
Honors Algorithms/Written Qualifying Exam
Wednesday, Dec. 22, 2010

This is a 31

2
hour examination.

All questions carry the same weight.
Answer all six questions.

• Pleaseprint your name on the sticky note attached to the outside envelope, and nowhere else.

• Pleasedo notwrite your name on the examination booklets.

• Please answer each question in aseparatebooklet, andnumbereach booklet with that question
number.

• Read the questions carefully. Keep your answers brief. Assume standard results, except when
asked to prove them.

•When you have completed the exam, please reinsert the booklets back into the envelope.

Problem 1 [10 points] New numbered exam booklet PLEASE
Consider the following randomized procedure:

function Rand(n);
1 if n ≤ 1 then return(1)
2 else setx to 0 with probability 1

3
, or 1 with probability2

3
;

3 if x = 0 then return(3 ·Rand(n
2
) + Rand(n

2
) + 4 · n · n · n)

4 elseif x = 1 then return(2 ·Rand(n
2
) + 2 · Rand(n

2
) + 7 · n · n · n)

5 endif
6 endif

end Rand;

(a) LetR(n) be the expected value returned by theRand procedure on inputn. Write anexact recurrence
equation forR(n) and solve it in theΘ-notation (do not bother about the base case).

Solution

R(n) = 4R(n/2) + 6n3, n > 1; soR(n) = Θ(n3).

(b) LetM(n) be the expected number of multiplications needed to computeRand(n) (all multiplications use
“ ·” symbol in the code above). Write a recurrence equation forM(n) and solve it in theΘ-notation (do
not bother about the base case).

Solution

M(n) = 2M(n/2) + Θ(1), n > 1; soM(n) = Θ(n).

(c) Consider the following faster procedureFast(n). Notice that the expected value computed byFast(n) is
the same as the expected value computed byRand(n) (which you also computed in part (a)). LetF (n) be
the expected number of multiplications used byFast(n). Write a recurrence equation forF (n) and solve
it in theΘ-notation (do not bother about the base case). Compare with your answer in part (b).

function Fast(n);
1 if n ≤ 1 then return(1)
2 else setx to 0 with probability 1

3
, or 1 with probability2

3

3 if x = 0 then return(4 · (Fast(n/2) + n · n · n))
4 elseif x = 1 then return(4 · Fast(n/2) + 7 · n · n · n)
5 endif
6 endif

end Fast;

Solution

F (n) = F (n/2) + O(1), n > 1; so F (n) = Θ(log n), which is much faster than the time used in part
(b). However, the random variable computed in (c) has a different distribution from that in part (b), although the
expectations are the same.

Problem 2 [10 points] New numbered exam booklet PLEASE
Formal Languages

(a) LetL = {(a|b)i(b|c)j : i < j}. Prove thatL is not regular.

Solution

Use theuvy pumping lemma. A convenient version says: for any RLL, there is a fixedp such that for any
stringω in L with |ω| ≥ p, we can write:ω = uvy where|uv| < p, |v| > 0, anduviy is in L for all i ≥ 0.

2

So chooseapbp+1, which is inL. v must be allas. Pump thatv (or let i = 2). We get a string with more
a’s thanbs and nocs, which is not inL. It follows that there is no suchp for L, andL is therefore not a
RL.

(b) Prove thatL is a CFL.

Solution

A Grammar is as easy as anything for this:S → BC; B → LBR|ǫ; L→ a|b; R→ b|c.
So theB derivations contribute equally toi andj. As for C, we have:C → C|b|c, which will increasej
by an arbitrary positive integer.

(c) For any two languagesL andM , let

Shuffle(L,M) = {ℓ1µ1ℓ2µ2 · · · ℓkµk where theℓi andµj are strings, the
stringℓ1ℓ2 · · · ℓk is in L, and the stringµ1µ2 · · ·µk is in M , for k = 1, 2, 3, . . .}.

Suppose thatL is regular andM is a CFL.
MustShuffle(L,M) be a CFL? Explain your answer.

