CSCI-GA 3520: Honors Analysis of Algorithms

Final Exam: Fri, Dec 19 2014, Room WWH- 312, 11:00-3:00pm.

This is a four hour exam. There are six questions, worth 10 points each. Answer all questions
and all their subparts.

This is a closed book exam. No books, notes, reference material, either hard-copy, soft-copy
or online, is allowed.

Please print your name and SID on the front of the envelope only (not on the exam booklets).
Please answer each question in a separate booklet, and number each booklet according to the
question.

Read the questions carefully. Keep your answers legible, and brief but precise. Assume
standard results.

You must prove correctness of your algorithm and prove its time bound unless
stated otherwise. The algorithm can be written in plain English (preferred) or
as a pseudo-code.

The graphs are undirected in Problems 2, 5 and directed in Problems 1, 4.

Best of luck!

Problem 1 (Graphs are directed)

Suppose a CS curriculum consists of n courses, all of them mandatory. The pre-requisite graph
G(V,E), |V| = n has a vertex for each course, and a directed edge from course v to course w if
and only if v is a pre-requisite for w. Give an algorithm that computes the minimum number of
semesters necessary to complete the curriculum. You may assume that a student can take any
number of courses in one semester. The running time of your algorithm should be O(|V| + |E|).

Assume adjacency list representation of the graph. Assume that G(V,E) does not have a
directed cycle.

Problem 2 (Graphs are undirected)

This problem requires the creation of a data structure that maintains connected components of
a graph on vertex set {1,...,n}. The graph initially has no edges and then m edges are added
to it one at a time, at time steps t = 1,2,...,m. The edge added at step t is (x¢,y;) where
xe,ye € {1,...,n} and z; # y;. Let Gy be the graph after adding the first ¢ edges. Let C; denote
the size of the largest component of Gy.

1. Give an efficient algorithm that determines for each ¢ whether or not x¢,y; lie in the same
connected component of Gy;_1. The additional time, given the data structure at the end of
step ¢ — 1, should be O(logn).

2. Extend your algorithm above to determine C; in O(1) additional time.

Problem 3

You are given a string of n characters s[1,...,n], which you believe to be a corrupted text
document in which all punctuation has vanished (so that it looks like “itwasthebestoftimes”). You
wish to reconstruct the document using a dictionary, which is available in the form of a Boolean
function Dict(-): for any string w, Dict(w) is true if w is a valid word, and false otherwise.

Give an algorithm that determines whether the string s[1,...,n] can be reconstituted as a
sequence of valid words. The running time should be at most O(n?), assuming calls to Dict(-) take
unit time.

Problem 4 (Graphs are directed)

You are given a directed graph G(V, E) with a non-negative weight function wt : £ — R* on
its edges. The graph is presented in the adjacency list representation. A source vertex s € V is
specified. The goal is to design an algorithm that finds the smallest weight of a path from s to
every vertex in the graph.

1. One can of course use Dijkstra’s algorithm. What is the data structure used and the running
time (in terms of |V| and |F|) for an efficient implementation of Dijkstra’s algorithm?

Just state the answer. No explanation necessary.

2. If all edges have unit weight, do you know a faster algorithm?
Just state the answer. No explanation necessary.

3. Now suppose the weight function has the form wt : E — {1,2}, i.e. every edge has weight
either 1 or 2. Design O(|V| + |E|)-time algorithm for the problem.

Problem 5 (Graphs are undirected)

Construct a graph G(V, E) at random as follows. Let V be a set of n vertices. For each pair of
distinct vertices u,v € V', let (u,v) € E with probability p, independently for all vertex pairs. That
is, for each vertex pair (u,v), the pair is included as an edge with probability p and left out with
probability 1 — p, independently for all vertex pairs. We intend to analyze the probability that the
resulting graph happens to be connected.

For a subset S C V, 1 < |S] < §, let £ be the event that there is no edge in G between the
sets S and V'\ S.

1. If |S| = j, what is Pr[€g]?
2. Let D be the event that G is disconnected. Can you express D in terms of events g7

3. Can you provide an upper bound on Pr[D] as a function U(p) of parameter p? Hint: Union
bound.

4. What is the smallest value of p for which U(p) < 1557

The desired value of p should be in terms of number of vertices n. Give the smallest value
you can. It is enough to be correct up to a constant factor. A rough calculation suffices and
the proof need not be completely formal.

Problem 6

Let H(V, E) be a 3-uniform hyper-graph, i.e. V is a set of vertices and each hyper-edge e € F is a
3-element subset of V. A vertex cover in a hyper-graph is a subset S C V such that e NS # () for
every e € E. Define the language HYPERGRAPH VERTEX COVER as follows:

HYPERGRAPH VERTEX COVER = {(H(V,E),k) | H(V, E) is a 3-uniform hyper-graph and
35S CV, |S| <k, such that S is a vertex cover in H(V, E)}.

1. Show that HYPERGRAPH VERTEX COVER is in NP.

2. Show that HYPERGRAPH VERTEX COVER is NP-complete.

Hint: reduce from a closely related problem on graphs.

