
CSCI-GA 3520: Honors Analysis of Algorithms

Final Exam: Fri, Dec 19 2014, Room WWH- 312, 11:00-3:00pm.

• This is a four hour exam. There are six questions, worth 10 points each. Answer all questions
and all their subparts.

• This is a closed book exam. No books, notes, reference material, either hard-copy, soft-copy
or online, is allowed.

• Please print your name and SID on the front of the envelope only (not on the exam booklets).
Please answer each question in a separate booklet, and number each booklet according to the
question.

• Read the questions carefully. Keep your answers legible, and brief but precise. Assume
standard results.

• You must prove correctness of your algorithm and prove its time bound unless
stated otherwise. The algorithm can be written in plain English (preferred) or
as a pseudo-code.

• The graphs are undirected in Problems 2, 5 and directed in Problems 1, 4.

Best of luck!

1

Problem 1 (Graphs are directed)

Suppose a CS curriculum consists of n courses, all of them mandatory. The pre-requisite graph
G(V,E), |V | = n has a vertex for each course, and a directed edge from course v to course w if
and only if v is a pre-requisite for w. Give an algorithm that computes the minimum number of
semesters necessary to complete the curriculum. You may assume that a student can take any
number of courses in one semester. The running time of your algorithm should be O(|V |+ |E|).

Assume adjacency list representation of the graph. Assume that G(V,E) does not have a
directed cycle.

Problem 2 (Graphs are undirected)

This problem requires the creation of a data structure that maintains connected components of
a graph on vertex set {1, . . . , n}. The graph initially has no edges and then m edges are added
to it one at a time, at time steps t = 1, 2, . . . ,m. The edge added at step t is (xt, yt) where
xt, yt ∈ {1, . . . , n} and xt 6= yt. Let Gt be the graph after adding the first t edges. Let Ct denote
the size of the largest component of Gt.

1. Give an efficient algorithm that determines for each t whether or not xt, yt lie in the same
connected component of Gt−1. The additional time, given the data structure at the end of
step t− 1, should be O(log n).

2. Extend your algorithm above to determine Ct in O(1) additional time.

Problem 3

You are given a string of n characters s[1, . . . , n], which you believe to be a corrupted text
document in which all punctuation has vanished (so that it looks like “itwasthebestoftimes”). You
wish to reconstruct the document using a dictionary, which is available in the form of a Boolean
function Dict(·): for any string w, Dict(w) is true if w is a valid word, and false otherwise.

Give an algorithm that determines whether the string s[1, . . . , n] can be reconstituted as a
sequence of valid words. The running time should be at most O(n2), assuming calls to Dict(·) take
unit time.

2

Problem 4 (Graphs are directed)

You are given a directed graph G(V,E) with a non-negative weight function wt : E → R+ on
its edges. The graph is presented in the adjacency list representation. A source vertex s ∈ V is
specified. The goal is to design an algorithm that finds the smallest weight of a path from s to
every vertex in the graph.

1. One can of course use Dijkstra’s algorithm. What is the data structure used and the running
time (in terms of |V | and |E|) for an efficient implementation of Dijkstra’s algorithm?

Just state the answer. No explanation necessary.

2. If all edges have unit weight, do you know a faster algorithm?

Just state the answer. No explanation necessary.

3. Now suppose the weight function has the form wt : E → {1, 2}, i.e. every edge has weight
either 1 or 2. Design O(|V |+ |E|)-time algorithm for the problem.

Problem 5 (Graphs are undirected)

Construct a graph G(V,E) at random as follows. Let V be a set of n vertices. For each pair of
distinct vertices u, v ∈ V , let (u, v) ∈ E with probability p, independently for all vertex pairs. That
is, for each vertex pair (u, v), the pair is included as an edge with probability p and left out with
probability 1− p, independently for all vertex pairs. We intend to analyze the probability that the
resulting graph happens to be connected.

For a subset S ⊆ V, 1 6 |S| 6 n
2 , let ES be the event that there is no edge in G between the

sets S and V \ S.

1. If |S| = j, what is Pr[ES]?

2. Let D be the event that G is disconnected. Can you express D in terms of events ES?

3. Can you provide an upper bound on Pr[D] as a function U(p) of parameter p? Hint: Union
bound.

4. What is the smallest value of p for which U(p) 6 1
1000?

The desired value of p should be in terms of number of vertices n. Give the smallest value
you can. It is enough to be correct up to a constant factor. A rough calculation suffices and
the proof need not be completely formal.

3

Problem 6

Let H(V,E) be a 3-uniform hyper-graph, i.e. V is a set of vertices and each hyper-edge e ∈ E is a
3-element subset of V . A vertex cover in a hyper-graph is a subset S ⊆ V such that e ∩ S 6= ∅ for
every e ∈ E. Define the language HYPERGRAPH VERTEX COVER as follows:

HYPERGRAPH VERTEX COVER = {(H(V,E), k) | H(V,E) is a 3-uniform hyper-graph and

∃S ⊆ V, |S| 6 k, such that S is a vertex cover in H(V,E)}.

1. Show that HYPERGRAPH VERTEX COVER is in NP.

2. Show that HYPERGRAPH VERTEX COVER is NP-complete.

Hint: reduce from a closely related problem on graphs.

4

