
Escape Analysis on Lists∗

Young Gil Park†and Benjamin Goldberg

Department of Computer Science

Courant Institute of Mathematical Sciences

New York University‡

Abstract

Higher order functional programs constantly allocate
objects dynamically. These objects are typically cons
cells, closures, and records and are generally allocated
in the heap and reclaimed later by some garbage col-
lection process. This paper describes a compile time
analysis, called escape analysis, for determining the
lifetime of dynamically created objects in higher or-
der functional programs, and describes optimizations
that can be performed, based on the analysis, to im-
prove storage allocation and reclamation of such ob-
jects. In particular, our analysis can be applied to
programs manipulating lists, in which case optimiza-
tions can be performed to allow whole cons cells in
spines of lists to be either reclaimed at once or reused
without incurring any garbage collection overhead. In
a previous paper on escape analysis [10], we had left
open the problem of performing escape analysis on
lists.

Escape analysis simply determines when the ar-
gument (or some part of the argument) to a function
call is returned by that call. This simple piece of in-
formation turns out to be sufficiently powerful to al-
low stack allocation of objects, compile-time garbage
collection, reduction of run-time storage reclamation

∗This research was funded in part by the National Sci-
ence Foundation (#CCR-8909634) and by DARPA/ONR
(#N00014-90-1110).

†Present address: School of Computer Science, University
of Windsor, 401 Sunset Ave, Windsor, Ontario, Canada N9B
3P4, Email: ypark@cs.uwindsor.ca

‡Authors’ address: 251 Mercer Street, New York, N.Y.
10012, Email: park@cs.nyu.edu, goldberg@cs.nyu.edu.

0

overhead, and other optimizations that are possible
when the lifetimes of objects can be computed stati-
cally.

Our approach is to define a high-level non-standard
semantics that, in many ways, is similar to the stan-
dard semantics and captures the escape behavior caused
by the constructs in a functional language. The ad-
vantage of our analysis lies in its conceptual simplicity
and portability (i.e. no assumption is made about an
underlying abstract machine).

1 Introduction

Higher order functional programs constantly allocate
objects dynamically. These objects are typically cons
cells, closures, and records and are generally allocated
in the heap and reclaimed later by some garbage col-
lection process. Garbage collection overhead can be
reduced by performing compile time analyses that al-
low the following optimizations to be performed:

• Stack allocation: Objects that would otherwise
be allocated in the heap and then reclaimed us-
ing garbage collection are allocated in an activa-
tion record on the stack and automatically (and
cheaply) reclaimed when the activation record
is popped off the stack.

• In-place Reuse: When objects (such as cons
cells) are no longer needed, they can be reused
directly by the program without invoking the
garbage collector. A typical example of this is
when a function constructs a new list by de-
structively modifying the cons cells that were
contained in an argument to that function.

• Block Allocation/Reclamation: A number of ob-
jects (such as the cons cells of a list) are allo-
cated together in a contiguous block of memory.
Eventually, the whole block is put on the free
list, rather than the individual objects. This al-
lows reclamation of larger segments of memory,

L
HHj

(top)
1stspine ⇒

2ndspine ⇒

3rdspine ⇒
...

?

-

?

-

?

?

-

?. . . ?

-

?. . .

?

-

?

-

?

?

-

?. . . ?

-

?. . .

Figure 1: Spines of a List

and reduces run-time overhead by avoiding the
traversal of the individual objects (in a mark-
sweep collection, for instance).

In this paper, we present a compile time analysis
that provides sufficient information to perform all of
these optimizations on higher order functional pro-
grams. The analysis is called escape analysis. In a
previous paper [10] we described an escape analysis
for non-list objects, such as closures, and left open
the problem of performing the analysis in the pres-
ence of lists. This paper solves that problem. Escape
analysis answers a simple question: Given a function
application, does a parameter (or some part of a pa-
rameter) get returned in the result of the application?
If so, the parameter is said to escape from the appli-
cation. If the escaping parameter is a list, we would
particularly like to know which spines of the parame-
ter escape. The spines of a list are a way of describing
substructures of a list and are defined as follows:

Definition 1 (Spines of a list) Given a list L and
some i ≥ 1, the top ith spine of L is defined as the
set of cons cells accessible by a sequence of operations
consisting of car and cdr where the number of occur-
rences of car is (i− 1). Similarly, given a list L with
d spines and some j ≥ 1, the bottom jth spine of L

is defined as the top (d− j + 1) spine of L.

In Figure 1 we illustrate what we mean by the
spines of a list. Naturally, an empty list (nil) and
any non-list objects have no (or zero) spine.

We have chosen to analyze the escape properties
of lists in terms of their spines for two reasons:

• It is an approximation to the run-time behavior
that allows a compile-time analysis.

• It reflects the programming style commonly used
for strongly typed languages, such as ML, in
which lists are homogeneous (all elements have
the same type) and functions (such as append,
map, etc.) often operate over complete spines of
lists.

