Honor s Algorithms/Written Qualifying Exam
Wednesday, Dec. 22, 2010

This is a 34 hour examination.
All questions carry the same weight.
Answer all six questions.
e Pleaseprint your name on the sticky note attached to the outside envedmgknowhere else.

e Pleaseado notwrite your name on the examination booklets.

e Please answer each question iseparatebooklet, andnumbereach booklet with that question
number.

e Read the questions carefully. Keep your answers brief. mssstandard results, except when
asked to prove them.

e When you have completed the exam, please reinsert the tedidek into the envelope.




Problem 1 [10 points] New numbered exam booklet PLEASE
Consider the following randomized procedure:

OO0k, WNBE

(@)

(b)

(©

OO0k, WN PR

F(n) = F(n/2) + O(1), n > 1; soF(n) = ©(logn), which is much faster than the time used in part

function Rand(n);
if n <1 then return(1)
else setz to 0 with probability 1, or 1 with probability;
if = 0 thenreturn(3 - Rand(%) 4+ Rand(3) +4-n-n-n)
elseif z = 1thenreturn(2 - Rand(%) +2- Rand(3) +7-n-n-n)
endif
endif
end_Rand;

Let R(n) be the expected value returned by tRend procedure on input. Write anexact recurrence
equation forR(n) and solve it in thed-notation (do not bother about the base case).

Solution
R(n) = 4R(n/2) + 6n3,n > 1; soR(n) = O(n?).

Let M (n) be the expected number of multiplications needed to comRButei(n) (all multiplications use
“.” symbol in the code above). Write a recurrence equationMdr) and solve it in thed-notation (do
not bother about the base case).

Solution
M(n) =2M(n/2)+©(1),n > 1, soM(n) = O(n).

Consider the following faster procedufist(n). Notice that the expected value computedst(n) is

the same as the expected value compute@dyd(n) (which you also computed in part (a)). LE{n) be

the expected number of multiplications usediyst(n). Write a recurrence equation fét(n) and solve
it in the ©-notation (do not bother about the base case). Compare withanswer in part (b).

function Fast(n);
if n <1 thenreturn(l)
else setz to 0 with probability 1, or 1 with probability2
if v =0thenreturn(4 - (Fast(n/2) +n-n-n))
elseif z = 1 thenreturn(4 - Fast(n/2) +7-n-n-n)
endif
endif
end_Fast;

Solution

(b). However, the random variable computed in (c) has argiffedistribution from that in part (b), although the
expectations are the same.

Problem 2  [10 points] New numbered exam booklet PLEASE

(@)

Formal Languages
LetL = {(alb)*(blc)’ : i < j}. Prove thatL is not regular.
Solution

Use theuvy pumping lemma. A convenient version says: for anyRlthere is a fixegh such that for any
stringw in L with |w| > p, we can writew = uvy where|uv| < p, |v| > 0, anduv’y is in L for all i > 0.
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So choosePb’*!, which is inL. v must be alles. Pump that (or leti = 2). We get a string with more
a's thanbs and nacs, which is not inL. It follows that there is no such for L, and L is therefore not a
RL.

(b) Prove thatL is a CFL.
Solution

A Grammar is as easy as anything for this:» BC'; B — LBR|e; L — alb; R — bc.
So theB derivations contribute equally toandj. As for C', we have:C' — C|b|c, which will increasej
by an arbitrary positive integer.

(c) For any two languages and M, let

Shuffle(L, M) = {{1p1lapa - - - L1y, Where thel; andp; are strings, the
string (145 - - - ¢y is in L, and the stringuypo - - - pg isin M, fork = 1,2,3, ...}

Suppose thak is regular and/ is a CFL.
Must Shuffie(L, M) be a CFL? Explain your answer.

Solution

Yes, Shuffle(L, M) is a CFL. LetM, be the FSM forL, and ), be the PDA forM. The idea is that a
slightly FSM-enhanced version of the PO, should run for as many steps as it likes, while being ready to
nondeterministically epsilon-transition back to a sliglftSM-enhanced/,. that can run for as many steps
as it likes, and non-deterministically epsilon-transitioack to the PDA. Each “epsilon-transition back”
from machinel/,, is to the state in the other machiné,;;., -n. that executed the most recent transition
into M. This way, each machine — when its switch-to-other tramsitiare omitted — will execute as it
should on the subsequence of the string that it is supposeztégnize. As these words suggest, a state
for the PDA must “remember” which state in the FSM caused thieeat sequence of execution steps by
the PDA, and vice versa. We can record this by clonifgduplicates of)/,., where there aref,, states

in the PDA finite state maching/,. Likewise, we clone#, duplicates ofM,. Let theses many states
be written agpreviousP D Astate, current F'S M state), where each such pair defines one new state and
the first index in this pair is conceptually a “level numbeot the altogethe, levels of the current state
“FSMstate,” which belongs to the machiié,.. So each pair is a state in the new machine, and there are
also the pairgpreviousF S M state, current PD Astate) that represent the different PDA levels which
each remembers the name of the FSMstate that transitioried RBDA execution.

