CSCI-GA 3520: Honors Analysis of Algorithms

Final Exam: Fri, Dec 19 2014, Room WWH- 312, 11:00-3:00pm.

• This is a four hour exam. There are six questions, worth 10 points each. Answer all questions and all their subparts.

• This is a closed book exam. No books, notes, reference material, either hard-copy, soft-copy or online, is allowed.

• Please print your name and SID on the front of the envelope only (not on the exam booklets). Please answer each question in a separate booklet, and number each booklet according to the question.

• Read the questions carefully. Keep your answers legible, and brief but precise. Assume standard results.

• You must prove correctness of your algorithm and prove its time bound unless stated otherwise. The algorithm can be written in plain English (preferred) or as a pseudo-code.

• The graphs are undirected in Problems 2, 5 and directed in Problems 1, 4.

Best of luck!
Problem 1 (Graphs are directed)

Suppose a CS curriculum consists of \(n \) courses, all of them mandatory. The pre-requisite graph \(G(V, E) \), \(|V| = n \) has a vertex for each course, and a directed edge from course \(v \) to course \(w \) if and only if \(v \) is a pre-requisite for \(w \). Give an algorithm that computes the minimum number of semesters necessary to complete the curriculum. You may assume that a student can take any number of courses in one semester. The running time of your algorithm should be \(O(|V| + |E|) \).

Assume adjacency list representation of the graph. Assume that \(G(V, E) \) does not have a directed cycle.

Problem 2 (Graphs are undirected)

This problem requires the creation of a data structure that maintains connected components of a graph on vertex set \(\{1, \ldots, n\} \). The graph initially has no edges and then \(m \) edges are added to it one at a time, at time steps \(t = 1, 2, \ldots, m \). The edge added at step \(t \) is \((x_t, y_t)\) where \(x_t, y_t \in \{1, \ldots, n\} \) and \(x_t \neq y_t \). Let \(G_t \) be the graph after adding the first \(t \) edges. Let \(C_t \) denote the size of the largest component of \(G_t \).

1. Give an efficient algorithm that determines for each \(t \) whether or not \(x_t, y_t \) lie in the same connected component of \(G_{t-1} \). The additional time, given the data structure at the end of step \(t - 1 \), should be \(O(\log n) \).

2. Extend your algorithm above to determine \(C_t \) in \(O(1) \) additional time.

Problem 3

You are given a string of \(n \) characters \(s[1, \ldots, n] \), which you believe to be a corrupted text document in which all punctuation has vanished (so that it looks like “itwasthebestoftimes”). You wish to reconstruct the document using a dictionary, which is available in the form of a Boolean function \(\text{Dict}(\cdot) \): for any string \(w \), \(\text{Dict}(w) \) is true if \(w \) is a valid word, and false otherwise.

Give an algorithm that determines whether the string \(s[1, \ldots, n] \) can be reconstituted as a sequence of valid words. The running time should be at most \(O(n^2) \), assuming calls to \(\text{Dict}(\cdot) \) take unit time.
Problem 4 (Graphs are directed)

You are given a directed graph $G(V, E)$ with a non-negative weight function $\text{wt} : E \rightarrow \mathbb{R}^+$ on its edges. The graph is presented in the adjacency list representation. A source vertex $s \in V$ is specified. The goal is to design an algorithm that finds the smallest weight of a path from s to every vertex in the graph.

1. One can of course use Dijkstra’s algorithm. What is the data structure used and the running time (in terms of $|V|$ and $|E|$) for an efficient implementation of Dijkstra’s algorithm?
 Just state the answer. No explanation necessary.

2. If all edges have unit weight, do you know a faster algorithm?
 Just state the answer. No explanation necessary.

3. Now suppose the weight function has the form $\text{wt} : E \rightarrow \{1, 2\}$, i.e. every edge has weight either 1 or 2. Design $O(|V| + |E|)$-time algorithm for the problem.

Problem 5 (Graphs are undirected)

Construct a graph $G(V, E)$ at random as follows. Let V be a set of n vertices. For each pair of distinct vertices $u, v \in V$, let $(u, v) \in E$ with probability p, independently for all vertex pairs. That is, for each vertex pair (u, v), the pair is included as an edge with probability p and left out with probability $1 − p$, independently for all vertex pairs. We intend to analyze the probability that the resulting graph happens to be connected.

For a subset $S \subseteq V$, $1 \leq |S| \leq \frac{n}{2}$, let E_S be the event that there is no edge in G between the sets S and $V \setminus S$.

1. If $|S| = j$, what is $\Pr[E_S]$?

2. Let \mathcal{D} be the event that G is disconnected. Can you express \mathcal{D} in terms of events E_S?

3. Can you provide an upper bound on $\Pr[\mathcal{D}]$ as a function $U(p)$ of parameter p? Hint: Union bound.

4. What is the smallest value of p for which $U(p) \leq \frac{1}{1000}$?
 The desired value of p should be in terms of number of vertices n. Give the smallest value you can. It is enough to be correct up to a constant factor. A rough calculation suffices and the proof need not be completely formal.
Problem 6

Let \(H(V, E) \) be a 3-uniform hyper-graph, i.e. \(V \) is a set of vertices and each hyper-edge \(e \in E \) is a 3-element subset of \(V \). A vertex cover in a hyper-graph is a subset \(S \subseteq V \) such that \(e \cap S \neq \emptyset \) for every \(e \in E \). Define the language HYPERGRAPH VERTEX COVER as follows:

\[
\text{HYPERGRAPH VERTEX COVER} = \{(H(V, E), k) \mid H(V, E) \text{ is a 3-uniform hyper-graph and } \exists S \subseteq V, |S| \leq k, \text{ such that } S \text{ is a vertex cover in } H(V, E)\}.
\]

1. Show that HYPERGRAPH VERTEX COVER is in NP.

2. Show that HYPERGRAPH VERTEX COVER is NP-complete.

 \textit{Hint: reduce from a closely related problem on graphs.}