The first point reflects our inability to determine pre-
cisely, without actually running the program, which
individual cells of a list might escape. To form a
terminating compile-time escape analysis, one must
choose an approximation of program behavior. The
second point reflects our belief that the spines are a
good choice of approximation, since the cells of each
spine of a list tend to be treated identically. Many
functions, such as append, reduce, map, length, etc,
operate on all cells of a spine. Many other functions
have the form:

f L = if predicate(car L) then

else f (cdr L)

or

f L x = if x = n then ...

else f (cdr L) (arith-op x)

In general, it is impossible to determine at compile
time when the recursion will bottom out. One simply
has to assume that all cells in the spine of the list L

will be visited.
Consider, for example, the following program:

let map f l = if (l=nil) then nil

else cons (f (car l))

(map f (cdr l)) ;

pair x = [car x, car (cdr x)] ;

in map pair [[1,2],[3,4],[5,6]]

An escape analysis would allow us to determine the
following properties of the program at compile time:

1. The top spine of pair’s parameter does not es-
cape from pair, only some elements do.

2. The top spine of map’s parameter l does not
escape from map, and the elements of l escape
from map to the extent they escape from the
unknown function f.

3. In the call (map pair [[1,2],[3,4],[5,6]]),
the top two spines of the second argument of
map do not escape.

This means that (at least) the following optimizations
could be performed:

• Stack Allocation: The spine of the list [[1,2],[3,4],[5,6]]
and the spine of each element of the list could
be allocated in the activation record for map.
Thus, when map returns, the cons cells of those
spines would disappear. It seems strange to al-
locate a list in a stack, but there is really no
reason not to (as long as we keep in mind the
safety considerations outlined in [6]).

• In-place Reuse: If the parameter l of map is
unshared (sharing information can also be ob-
tained from escape information), we can recycle
the cells of the spine of l within map to be used
in the spine of the result (since l’s spine does
not escape). The call to cons inside map can
reuse the first cell in the spine of l for the re-
sult. Pair can reuse the spine of x in its result.

• Block Allocation/Reclamation: If neither of the
above optimizations are used, then the top two
spines of the list [[1,2],[3,4],[5,6]] can be
allocated in some block in the heap. When
map finishes, that whole block can be placed on
the free list, freeing all the cons cells without
traversing the list.

This paper particularly describes an escape anal-
ysis on lists in higher-order, polymorphically-typed
functional programs, and describes optimizations and
other analysis (sharing analysis) that can be performed
based on this analysis to improve storage allocation
and reclamation of such objects. Our approach for
lists could be applied to other data structures such
as tuples, trees, etc.

2 Related Work

There has been a number of papers describing anal-
yses for optimizing storage of lists and other struc-
tures. Most of these analyses have been first-order
(i.e. not accounting for higher order functions) or
have analyzed first-order languages. Brooks, Gabriel,
and Steele [3] describe an escape analysis for num-
bers, but do not extend it for arbitrary objects. Rug-
gieri and Murtagh [18] describe a lifetime analysis
for a language with side-effects and complex data
structures, but, again, it is first order. Jones and
Le Metayer [13] describe an algorithm, based on for-
ward and backward analysis, for detecting sharing of
objects in first order functional languages, and de-
scribe a method for reusing of cells based on the
sharing analysis. We use only forward analysis pro-
viding, perhaps, a simpler conceptual framework for
higher-order languages. Inoue, Seki, and Yagi [12]
describe an analysis for functional languages to de-
tect, and reclaim, run-time garbage cells based on
the formal language theory and grammars. The pa-
per focuses only on the explicit reclamation of cons
cells and it is unclear that this approach could be
extended for higher-order languages. Besides being
higher order, the escape analysis described here is a
more general lifetime analysis that can be applied to
objects other than lists, and other optimizations are
supported. Chase, Wegman, and Zadeck [7] describe

an first-order analysis for LISP that constructs graphs
representing possible list structures and analyzes the
graphs for possible storage optimizations. Our analy-
sis, in contrast, concentrates on typed languages such
as ML and benefits from a type system that restricts
the ways that lists can be created (for example, one
cannot say f = cons(x,x)) and the sharing that can
occur within a list. Orbit, an optimizing compiler for
Scheme, uses a simple first-order escape analysis to
stack allocate closures [15]. Other analyses for opti-
mizing storage allocation were proposed in [14, 5].

Deutsch [8] presents a lifetime and sharing analy-
sis for higher order languages. While the goals of the
paper seem to be similar to ours, the approach is very
different. The analysis consisted of defining a low-
level operational model for a higher order functional
language, translating a program into a sequence of
operations in this model, and then performing an
analysis to determine the lifetimes of dynamically cre-
ated objects. The approach is also one of collecting
interpretation, in that it analyzes a whole program
to infer properties of program points. Our approach
is to define a high-level non-standard semantics that
in many ways is similar to the standard semantics
and captures the precise escape behavior caused by
the constructs in a functional language. We then de-
fine an abstraction of these semantics which provides
less precise information but which allows the analy-
sis to be performed at compile time. The advantage
of our analysis lies in its conceptual simplicity and
lower computational cost (compared to a collecting
interpretation).

Baker [2] describes an interesting approach to higher-
order escape analysis of functional languages based
on the type inference (unification) technique. The
analysis sketched there provides escape information
of lists only, and might be extended to give infor-
mation comparable to what our analysis gives. Our
analysis, based on abstract interpretation, provides
escapement of other objects (closures) as well as lists.
We also describe how to use escape information for
various optimizations.