A state(previous P D Astate, z) will have all of the transitions from that are defined foz in M,.. These
transitions will be to the clones of the states out of M,., and will reside on the level “previousPDAstate.”
In addition, (previousP D Astate, z) will have an epsilon transition t¢z, previousP D Astate), which
represents a return to the PDA recognition scheme, and toediag of the fact that was the source of
that return.

The analogous construction is used for thecvious F'SM, currentPD Astate) States.

The start state isewS, which has an epsilon transition {previousP D Astart, currentF'SM start),
and another epsilon transition {previousF'S M start, currentPD Astart) (because/; could bee for
those who care).

A state in this new machine is accepting if both the PDA and B&les are accepting.
The machine is a PDA, and it is clear that it recognizes théflslsias described.

Problem 3  [10 points] New numbered exam booklet PLEASE
A string is a palindrome if it is the same read left to right ight to left, e.g.ababa.



(a) The longest palindrome subsequence of a striisgts longest subsequence (of not necessarily consecutive

(b)

(©

symbols) that is a palindrome. Give an algorithm to deteenimtime O(|=|?) the length of the longest
palindrome subsequence of a string A high-level program specification is sufficient, but it mbhave
enough specificity to be correct, and have an operation aafuft(|z|?). What is the space complexity
(requirement) for your solution?

Solution
Solution 1: letLen(i, j) be the length of longest palindromeuifi..;]. then:

0 if j <4,
o 1 if i =7,
Len(d) =\ 94 Len(i4 1,5 — 1) it fi] = a[j],

max{Len(i +1,j), Len(i,j — 1)} otherwise,

and the cases are processed as being mutually exclusiveexploaential growth of a purely recursive
solution is tamed by storingen(i, j) in an|z| x |z| array that is initialized taiil. A call to compute
Len(i, 7) only initiates the recursion if the corresponding tableneig Nil. If so, the answer is com-
puted as above, and then written into the table prior to theme Otherwise the table value is returned.
Consequently, each value is computed just once for eacl ijpaie It follows that the spatial and time
complexity ared(|z|?).

Cheap solution: Leg be the reverse af, and apply the standard textbook Greatest Common Subssgjuen
algorithm. Include a look-up table to keep the recursive patation efficient.

Technically, this answer is correct, but flawed. It is corriecthe sense that the answer is numerically
correct. It is flawed in the sense that the character locafiona GCS inz andz"°**"*¢¢ does not have to
reference the same sequence of physical characters. EecamdBZA and AZBAZ has the GCS ABZ.
Of course, in addition to this Bidendrome, ZABZA has fouriRétomes of length 3. Exercise (that was
not part of the problem): Prove that for any stringthe length of the longest palindrome is the same as
the length of the GCS of andz"¢v¢"s¢,

Give an algorithm to determine in ting&(|z|?) the length of the longest palindrome that is a sequence of
consecutive symbols in a string What is the space complexity?

Solution
Done in ¢ below.

Give an algorithm to determine in ting&(|z|?) the length of the longest palindrome that is a sequence of
consecutive symbols in a string and which uses no more théi(|z|) space. (Hint: think about the logic
of a non-deterministic PDA that recognizes palindromesdownot use the code for such a device.)

Solution

If we can guess the middle, we will only need to read pairs tbéite to determine the length of this thing.
In this case, a look-up table will be unnecessary.

A version of the code is as follows:

function Long(n,x][..n]);
if n equalsd then return(Stupid case nobody cares aboartjlif;
z[0] — m; { 2(0) isa sentinel to keep readsin bounds }
zn+1] — »; {xz(n+1)isasentinel to keep readsin bounds }
longest «— 1;
for Imid < 1ton do



lltest «— Imid;

rrtest «— Imid + 1;

current «— 0;

while z[lltest] equalsc[rrtest] do  { the even length cases }
current < current + 2;
lltest < lltest — 1;
rrtest «— rriest + 1

endwhile;

longest «— max{longest, current};

lltest «— Imid — 1;

rrtest < Imid + 1;

current «— 1;

while z[lltest] equalse[rrtest] do  { the odd length cases }
current < current + 2
lltest < lltest — 1;
rrtest < rrtest + 1

endwhile;

longest «— max{longest, current}

endfor;
return(longest)
end_Long;
The time isO(|z|?) and the additional space for this version is a constant nuwfgords.

A clever problem reduction technique can improve the paréorce toO(n log n) operations with(|z|)
additional words of storage, and the use of a standard, bsbrably sophisticated compact suffix tree
data structure can reduce the operation cousi(fe:|) and©(|z|) storage.

