3-element subset of V. A vertex cover in a hyper-graph is a subset $S \subseteq V$ such that $e \cap S \neq \emptyset$ for every $e \in E$. Define the language HYPERGRAPH VERTEX COVER as follows:

HYPERGRAPH VERTEX COVER = {(H(V, E), k) | H(V, E) is a 3-uniform hyper-graph and $\exists S \subseteq V, |S| \leq k$, such that S is a vertex cover in H(V, E)}.

- 1. Show that HYPERGRAPH VERTEX COVER is in NP.
- 2. Show that HYPERGRAPH VERTEX COVER is NP-complete. *Hint: reduce from a closely related problem on graphs.*