Solution

Yes,Shuffle(L,M) is a CFL. LetMr be the FSM forL, andMp be the PDA forM . The idea is that a
slightly FSM-enhanced version of the PDAMp should run for as many steps as it likes, while being ready to
nondeterministically epsilon-transition back to a slightly FSM-enhancedMr that can run for as many steps
as it likes, and non-deterministically epsilon-transition back to the PDA. Each “epsilon-transition back”
from machineMx is to the state in the other machineMother one that executed the most recent transition
into Mx. This way, each machine – when its switch-to-other transitions are omitted – will execute as it
should on the subsequence of the string that it is supposed torecognize. As these words suggest, a state
for the PDA must “remember” which state in the FSM caused the current sequence of execution steps by
the PDA, and vice versa. We can record this by cloning#p duplicates ofMr, where there are#p states
in the PDA finite state machineMp. Likewise, we clone#r duplicates ofMp. Let theses many states
be written as(previousPDAstate, currentFSMstate), where each such pair defines one new state and
the first index in this pair is conceptually a “level number” for the altogether#p levels of the current state
“FSMstate,” which belongs to the machineMr. So each pair is a state in the new machine, and there are
also the pairs(previousFSMstate, currentPDAstate) that represent the different PDA levels which
each remembers the name of the FSMstate that transitioned tothe PDA execution.

A state(previousPDAstate, z) will have all of the transitions fromz that are defined forz in Mr. These
transitions will be to the clones of the states out ofz in Mr, and will reside on the level “previousPDAstate.”
In addition,(previousPDAstate, z) will have an epsilon transition to(z, previousPDAstate), which
represents a return to the PDA recognition scheme, and the recording of the fact thatz was the source of
that return.

The analogous construction is used for the(previousFSM, currentPDAstate) states.

The start state isnewS, which has an epsilon transition to(previousPDAstart, currentFSMstart),
and another epsilon transition to(previousFSMstart, currentPDAstart) (becauseℓ1 could beǫ for
those who care).

A state in this new machine is accepting if both the PDA and FSMstates are accepting.

The machine is a PDA, and it is clear that it recognizes the shuffles as described.

Problem 3 [10 points] New numbered exam booklet PLEASE
A string is a palindrome if it is the same read left to right or right to left, e.g.,ababa.

3

(a) The longest palindrome subsequence of a stringx is its longest subsequence (of not necessarily consecutive
symbols) that is a palindrome. Give an algorithm to determine in timeO(|x|2) the length of the longest
palindrome subsequence of a stringx. A high-level program specification is sufficient, but it must have
enough specificity to be correct, and have an operation countof O(|x|2). What is the space complexity
(requirement) for your solution?

Solution

Solution 1: letLen(i, j) be the length of longest palindrome inx[i..j]. then:

Len(i, j) =















0 if j < i,
1 if i = j,
2 + Len(i + 1, j − 1) if x[i] = x[j],
max{Len(i + 1, j), Len(i, j − 1)} otherwise,

and the cases are processed as being mutually exclusive. Theexponential growth of a purely recursive
solution is tamed by storingLen(i, j) in an |x| × |x| array that is initialized toNil. A call to compute
Len(i, j) only initiates the recursion if the corresponding table entry is Nil. If so, the answer is com-
puted as above, and then written into the table prior to the return. Otherwise the table value is returned.
Consequently, each value is computed just once for each index pair. It follows that the spatial and time
complexity areΘ(|x|2).

Cheap solution: Lety be the reverse ofx, and apply the standard textbook Greatest Common Subsequence
algorithm. Include a look-up table to keep the recursive computation efficient.

Technically, this answer is correct, but flawed. It is correct in the sense that the answer is numerically
correct. It is flawed in the sense that the character locations for a GCS inx andxreversed does not have to
reference the same sequence of physical characters. Example: ZABZA and AZBAZ has the GCS ABZ.
Of course, in addition to this Bidendrome, ZABZA has four Palindromes of length 3. Exercise (that was
not part of the problem): Prove that for any stringx, the length of the longest palindrome is the same as
the length of the GCS ofx andxreversed.