The notion of spines of a list is used in [17] as a
way of modeling the location of dynamically created
references in a list structure.

3 Escape Semantics

3.1 The Language - nml

We define a simple, strict, monomorphically typed,
higher order functional language. For lack of a better
name, we will call this language nml, for not much of
a language. The syntax of nml is defined as follows:

c ∈ Con Constants (including primitive functions)
= {. . . ,−1, 0, 1, . . . , true, false,

+, -, =, nil, cons, car, cdr}
x ∈ Id Identifiers
e ∈ Exp Expressions, defined by

e ::= c | x | e1e2 | lambda(x).e |
if e1 then e2 else e3 |
letrec x1 = e1; . . . xn = en in e

pr ∈ Pgm Programs, defined by
pr ::= letrec x1 = e1; . . . xn = en in e

For convenience, we omit type declarations. Our anal-
ysis assumes that monomorphic type inference (per-
haps requiring declarations) has already been per-
formed. Subsequently, we will relax the monomorphic
typing restriction and show that our analysis works
for a polymorphic version of nml. Also for conve-
nience, we will allow function definitions of the form
f x1 . . . xn = e and assume that this is just syntactic
sugar for f = lambda(x1). . . . lambda(xn).e.

3.2 An Exact Escape Semantics

We first define a non-standard semantics of nml, called
the escape semantics, such that the meaning of an ex-
pression is exact information about what escapes in
the result of the expression. Since nml is a higher
order language, the result of an expression may be a
function. Such a function, represented by a closure,
has two important characteristics with respect to the
escape semantics:

1. The closure is an object itself. We may be in-
terested in whether the closure escapes or not,
or we may be interested in another object that
is captured (bound) within the closure. Thus,
the value of an expression returning a function
must indicate whether an interesting object has
escaped.

2. A function value may be applied to arguments
(which may themselves escape from the appli-
cation). Therefore, in our non-standard seman-
tics, the escape value of a function must include
its behavior as a function.

Thus, the value of an expression in our non-standard
escape semantics is an element of a non-standard es-
cape domain and must have two components. First,
it must contain information about what is contained
within the result of the expression. Second it must
contain a function over the values in the escape do-
main. This approach (a two component value) was
used by Hudak and Young for performing higher or-
der strictness analysis [11].

We perform escape analysis on each argument of
a function call separately. Thus, at any time we are

only interested in whether or not a single object es-
capes. Other objects may escape in the result of a
function call, but are ignored by our analysis. An
object is interesting if it is the one whose escape be-
havior we are trying to determine. If a function has n

parameters, then we perform escape analysis n times,
each time treating a different parameter as interest-
ing. Thus, our escape semantics is defined in terms of
interesting objects; The value of an expression in our
escape semantics will indicate if some portion of, or
all of, an interesting object is contained in the result.

Given an expression, we want its corresponding
value in the escape semantic domain to tell us how
many spines (if any) of an interesting object are re-
turned by that expression. Values in our semantic
domain De have two components; The first compo-
nent is an element of basic escape domain Be, which
is a domain of pairs ordered as follows:

〈0, 0〉 v 〈1, 0〉 v 〈1, 1〉 v . . . v 〈1, d− 1〉 v 〈1, d〉

where d is some integer constant, i.e. for a = 〈a1, a2〉
∈ Be and b = 〈b1, b2〉 ∈ Be, a v b iff a1 ≤ b1 and a2 ≤
b2. The constant d is fixed for each program on which
our escape analysis is performed. Each expression in
the program returns a value whose first component
has the following meaning:

• 〈1, i〉 : The bottom i spines of an interesting
object is contained in the value of the expres-
sion. (If an interesting object is not a list then
i will always be 0, which means that an indivis-
ible interesting object is contained in the value
of the expression.)

• 〈0, 0〉 : No part of any interesting object is con-
tained in the value of the expression.

The second component is a function in (De → De).
The escape semantic domains are defined as fol-

lows (in the style of [4]):

Dint
e = Be × {err}

Dbool
e = Be × {err}

Dτ1→τ2

e = Be × (Dτ1

e → Dτ2

e)
Dτ list

e = (Be × {err}) + (Dτ
e ×Dτ list

e)

where err is a function (weaker than all others) that
can never be applied.

De =
∑

τ

Dτ
e escape semantic domain

Enve = Id → De escape environment

Given an x ∈ De we use the notation x(1) and x(2)

to refer to the first and second elements of x, respec-
tively. The two components of the first element of x

are referred to as x(1)(1) and x(1)(2), respectively (i.e.,
x has the form 〈〈x(1)(1), x(1)(2)〉, x(2)〉.

The escape semantic functions are:

C : Con → De

E : Exp → Enve → De

P : Pgm → De

The semantic function C for constants is defined as
follows:

C[[c]] = 〈〈0, 0〉, err〉, where
c ∈ {. . . , 0, 1, . . . , true, false, nil}

C[[c]] = 〈〈0, 0〉, λx.〈x(1), λy.〈〈0, 0〉, err〉〉〉,
wherec ∈ {+,−, =}

C[[cons]] = 〈〈0, 0〉, λx.〈x(1), λy. pair(x, y)〉〉
C[[car]] = 〈〈0, 0〉, λx. fst(x)〉
C[[cdr]] = 〈〈0, 0〉, λx. snd(x)〉

where pair(x,y)=〈x, y〉, fst(x)=x(1),
and snd(x)=x(2).

