
Problem 1

There are many ways to solve this problem. One way is to use a DFS that is initiated
from a designated root vertex. Each vertex should store the distance to the most distant
leaf in its subtree. Then each vertex can pick the two children with the greatest distance
values and use the sum of these two values plus 2 as a candidate diameter value. With
one exception, the greatest of these candidate sums is the diameter. The exception
occurs if the root has one child and the distance to its most distant leaf is larger than
the candidate sums. This case is easy to include, and easy to avoid by picking a good
designated root.

Another approach is to identify the set of vertices with just one neighbor in the
undirected graph. These are the candidate endpoints for the diameter. Then a BFS-
style processing that is initialized to begin with this set at the first round can “peel off”
these endpoints one level at a time to obtain a new set of “endpoints” for processing at
the next round. The process continues up to the round where the surviving subgraph
is just a vertex or an edge and its two endpoint vertices. The diameter equals twice the
number of peeling phases if just one vertex remains at the completion of the algorithm,
and one more than this phase count if two vertices remain. The algorithm is as follows.
function Diam((V, Adj[∗]) :undirected tree);
for each v in V do

v.count← |Adj[v]|;
if v.count = 1 then insert v into Ready endif

endfor
unprocessed← |V |;
diam← 0;
while unprocessed > 2 do

repeat
w ← RemoveFrom(Ready);
unprocessed← unprocessed− 1;
for each vertex x in Adj[w] do

x.count← x.count− 1;
if x.count = 1 then insert x into Waiting endif

endfor;
until Ready empty;
diam← diam + 2;
empty Waiting into Ready

endwhile;
if unprocessed = 2 then diam← diam + 1;
return(diam);
end-Diam.

1

Problem 2

First find the strong components (SC) of G, and create the reduced graph R that
has a vertex for each SC of G. There is an edge from u to v in R if there is an edge
in G from some vertex in the SC of G that corresponds to u to some vertex in the SC
that corresponds to v. Clearly R can be formed in O(|V | + |E|) time. Moreover, R
must be a DAG, and R must be semiconnected if and only if G is semiconnected, since
the reduction preserves the connectivity of G. So if G is semiconnected, then R is a
DAG where every pair of vertices lies on a directed path. The graph must be a linear
chain since any vertex with two outgoing edges has two immediate descendants that are
unrelated in a DAG, and likewise for incoming edges and predecessors.

But it is straightforward to test if the reduced graph is a chain in linear time.

Problem 3

The problem is clearly in NP. We simply guess a poor vertex cover, and count the
number of edges covered.

To prove PVC is NPC, we reduce VC to PVC. So let G = (V, E) be a graph with a
target VC parameter k. Create a new graph Ĝ = (V̂ , Ê) that contains G, and 999|E|
edges that are just isolated edges which are connected to nothing else. Thus each such
edge comprises two new vertices and the edge between them. Now a VC of k vertices
for the original graph covers .1% of the edges in the new graph. Likewise, suppose that
some set of k vertices cover .1% of the edges in Ĝ. To see that the original G must have
a VC of k vertices, keep the portion of the PVC that has vertices in V . Each of the
remaining vertices in the PVC covers just one edge. So replace these vertices one-by-one
by a vertex that covers an as yet uncovered edge in G (if one still exists). When you
are done, you must have either covered all of E or have covered a number of edges in E
that equals .1% of 1000|E|, which is to say that you covered all of E.

Problem 4

a. Let the string be stored in Bit[1..n]. Let Word[i, j] be a Boolean function that is
true if Bit[i..j] is in L and false if not.

Then we can define the recognizer by the recursive function

Recog(j) =

{
True if j = 0,∨

0≤i<j(Recog(i)
∧

Word[i + 1, j]) if j > 0,

where
∨

0≤i<j is the j-way logical or.
b. Same solution where Word[i, j] is true if String[i..j] is in L and false otherwise.
c. O(|w|r+2). Reason: the cost to evaluate

∨
0≤i<j(Recog(i)

∧
Word[i + 1, j]) (for fixed

j) is
∑

0≤i<j(1+(j− i)r), where the 1 is for a table lookup of Recog(i), since its Boolean
evaluation should be computed just once for each i, and the (j−i)r is the work to evaluate
Word[i+1, j]. Ignoring the 1 and summing over j gives

∑
0≤i≤j≤n(j− i+1)r = O(nr+2).

Notice that each i, j pair appears just once in this sum.