Problem 4  [10 points] New numbered exam booklet PLEASE
Value at risk

ScotiaMocatta, a global leader in the precious metals égtumarket, needs a data structyrd@o record its
commitments to provide silver over time.

ArecordR = (s,d,p) in S has three relevant fields:is the selling date, which is when the contract is sold;
d is the delivery date, at which time the actual silver must élvdred by ScotiaMocattap is the number of
pounds of silver that must be supplied on the delivery datel ¢an denote them bi.sell, R.del, andR.lbs if
you wish.

The operations are inseft, deleteR (for contracts that were not sold), altbundsat Risk(t).

PoundsatRisk(t) is the number of pounds of silver that ScotiaMocatta, at dat@s already promised to
deliver on that day or some time in the future. It equals thra sfithe pounds of silver in the contracts with a
selling date that is less thanand a delivery date that is greater than or equal to

Formally, for the recordss, d, p) in the selling systens':

PoundsatRisk(t) = Z .

(s,d,p) in S
s<t<d

To comply with financial regulations, the data structure nstisre records for old contracts that have been
completed as well as contracts that ScotiaMocatta plansltinghe future. Likewise, the query timecan be
any time in the past, the present, or the future.



Explain how to implement a data structufeso that thelnsert(x), Delete(x), and PoundsatRisk(x)
operations will all run inO(log n) time whenS containsn > 1 records. There is no requirement that a recrd
have just one physical entry i\

Solution

Use two 23treeq’ andT; that are enhanced to answer these range querieq’ lstbre all recordss, d, p)
in a sorted order according to the major kegnd minor keyd. Let T store all record$s, d, p) in a sorted order
according to the major key and minor keys. In addition, let each internal nodein 77 and inT; have a special
field v.pounds, which stores the total number of pounds entries in the kafiéhe subtree rooted hy

So insertion and deletion is standard. The only enhanceinémit during insertion, each vertex on the path
from the root of each tree to the newly inserted leaf must itaye@ound field increase by the pounds entry in the
newly inserted record. Deletes are managed analogoudly.sitaightforward to adapt the resulting splits and
joins of vertices due to insertions and deletions to accodatethese enhancements.

Given the query time, we traversel; with respect to the major keyand minor keyoc. On the path from
the root to that newly found location, we add up all of theunds values in the vertices that are children of the
vertices in the path, and lie to the left of the path. Let thiside Psold, which equals the pounds of silver sold
before — or at time.

Do the same fofl. Let this sum bePdelivered. Then the answer to the queryisold — Pdelivered.

Problem5 [10 points] New numbered exam booklet PLEASE
Consider the following problems:

(a) Balancing Unfair Odds and Evens (BUOE)
Instance a setS that containg: integers that are multiples 82, andn odd integers.
Question Can.S be partitioned into the two disjoint sedd andW with sums that differ by at most?
Prove that BUOE is NP-Complete.

Solution
BUOE is NP-Complete.
Proof:

It is clear that BUOE is in NP: if the answer is yes, then thdipan can be presented and verified in
polynomial time.

We encode Partition as a BUOE problem. Sodét..n| be an array of. integers for the Partition problem.
We encode the problem as the two arrdysytuN A[1..n] andOdd|[1..n] whereOdd[1..n] are all equal

to 1, andTrtytuN Ali] is set to32nAfi| fori = 1,2,...,n. So if A does have a partition, then so does
TrtytulN A, andOdd[1..n] can be split into two sets of - 2 ones, anch — (n <+ 2) ones. It is clear that
one of thel'rthtuN A partitions and one of th@dd partitions can be combined a¢, and the remaining
data combined ad’, and sums will differ byl or 0. Conversely, any partitioning dfrtytuN A will give

two sums that differ by some multiple 82n, son ones cannot be distributed to the two sums in a way
where each new sum will be within one of the other unless tleestwns are equal without any ones.

It follows that Partition and its encoding as a BUOE probleavéhidentical yes-no answers, and the
encoding runs in polynomial time. Hence BUOE is NP-Completd

(b) Dominating Set (DS)
Instance G = (V, E) is an undirected graph of vertices, and a target
Question DoesV contain a subsef of ¢ vertices where every vertex i is either inS or is adjacent to



some vertex ir6? Prove that DS is NP-Complete.

Note: although DS might seem the same as vertex cover (V& tire differences:

in the graphpw—az—y—=z, the sef{w, z} is a DS, but is not a VC becau$e, y} does not have an endpoint
in {w, z}.

Solution
DS is NP-Complete.
Proof:

It is clear that DS is in NP, since if the answer is yes, thenetliesuch art, and it is easy to verify any
suchsS in polynomial time.