C[[null]] = 〈〈0, 0〉, λx.〈〈0, 0〉, err〉〉

The escape semantic function E for expressions and
P for programs are defined as follows:

E[[c]]enve = C[[c]]
E[[x]]enve = enve[[x]]
E[[if e1 then e2 else e3]]enve =

if Oracle(e1) then E[[e2]]enve else E[[e3]]enve

E[[e1e2]]enve = (E[[e1]]enve)(2) (E[[e2]]enve)
E[[lambda(x).e]]enve =

〈V, λy.E[[e]]enve[x 7→ y]〉
where
V = 〈0, 0〉 t (

⊔

z∈F non list

(enve[[z]])(1))

t (
⊔

z∈F list

(
⊔

p in (enve[[z]])

p(1)))

Here, p in (enve[[z]]) denotes that p is an escape pair
in enve[[z]], F non list is the set of non-list type free
identifiers in lambda(x).e, and F list is the set of list
type free identifiers in lambda(x).e).

E[[letrec x1 = e1; . . . xn = en; in e]]enve =

E[[e]]env′e
where
env′e = enve[x1 7→ E[[e1]]env′e,

. . . , xn 7→ E[[en]]env′e]
P [[pr]] = E[[pr]]nullenve

In order to return the actual escape value of each ex-
pression, we must be able to determine which branch
of the conditional primitive if-then-else would be
evaluated at run-time. Here, for convenience, we in-
stead resort to an oracle to choose the appropriate
branch of the if. Note that free identifiers are treated
separately according to whether they are of a list type
or a non-list type. nullenve is a escape environment
that maps every identifier to the least element of its
escape semantic domain.

3.3 Correctness

One naturally wonders what the relationship between
the standard semantics and our non-standard escape
semantics is. This is especially important if one wants
to prove that the information provided by escape anal-
ysis is correct. However, it should be noticed that our
escape analysis strives to gain information about the
run-time behavior of a certain implementation that
uses a stack and a heap and uses aliasing, rather than
copying, of aggregate objects. Therefore, it is an op-
erational semantics (perhaps couched in denotational
semantic terms) of which our escape semantics can be
considered an abstraction. Although we do not have
space in this extended abstract to provide the opera-
tional definition of our abstract machine, we can give
such a definition and prove correctness properties of
our analysis with respect to that definition. To be
complete, of course, we would have to prove that the
abstract machine implements the standard semantic
definition of the language.

3.4 Abstraction of the Escape Seman-

tics

The escape semantics presented in the last section
specifies exact escape information about functions.
But, it is not suitable as a basis for compile time
analysis because conditionals cannot be evaluated at
compile time and the subdomain of escape values for
lists is infinite.

In this section, we present a safe and computable
but less complete abstraction of the exact escape se-
mantics that allows an approximation of the exact
escape behavior to be found at compile time. We
modified the meanings of elements in the basic escape
domain Be. We represent lists as finite objects by
combining the escape values of all the elements into
a single value. We then modified the escape semantic
functions for constants and expressions to approxi-
mate the escape behavior of expressions by assuming
that both branches of a conditional could be taken.

The interpretation of elements of the basic escape
domain Be is modified as follows:

• 〈1, i〉 : The bottom i spines of an interesting
object may be contained in the value of the ex-
pression. (If an interesting object is not a list
then i will always be 0.)

• 〈0, 0〉 : No part of any interesting object is con-
tained in the value of the expression.

The escape semantic subdomain Dτ list
e for lists of

type τ list is modified as follows:

Dτ list
e = Dτ

e

The escape semantic function C for constants is mod-
ified as follows:

C[[nilτ list]] = ⊥τ

(⊥τ is the bottom element in Dτ
e)

C[[cons]] = 〈〈0, 0〉, λx.〈x(1), λy.x t y〉〉
C[[cars]] = 〈〈0, 0〉, λx.subs(x)〉

where subs(z) = if (z(1)(2) = s)
then 〈z(1)(1), z(1)(2) − 1, z(2)〉
else z

The typed constant function cars is applied to a list
that has s spines. (For each car in a program, s can
be statically determined by type inference.) If that
list contains the bottom n spines of an interesting
object then the first component of the list’s escape
value will be 〈1, n〉. There are two possible results
when cars is applied:

• If s = n, then the nth spine (from the bottom) of
the interesting object is part of the top spine of
the list. Thus, taking the car of the list returns
an object containing at most n−1 spines of the
interesting object. Thus the result should have
the value 〈1, n− 1〉.

• If s > n, then the nth spine (from the bottom)
of the interesting object is not part of the top
spine of the list. Thus, applying car to the list
returns a list that could contain the n spines of
the interesting object.