2

Problem 5

a. Let L = 02n−11. The language is regular. However, swap(L) = 0n10n−1, is clearly
not regular. To see that it is not regular, we use the pumping lemma, which says, in this
case, that for large enough words, a w ∈ swap(L), if the language were regular, could
be written as w = xyz where |y| 6= 0 and xyiz is also in the language for all i ≥ 0. But
then y must be a string of zeros only, whence xyiz will have (i− 1)|y| more zeros on the
y side of the 1 than is the case for xyz. This cannot be, since the number on the other
side will remain the same.

b. Let D be a FSM that recognizes L. We build a nondeterministic PDA to recognize
L. We ignore the issue of recognizing 1 (or not), since it is trivial. Let w = yx with
|x| = |y|. We build a PDA that on input w decides if D recognizes xy. To do so, the
PDA must first decide if y is a correct second half of a word that D will recognize. To
do so, the PDA first guesses the state σ that D will be in after processing x. It then
processes the first part of w by emulating D starting from σ. It must also guess when the
first half of w has been processed, and check to see if its simulation of D on y starting
from σ is in an accepting state. If so, it then starts simulating D on (the guessed) second
half of w, beginning from the start state of D. Once this second half is processed, it
checks to see if its simulated state for D is σ as originally guessed.

The details: There are only a finite number of states for D, and hence the guessed
state can be remembered in the finite control structure of the PDA. When processing
the first half of w, a 1 is pushed onto the PDA for each symbol processed. Then the
remaining characters that are processed can be counted to see if they have the same
count. This is done by popping a 1 for each character processed during the recognition
of x. The stack must be empty when w has been processed, σ must be correct, and the
acceptance state reached after y has been processed for w to be recognized.

The scheme is nondeterministic. So w is accepted only if a correct pair of guesses
for σ and the location of the first half of w can be found, and D winds up accepting w.

c. We exploit the limited ability of PDA’s to recall values. Let L = a3mbm, which is
easily recognized by a PDA. Swap(L) = ambma2m, which is just as difficult to recognize
as anbnan.

Formally, we use the pumping lemma, which says that if Swap(L) is CF, then for
large enough n, a w in Swap(L) can be written as w = uvxyz where |vy| > 0, and
uvixyiz must also be in Swap(L) for i = 0, 1, 2, But if this is true, then v must be
all of one kind of letter, and likewise for y. Since the number of a’s grow no matter
what, and the number of a’s at the front is just half of the number of a’s at the back,
then both strings must be all a’s. But this cannot be true, since the number of b’s would
then not grow. Hence the language is not CF.

3

Problem 6

a. Use a vanilla Dijkstra’s algorithm with all B and and P vertices initialized to be
sources (or have distance zero from the source), and other vertices to have a distance
that is infinite. Also initialize a .security field in the B and P vertices to be of type
Insecure and Secure respectively. The update lines in Dijkstra’s algorithm reads:
v ← DeleteMin(Q);
for each neighbor w in Adj[v] do

if sDist[w] > sDist[v] + EdgeCost[v, w] then
sDist[w]← sDist[v] + EdgeCost[v, w];
w.security ← v.security

endif
endfor;

b. Here the code is similar, but there are two adaptations. First, an edge cost will
be treated as one third of its listed cost for a robber. Second, a little justification is
needed for correctness. There can be locations that the robbers could reach first, but
which will not be reached by them because every path to the location passes through
a location that the police reach first. So we cannot run separate Dijkstra’s algorithms
for the robbers and the police, and just award each vertex to the agent who gets there
first. Instead, we run the algorithms in parallel (as one algorithm), and thereby avoid
spreading robbers from a location which the police reach first, because the vertex will
be categorized as secure and removed from the queue once it is known that the police
must be the first to arrive. So the initialization is as above, and we have two update
loops:
v ← DeleteMin(Q);
if v.security = Secure then

for each neighbor w in Adj[v] do
if sDist[w] > sDist[v] + EdgeCost[v, w] then

sDist[w]← sDist[v] + EdgeCost[v, w];
w.security ← Secure

endif
endfor

else
for each neighbor w in Adj[v] do

if sDist[w] > sDist[v] + EdgeCost[v, w]/3 then
sDist[w]← sDist[v] + EdgeCost[v, w]/3;
w.security ← Insecure
endif

endfor
endif;

Of course, each update loop must be embedded inside an outer loop that repeats
the update until the algorithm is done. For completeness, we also note that the priority
minqueue Q maintains its data organized by the priority value sDist.

4