We reduce VC to DS. Given an undirected grdph= (W, F'), we buildG as follows: For eaclw in W,
insert a clone copy ob into V. For each edge = {u, v} in F, insert a clone copy of into £, and create
the new vertex.,. Insertv, into V, and the edgeév., u} and{v,, v} into E. It is clear that a VC foid

is a DS forG. To see the converse, I18tbe a DS forG. Then at least one of the verticesv, v, must be
in S for eache = {u,v} in E. In those cases where only is in S, we can replace it by one of the other
two vertices, and the new will still be a DS forG. It will also be a VC forH, since every edge il will
have at least one of its vertices $h

It follows that VC and its encoding as a DS problem have idahtfes-no answers, and the encoding runs
in polynomial time. Hence DS is NP-Complete.l

Problem 6  [10 points] New numbered exam booklet PLEASE

Let G = (V, E) be a weighted directed graph with verticBs= {1,2,3,...,n}, and the real valued edge
weight function Eweight(i, j) for 7,7 in V. As is standard, we define the weight of a patto be the sum
of the Fweight weights of the edges ip. Assume thaiG has no cycles with a negative weight, and that
Eweight(i, j) = oo if the directed edgéi, j) is notin E.

(a) Present pseudocode for the standard all-pairs leagtiygaths algorithm of Floyd-Warshall and state its
space and time complexities. Include some explanationtdimw the least-weight path for ary, j) pair
can be recovered from the computation.

Solution

procedure FW(n,Eweight[1..n,1..n],Pcost[1..n,1..n],Intermedja..n,1..n]);
1 for all pairs(i, 7) in [1..n] x [1..n] do

2 Pcostli, j] < Eweightli, j];

3 if Pcostli, j| < oo then Intermediateli, j| < j else Intermediateli, j| < Nil endif
4 endfor;

5 for k — 1tondo

6 for all pairs(i,j) in [1..n] x [1..n] doO

7 temp « Pcostli, k] + Pcostlk, j|;

8 if temp < Pcost[i, j] then

9 Pcostli, j] < temp;

10 Intermediate[i, j] — k
11 endif
12 endfor
endfor
end_FW,

Path recovery is performed via a DFS to print the leaf valdébeimplicit binary tree of subpaths
with root Intermediateli, j].



(b)

(©

(d)

Now suppose that the weight of a patls defined to equal the largest edge weight among the edges in
instead of the sum. Present pseudocode to solve the al{paist-weight paths problem for this modified
definition of path weight.

Solution
Change line 7 teemp «— max{ Pcost[i, k|, Pcost[k, j]}

Suppose that all edge weights are non-negative. Explainto solve the all-pairs least-weight paths
problem for sparse graphs ( wheig| < |V|?) with a method that is more efficient than the Floyd-
Warshall algorithm. Give the time complexity of your algbr. You can use any standard methods, but
be sure to name them and state their run-time costs.

Solution

Usen iterations of Dijkstra’s algorithm, where the iteratioreqaence through the different vertices to
use as the source. Tim&(n x (|E| + nlogn)). Karger, Koller, and Phillips (1993) integrated (and
optimized) this approach by loading alf initial path lengths into the priority queue, and executing
Dijkstra just-in-time update policies for each newly detéimin distance. They optimized the updates
by (effectively) building new adjacency lists from the giog subset of edges that participate in shortest
paths, and adapting the just-in-time updates to accomradded (but not too late) discoveries of edges
that are shortest paths. The operation count for theiraeiisio(n x (|F| + nlogn)), whereF is the set

of edges that are also shortest paths.

Now suppose that the objective is to solve not only thetleaeight path costs for the standard definition
of path weight as in part (a), but also to compute the largégt eveight on each solution path. If a pair of
verticesi, j have several (equal) least-weight paths frota j, the algorithm should find the path from

to j that not only has the least total path weight, but also haspgmall such least-weight paths, a greatest
weight edge that is as small as possible, which is to sayhkeajreatest weight among its edges is less than
or equal to the greatest weight edge in any of the other l@aght paths from to j. Present pseudocode
to solve this problem. Note that you will need two output gsreone for least weight path for ea¢h j)

pair, and one for the largest weight edge on each such path.

Solution

procedure FWW(n,Eweight[1..n,1..n],Pcost[1..n,1..n],Epcostiil..n]);
for all pairs(i, ) in [1..n] x [1..n] do
Pcostli, j| < Fweightli, j];
Epcostli, j] < FEweight][i, j]
endfor;
for k — 1tondo
for all pairs(i,j) in [1..n] x [1..n] do
temp «— Pcost|i, k| + Pcostlk, jl;
etemp «— max{ Epcost[i, k|, Epcost[k, j]};
if temp < Pcost[i, j] then
Pcostli, j] < temp;
Epcostli, j| < etemp
elsaif temp equalsPcost(i, j| then
Epcostli, j] < min{etemp, Epcostli, j|}
endif
endfor
endfor
end FWW,