Notice that s cannot be less than n, since a list with s

spines cannot contain a list with more than s spines.
The escape semantic function E for expressions of

if-then-else and lambda(x).e is modified as fol-
lows:

E[[if e1 then e2 else e3]]enve =
(E[[e2]]enve)(2) t (E[[e3]]enve)

E[[lambda(x).e]]enve =
〈V, λy.E[[e]]enve[x 7→ y]〉
where
V = 〈0, 0〉 t (

⊔

z∈F

(enve[[z]])(1))

Here, F is the set of all free identifiers in lambda(x).e.

3.5 Safety and Termination

The safety of interpretation under the abstract escape
semantics with respect to the exact escape semantics
means that whenever an object escapes under the ex-
act escape semantics it escapes in the abstract escape
semantics. This can be proved by showing that, using
the principle of abstract interpretation, the abstract
escape semantics is a safe abstraction of the exact
escape semantics [16].

The termination of interpretation under the ab-
stract escape semantics can be proved as follows: Since
nml functions are recursive, their values in the es-
cape domain may be computed by the usual fixpoint
iteration. The body of the functional corresponding
to a recursive function is composed of the monotonic
least upper bound operator and other monotonic op-
erators. Thus each functional is monotonic and its
fixpoint can be found in finite time if the domain is
finite. For each type τ , we defined a finite domain Dτ

e .
When computing the fixpoint of a functional of type
τ → τ , we need only iterate over values in the finite
domain Dτ

e . Thus, the fixpoint iteration terminates.

4 Escape Test on Lists

We use the abstract escape semantics to infer escape
properties of programs. Below we show how it is used
to determine both the global and local escape proper-
ties of programs. Global escape analysis is performed
on a function definition, and thus gives general infor-
mation about the escape properties of that function
in any possible application. Local escape analysis de-
termines the escape behavior of a particular function
call, and yields more specific results.

4.1 Global Escape Test

In global escape analysis, we find escape information
about a function f in an nml program that holds true
for every possible application of f. To do so, we apply
the abstract escape semantic value of f to arguments
that cause the greatest escapement possible.

Definition 2 (Worst-case escape function) For each
non-list type τ , we define the function W τ that cor-
responds to an nml function from which every ar-
gument escapes: W τ = λx1.〈x1(1), λx2.〈x1(1) t x2(1),

. . . , λxm.〈

m⊔

i=1

xi(1), err〉 . . .〉〉 for m ≥ 1 and W τ = err

for m = 0, where m is the number of arguments that
a function of type τ can take before returning a prim-
itive value. For each list type of τ list, W τ list is
defined to be W τ .

Given a function f of n arguments, the position
i of an interesting parameter, and the abstract es-
cape semantic environment enve mapping f to an ele-
ment of the abstract escape semantic domain De, the
global escape test function G(f, i, enve) determines
how much of the ith parameter of f could possibly
escape f globally. It is defined as follows:

G(f, i, enve) =
(Ee[[f x1 . . . xn]] enve[xi 7→ yi])(1)

where yi = 〈〈1, si〉, W
τi〉, si is the number of spines of

the ith parameter of f (if it is a list type, otherwise si

is 0), τi is the type of the ith parameter of f , and for
all j ≤ n and j 6= i, yj = 〈〈0, 0〉, W τj 〉, τj is the type
of the jth parameter of f . Note that the whole ith

argument with si spines is interesting, and any other
argument is not interesting. Then, ¿from the result
of the global escape test function, we can conclude as
follows:

• If G(f, i, enve) = 〈0, 0〉 then we conclude that
none of the ith argument escapes f in any pos-
sible application of f to n arguments.

• If G(f, i, enve) = 〈1, k〉 then we conclude that,
if si ≥ 1 then, the top (si − k) spines of the
ith argument do not escape f in any possible
application of f to n arguments, but the bot-
tom k spines of the ith argument could escape
f in some application of f to n arguments. (If
si = 0 then the ith argument, which is not a list
type, could escape in some application of f to
n arguments.)

4.2 Local Escape Test

Generally, we would like to know if an argument es-
capes from a particular call to a function f . This
depends on the values of the arguments of that call.
Given a function of n arguments in an application
f e1 . . . en, the position i of an interesting parame-
ter, and the abstract escape semantic environment
enve mapping f and the free identifiers within e1

through en to elements of the abstract escape seman-
tic domain De, the local escape test function L(f, i, e1, . . . , en, enve)
determines how much of the ith parameter of f could
escape f in the evaluation of f e1 . . . en. It is defined
as follows:

L(f, i, e1, . . . , en, enve) =
(Ee[[f x1 . . . xn]] enve[xi 7→ zi])(1)

where zi = 〈〈1, si〉, (Ee[[ei]] enve)(2)〉, si is the number
of spines of ei (if it is a list type, otherwise si is 0), and
for all j ≤ n and j 6= i, zj = 〈〈0, 0〉, (Ee[[ej]] enve)(2)〉.
Similarly, we can determine local escape information
¿from the result of the local escape test function.