(b) Give an algorithm to determine in timeO(|x|2) the length of the longest palindrome that is a sequence of
consecutive symbols in a stringx. What is the space complexity?

Solution

Done in c below.

(c) Give an algorithm to determine in timeO(|x|2) the length of the longest palindrome that is a sequence of
consecutive symbols in a stringx, and which uses no more thanO(|x|) space. (Hint: think about the logic
of a non-deterministic PDA that recognizes palindromes, but do not use the code for such a device.)

Solution

If we can guess the middle, we will only need to read pairs of letters to determine the length of this thing.
In this case, a look-up table will be unnecessary.

A version of the code is as follows:

function Long(n,x[..n]);
if n equals0 then return(Stupid case nobody cares about)endif;
x[0]← π; { x(0) is a sentinel to keep reads in bounds }
x[n + 1]← π; { x(n + 1) is a sentinel to keep reads in bounds }
longest← 1;
for lmid← 1 to n do

4

lltest← lmid;
rrtest← lmid + 1;
current← 0;
while x[lltest] equalsx[rrtest] do { the even length cases }

current← current + 2;
lltest← lltest− 1;
rrtest← rrtest + 1

endwhile;
longest← max{longest, current};
lltest← lmid− 1;
rrtest← lmid + 1;
current← 1;
while x[lltest] equalsx[rrtest] do { the odd length cases }

current← current + 2
lltest← lltest− 1;
rrtest← rrtest + 1

endwhile;
longest← max{longest, current}

endfor;
return(longest)

end Long;
The time isO(|x|2) and the additional space for this version is a constant number of words.

A clever problem reduction technique can improve the performance toO(n log n) operations withθ(|x|)
additional words of storage, and the use of a standard, but reasonably sophisticated compact suffix tree
data structure can reduce the operation count toΘ(|x|) andΘ(|x|) storage.

Problem 4 [10 points] New numbered exam booklet PLEASE
Value at risk

ScotiaMocatta, a global leader in the precious metals futures market, needs a data structureS to record its
commitments to provide silver over time.

A recordR = (s, d, p) in S has three relevant fields:s is the selling date, which is when the contract is sold;
d is the delivery date, at which time the actual silver must be delivered by ScotiaMocatta.p is the number of
pounds of silver that must be supplied on the delivery date. You can denote them byR.sell, R.del, andR.lbs if
you wish.

The operations are insertR, deleteR (for contracts that were not sold), andPoundsatRisk(t).

PoundsatRisk(t) is the number of pounds of silver that ScotiaMocatta, at datet, has already promised to
deliver on that day or some time in the future. It equals the sum of the pounds of silver in the contracts with a
selling date that is less thant, and a delivery date that is greater than or equal tot.

Formally, for the records(s, d, p) in the selling systemS:

PoundsatRisk(t) =
∑

(s,d,p) in S

s<t≤d

p.

To comply with financial regulations, the data structure must store records for old contracts that have been
completed as well as contracts that ScotiaMocatta plans to sell in the future. Likewise, the query timet can be
any time in the past, the present, or the future.

5

Explain how to implement a data structureS so that theInsert(∗), Delete(∗), andPoundsatRisk(∗)
operations will all run inO(log n) time whenS containsn > 1 records. There is no requirement that a recordR
have just one physical entry inS.

Solution

Use two 23treesT1 andT2 that are enhanced to answer these range queries. LetT1 store all records(s, d, p)
in a sorted order according to the major keys and minor keyd. Let T2 store all records(s, d, p) in a sorted order
according to the major keyd and minor keys. In addition, let each internal nodev in T1 and inT2 have a special
field v.pounds, which stores the total number of pounds entries in the leaves of the subtree rooted byv.