5 Polymorphic Invariance of Es-

cape Analysis

Up to this point, we have assumed that nml is a
monomorphically typed language. It remains to be
shown that escape analysis works on polymorphically
typed nml as well. We particular concentrate on

parametric polymorphism. To show this, we prove
that escape analysis exhibits the property of polymor-
phic invariance [1]. This means that given a polymor-
phic function, escape analysis will return the same re-
sult on any two monotyped instances of that function.
Actually, escape analysis is polymorphically invariant
when it is stated the following way (essentially the
converse of the way it was stated previously): Given
a function application, how many spines of an argu-
ment are not returned in the result of the application.
This is important because it is the portions of an ar-
gument that do not escape from the application that
can be stack allocated or reused (if unshared).

Theorem 1 (Polymorphic Invariance) Let f be
a polymorphic function of arity n, and let f ′ and f ′′

be any two monomorphic instances of f . Assume that
env′e and env′′e are escape semantic environments that
map f ′ and f ′′ to elements of De, respectively. Then,
for 1 ≤ i ≤ n,
G(f ′, i, env′e) = 〈0, 0〉 ⇐⇒ G(f ′′, i, env′′e) = 〈0, 0〉 or
G(f ′, i, env′e) = 〈1, k′〉 ⇐⇒ G(f ′′, i, env′′e) = 〈1, k′′〉
such that s′i − k′ = s′′i − k′′ where s′i and s′′i are the
number of spines of the ith parameter of f ′ and f ′′,
respectively.

Proof : This is shown by structural and fixpoint
induction on the expression e (the body of f) [16]. 2

Polymorphic invariance indicates that to analyze
a function definition in a polymorphic language, we
need only perform the analysis on the simplest mono-
typed instance of that function. The result is then
applicable to all possible instances of that function.

6 Application of Escape Analy-

sis

As mentioned in the introduction, escape informa-
tion can be used in a number of other analyses and
optimizations. Due to space limitations, we will only
sketch them.

Several papers [8, 9] have been published on shar-
ing analysis of objects in higher order functional lan-
guages (and many papers for first-order languages).
It turns out that for strict languages (in which the
evaluation order is obvious), sharing analysis of lists
becomes easy in the presence of escape information.

Theorem 2 (Sharing Information) Let f be a func-
tion which takes n arguments such that di is the num-
ber of spines of the ith parameter of f for i = 1 . . . n,
and let f return a list with df spines. If esci is the
number of escaping spines of the ith parameter of f ,
for i = 1 . . . n (statically inferred by escape analysis),
then

1. all cons cells in the top (df − max{min{esc1,

(d1 − u1)}, . . . , min{escn, (dn − un)}}) spines
of the result of (f e1 . . . en) are unshared when
ui is the number of unshared spines of ei for
1 ≤ i ≤ n.

2. all cons cells in the top (df − max{esc1, . . . ,

escn}) spines of the result of (f e1 . . . en) are
unshared for any set of arguments e1,en.

Proof : 1. The number of spines of ei that are
shared is (di−ui). The number of shared spines of ei

that could escape f is min{esci, (di−ui)}. In the re-
sult of (f e1 . . . en), the bottom max{min{esci, (di −
ui)}} spines will be shared. Thus, all cells in the top
(df −max{min{esc1, (d1−u1)}, . . . , min{escn, (dn−
un)}}) spines of the result are not shared.
2. Since we consider any set of arguments e1,en,
and we have no sharing information of ei, we assume
that ui = 0 as the worst-case. Then, min{esci, (di −
0)} = esci because esci ≤ di. Thus, all cells at top
(df − max{esc1, . . . , escn}) spines of the result are
not shared. 2

Both escape information and sharing information
that are determined by escape analysis can be used
for the in-place reuse optimization. Consider an ex-
pression of the form of (f e1 . . . ei . . . en) where f is
a function with n parameters, the ith parameter of f

is a list type with di spines, and there occurs some
cons in the body of f . Let all cons cells at the top
ui spines of the result of ei be unshared. Using the
global escape information of parameters of f , the in-
place reuse of cons cells can be performed as follows:

• If the bottom esci spines of the ith parameter
of f escapes f globally then the expression can
safely be transformed into (f ′ e1 . . . ei . . . en)
where f ′ is a new version of f which directly
reuses cons cells in the top s = min{ui, (di −
esci)}, spines of the ith argument of f for new
cons cells needed in the body of f .

• Let f be defined as f x1 . . . xn = . . . (cons e1 e2)

If there is no further use of the ith parameter
xi of f after the evaluation of the subexpression
(cons e1 e2) then a new version f ′ of f which
uses the in-place reuse optimization can be de-
fined as follows:
f ′ x1 . . . xn = . . . (DCONS xi e1 e2) . . . where
DCONS is a destructive version of cons defined
by DCONS a b c = {p := a; car.a := b; cdr.a :=
c; return(p)}

7 Conclusions

We have presented an analysis that answers a simple
question, but in doing so, subsumes a number of other

program analyses for storage optimization described
in the literature. It works on higher order functional
languages in the presence of lists, is relatively simple
and (hopefully) easy to understand, and makes no
assumptions about an underlying abstract machine.
It remains to be seen if it is useful in practice due
to the computational complexity of finding fixpoints
of higher order functions. However, the fact that the
analysis is polymorphically invariant allows one to an-
alyze only the simplest instance of each polymorphic
function, and we hope that in practice this makes the
analysis useful at compile-time.

References

[1] S. Abramsky. Strictness analysis and polymor-
phic invariance. In Workshop on Programs as
Data Objects, LNCS 217, Springer-Verlag, pp.
1-24, 1986.

[2] H. Baker. Unifying and conquer (garbage, up-
dating, aliasing ...) in functional languages. In
Proceedings of the ACM Conference on Lisp and
Functional Programming, pp. 218-226, 1990.

[3] R.A. Brooks, R.P. Gabriel and G.L. Steele. An
optimizing compiler for lexically scoped LISP.
In Proceedings of the SIGPLAN Symposium on
Compiler Construction, pp. 261-275, 1982.

[4] G.L. Burn, C.L. Hankin, and S. Abramsky.
Strictness analysis for higher order functions.
Science of Computer Programming, 7:249-278,
1986.

[5] D.R. Chase. Garbage Collection and Other Opti-
mizations. Ph.D. Thesis, Rice University, 1987.

[6] D.R. Chase. Safety considerations for storage
allocation optimizations. In Proceedings of the
SIGPLAN Conference on Programming Lan-
guage Design and Implementation, pp. 1-9, 1988.

[7] D.R. Chase, M. Wegman, F. K. Zadeck. Analy-
sis of pointers and structures. In Proceedings of
the SIGPLAN Conference on Programming Lan-
guage Design and Implementation, pp. 296-310,
1990.

[8] A. Deutsch. On determining lifetime and alias-
ing of dynamically allocated data in higher-order
functional specifications. In Proceedings of the
ACM Symposium on Principles of Programming
Languages, pp. 157- 168, 1990.

[9] B. Goldberg. Detecting sharing of partial ap-
plications in functional programs. In Proceed-
ings of the Conference on Functional Program-
ming and Computer Architecture, LNCS 274,
Springer-Verlag, pp. 408-425, 1987.

[10] B. Goldberg and Y.G. Park. Higher order escape
analysis: Optimizing stack allocation in higher
order functional program implementations. In
Proceedings of the European Symposium on Pro-
gramming, LNCS 432, Springer-Verlag, pp. 152-
160, 1990.

[11] P. Hudak and J. Young. Higher-order strictness
analysis for the untyped lambda calculus. In Pro-
ceedings of the ACM Symposium on Principles of
Programming Languages, pp. 107-118, 1986.

[12] K. Inoue, H. Seki, and H. Yagi. Analysis of func-
tional programs to detect run-time garbage cells.
ACM Transactions on Programming Languages,
10(4):555-578, October 1988.

[13] S.B. Jones and D. Le Metayer. Compile-time
garbage collection by sharing analysis. In Pro-
ceedings of the Conference on Functional Pro-
gramming Languages and Computer Architec-
ture, pp. 54-74, 1989.

[14] N. Jones and S. Muchnick. Binding time op-
timization in programming languages: An ap-
proach to the design of an ideal language. In Pro-
ceedings of the ACM Symposium on Principles of
Programming Languages, pp. 77-94, 1976.

[15] D. Kranz. ORBIT: An Optimizing Compiler for
Scheme. Ph.D. Thesis, Yale University, May
1988.

[16] Y.G. Park. Semantic Analyses for Storage Man-
agement Optimizations in Functional Language
Implementations. Ph.D. Thesis, New York Uni-
versity, 1991.

[17] Y.G. Park and B. Goldberg. Reference escape
analysis: Optimizing reference counting based
on the lifetime of references. In Proceedings of the
ACM Symposium on Partial Evaluation and Se-
mantics Based Program Manipulation, pp. 178-
189, 1991.

[18] C. Ruggieri and T.P. Murtagh. Lifetime analysis
of dynamically allocated objects. In Proceedings
of the ACM Symposium on Principles of Pro-
gramming Languages, pp. 285-293, 1988.

A Examples

Consider the following partition sort (often mistakenly called quicksort) program:

letrec PS x = if (null x) then nil

else letrec y = SPLIT (car x) (cdr x) nil nil;

in APPEND(PS (car y))

(cons (car x) (PS (car (cdr y))));

SPLIT p x l h = if (null x) then (cons l (cons h nil))

elseif (car x)<p then

SPLIT p (cdr x) (cons (car x) l) h

else SPLIT p (cdr x) l (cons (car x) h);

APPEND x y = if (null x) then y

else cons (car x) (APPEND(cdr x) y);

in PS [5,2,7,1,3,4]

We assume that the type of each function is given by PS : int list → int list, SPLIT : int → int list → int list

→ int list → int list list, and APPEND : int list → int list → int list and that each car in the program is
annotated as cars which denotes the car takes as its argument a list with s spines.