So insertion and deletion is standard. The only enhancementis that during insertion, each vertex on the path
from the root of each tree to the newly inserted leaf must haveits pound field increase by the pounds entry in the
newly inserted record. Deletes are managed analogously. Itis straightforward to adapt the resulting splits and
joins of vertices due to insertions and deletions to accommodate these enhancements.

Given the query timet, we traverseT1 with respect to the major keys and minor key∞. On the path from
the root to that newly found location, we add up all of the.pounds values in the vertices that are children of the
vertices in the path, and lie to the left of the path. Let this sum bePsold, which equals the pounds of silver sold
before – or at timet.

Do the same forT2. Let this sum bePdelivered. Then the answer to the query isPsold− Pdelivered.

Problem 5 [10 points] New numbered exam booklet PLEASE
Consider the following problems:

(a) Balancing Unfair Odds and Evens (BUOE)
Instance: a setS that containsn integers that are multiples of32, andn odd integers.
Question: CanS be partitioned into the two disjoint setsM andW with sums that differ by at most1?
Prove that BUOE is NP-Complete.

Solution

BUOE is NP-Complete.

Proof:

It is clear that BUOE is in NP: if the answer is yes, then the partition can be presented and verified in
polynomial time.

We encode Partition as a BUOE problem. So letA[1..n] be an array ofn integers for the Partition problem.
We encode the problem as the two arraysTrtytuNA[1..n] andOdd[1..n] whereOdd[1..n] are all equal
to 1, andTrtytuNA[i] is set to32nA[i] for i = 1, 2, . . . , n. So if A does have a partition, then so does
TrtytuNA, andOdd[1..n] can be split into two sets ofn÷ 2 ones, andn − (n ÷ 2) ones. It is clear that
one of theTrthtuNA partitions and one of theOdd partitions can be combined asM , and the remaining
data combined asW , and sums will differ by1 or 0. Conversely, any partitioning ofTrtytuNA will give
two sums that differ by some multiple of32n, son ones cannot be distributed to the two sums in a way
where each new sum will be within one of the other unless the two sums are equal without any ones.

It follows that Partition and its encoding as a BUOE problem have identical yes-no answers, and the
encoding runs in polynomial time. Hence BUOE is NP-Complete.

(b) Dominating Set (DS)
Instance: G = (V,E) is an undirected graph ofn vertices, and a targett.
Question: DoesV contain a subsetS of t vertices where every vertex inV is either inS or is adjacent to

6

some vertex inS? Prove that DS is NP-Complete.
Note: although DS might seem the same as vertex cover (VC), there are differences:
in the graph,w—x—y—z, the set{w, z} is a DS, but is not a VC because{x, y} does not have an endpoint
in {w, z}.

Solution

DS is NP-Complete.

Proof:

It is clear that DS is in NP, since if the answer is yes, then there is such anS, and it is easy to verify any
suchS in polynomial time.

We reduce VC to DS. Given an undirected graphH = (W,F), we buildG as follows: For eachw in W ,
insert a clone copy ofw into V . For each edgee = {u, v} in F , insert a clone copy ofe into E, and create
the new vertexνe. Insertνe into V , and the edges{νe, u} and{νe, v} into E. It is clear that a VC forH
is a DS forG. To see the converse, letS be a DS forG. Then at least one of the verticesu, v, νe must be
in S for eache = {u, v} in E. In those cases where onlyνe is in S, we can replace it by one of the other
two vertices, and the newS will still be a DS forG. It will also be a VC forH, since every edge inH will
have at least one of its vertices inS.

It follows that VC and its encoding as a DS problem have identical yes-no answers, and the encoding runs
in polynomial time. Hence DS is NP-Complete.

Problem 6 [10 points] New numbered exam booklet PLEASE
Let G = (V,E) be a weighted directed graph with verticesV = {1, 2, 3, . . . , n}, and the real valued edge
weight functionEweight(i, j) for i, j in V . As is standard, we define the weight of a pathp to be the sum
of the Eweight weights of the edges inp. Assume thatG has no cycles with a negative weight, and that
Eweight(i, j) =∞ if the directed edge(i, j) is not inE.

(a) Present pseudocode for the standard all-pairs least-weight paths algorithm of Floyd-Warshall and state its
space and time complexities. Include some explanation about how the least-weight path for any(i, j) pair
can be recovered from the computation.

Solution

procedure FW(n,Eweight[1..n,1..n],Pcost[1..n,1..n],Intermediate[1..n,1..n]);
1 for all pairs(i, j) in [1..n] × [1..n] do
2 Pcost[i, j]← Eweight[i, j];
3 if Pcost[i, j] <∞ then Intermediate[i, j]← j else Intermediate[i, j]← Nil endif
4 endfor;
5 for k ← 1 to n do
6 for all pairs(i, j) in [1..n]× [1..n] do
7 temp← Pcost[i, k] + Pcost[k, j];
8 if temp < Pcost[i, j] then
9 Pcost[i, j]← temp;

10 Intermediate[i, j] ← k
11 endif
12 endfor

endfor
end FW;
Path recovery is performed via a DFS to print the leaf values of the implicit binary tree of subpaths

with root Intermediate[i, j].

7

(b) Now suppose that the weight of a pathp is defined to equal the largest edge weight among the edges inp
instead of the sum. Present pseudocode to solve the all-pairs least-weight paths problem for this modified
definition of path weight.

Solution

Change line 7 totemp← max{Pcost[i, k], P cost[k, j]}

(c) Suppose that all edge weights are non-negative. Explainhow to solve the all-pairs least-weight paths
problem for sparse graphs (where|E| ≪ |V |2) with a method that is more efficient than the Floyd-
Warshall algorithm. Give the time complexity of your algorithm. You can use any standard methods, but
be sure to name them and state their run-time costs.

Solution

Usen iterations of Dijkstra’s algorithm, where the iterations sequence through the different vertices to
use as the source. Time:Θ(n × (|E| + n log n)). Karger, Koller, and Phillips (1993) integrated (and
optimized) this approach by loading alln2 initial path lengths into the priority queue, and executingthe
Dijkstra just-in-time update policies for each newly deleted min distance. They optimized the updates
by (effectively) building new adjacency lists from the growing subset of edges that participate in shortest
paths, and adapting the just-in-time updates to accommodate late (but not too late) discoveries of edges
that are shortest paths. The operation count for their version isΘ(n× (|F |+ n log n)), whereF is the set
of edges that are also shortest paths.

(d) Now suppose that the objective is to solve not only the least-weight path costs for the standard definition
of path weight as in part (a), but also to compute the largest edge weight on each solution path. If a pair of
verticesi, j have several (equal) least-weight paths fromi to j, the algorithm should find the path fromi
to j that not only has the least total path weight, but also has, among all such least-weight paths, a greatest
weight edge that is as small as possible, which is to say that the greatest weight among its edges is less than
or equal to the greatest weight edge in any of the other least-weight paths fromi to j. Present pseudocode
to solve this problem. Note that you will need two output arrays: one for least weight path for each(i, j)
pair, and one for the largest weight edge on each such path.

Solution

procedure FWW(n,Eweight[1..n,1..n],Pcost[1..n,1..n],Epcost[1..n,1..n]);
for all pairs(i, j) in [1..n] × [1..n] do

Pcost[i, j]← Eweight[i, j];
Epcost[i, j]← Eweight[i, j]

endfor;
for k ← 1 to n do

for all pairs(i, j) in [1..n]× [1..n] do
temp← Pcost[i, k] + Pcost[k, j];
etemp← max{Epcost[i, k], Epcost[k, j]};
if temp < Pcost[i, j] then

Pcost[i, j]← temp;
Epcost[i, j]← etemp

elseif temp equalsPcost[i, j] then
Epcost[i, j]← min{etemp,Epcost[i, j]}

endif
endfor

endfor
end FWW ;

8