A.1 Escape Analysis

The definitions of the escape semantic values append, split, and ps of APPEND, SPLIT, and PS (shown uncurried
for convenience) are:

append x y = y t (sub1(x) t append x y)
split p x l h = l t h t (split p x (sub1(x) t l) h) t (split p x (sub1(x) t h))
ps x = append (ps sub2(split sub1(x) x 〈〈0, 0〉err〉 〈〈0, 0〉err〉))

(sub1(x) t (ps sub2(split sub1(x) x 〈〈0, 0〉err〉 〈〈0, 0〉err〉))

The meaning of each function in the escape semantic domain is found by fixpoint iteration. Here is the fixpoint
iteration for APPEND:

append(0) x y = ⊥int list

append(1) x y = y t (sub1(x) t append(0) x y)
= y t sub1(x)

append(2) x y = y t (sub1(x) t append(1) x y)
= y t (sub1(x) t (y t sub1(x)))
= y t sub1(x)

and for SPLIT:

split(0) p x l h = ⊥(int list) list

split(1) p x l h = l t h t ⊥(int list) list t ⊥(int list) list

= l t h

split(2) p x l h = l t h t (split(1) p x (sub1(x) t l) h) t (split(1) p x (sub1(x) t h))
= l t h t ((sub1(x) t l) t h) t ((sub1(x) t h))
= l t h t sub1(x)

split(3) p x l h = l t h t (split(2) p x (sub1(x) t l) h) t (split(2) p x (sub1(x) t h))
= l t h t ((sub1(x) t l) t h) t (l t (sub1(x) t h) t sub1(x))
= l t h t sub1(x)

and for PS (using the values computed for APPEND and SPLIT):

ps(0) x = ⊥int list

ps(1) x = append(ps(0) sub2(sub1(x))) (sub1(x) t (ps(0) sub2(sub1(x)))
= append ⊥int list (sub1(sub1(x)) t ⊥int list)
= sub1(x)

ps(2) x = append(ps(1) sub2(sub1(x))) (sub1(x) t (ps(1) sub2(sub1(x)))
= append sub1(sub2(sub1(x))) (sub1(x) t sub1(sub2(sub1(x)))
= sub1(x)

Let enve = [APPEND 7→ append, SPLIT 7→ split, PS 7→ ps]. Then,

G(APPEND, 1, enve) = (Ee[[APPEND x y]]enve[x 7→ 〈〈1, 1〉, err〉, y 7→ 〈〈0, 0〉, err〉])(1)
= (〈〈0, 0〉, err〉 t sub1(〈〈1, 1〉, err〉))(1)
= 〈1, 0〉

G(APPEND, 2, enve) = (Ee[[APPEND x y]]enve[x 7→ 〈〈0, 0〉, err〉, y 7→ 〈〈1, 1〉, err〉].)(1)
= (〈〈1, 1〉, err〉 t sub1(〈〈0, 0〉, err〉))(1)
= 〈1, 1〉

Thus, we conclude that APPEND returns all of its second argument y, and all but the top spine of the first argument
x.

G(SPLIT, 1, enve) = (Ee[[SPLIT p x l h]]enve[p 7→ 〈〈1, 0〉, err〉, x, l, h 7→ 〈〈0, 0〉, err〉])(1)
= (〈〈0, 0〉, err〉 t 〈〈0, 0〉, err〉 t sub1(〈〈0, 0〉, err〉))(1)
= 〈0, 0〉

G(SPLIT, 2, enve) = (Ee[[SPLIT p x l h]]enve[x 7→ 〈〈1, 1〉, err〉, p, l, h 7→ 〈〈0, 0〉, err〉].)(1)
= (〈〈0, 0〉, err〉 t 〈〈0, 0〉, err〉 t sub1(〈〈1, 1〉, err〉))(1)
= 〈1, 0〉

G(SPLIT, 3, enve) = (Ee[[SPLIT p x l h]]enve[l 7→ 〈〈1, 1〉, err〉, p, x, h 7→ 〈〈0, 0〉, err〉].)(1)
= (〈〈1, 1〉, err〉 t 〈〈0, 0〉, err〉 t sub1(〈〈0, 0〉, err〉))(1)
= 〈1, 1〉

G(SPLIT, 4, enve) = (Ee[[SPLIT p x l h]]enve[h 7→ 〈〈1, 1〉, err〉, p, x, l 7→ 〈〈0, 0〉, err〉].)(1)
= (〈〈0, 0〉, err〉 t 〈〈1, 1〉, err〉 t sub1(〈〈0, 0〉, err〉))(1)
= 〈1, 1〉

¿From above, we conclude that SPLIT returns all of its third and fourth arguments l and h, none of the first
argument p, and all but the top spine of the second argument x.

G(PS, 1, enve) = (Ee[[PS x]] enve[x 7→ 〈〈1, 1〉, err〉])(1)
= (sub1(〈〈1, 1〉, err〉))(1)
= 〈1, 0〉

So, we conclude that PS returns all but the top spine of its argument x.

A.2 Sharing Information from Escape Analysis

PS takes a list with one spine as its argument, and returns a list with one spine. ¿From the global escape analysis,
we know that no spine of the argument escapes PS globally. SPLIT takes four arguments p, x, l and h where p

is an integer, and x, l and h are lists with one spine, respectively, and returns a list with two spines. ¿From the
global escape analysis, we know that none of the first parameter p, all but the top spine of the second parameter
x, and all of the third and fourth parameters l and h escape SPLIT globally. Thus, we can determine the following
sharing properties (among others) of the program:

• For the expression (PS e) where e is any list with one spine, the top spine of the result list of (PS e) is not
shared.

• For the expression of (SPLIT e1 e2 e3 e4) where each ei is any possible expression, the top spine of the
result list of (SPLIT e1 e2 e3 e4) is not shared.

A.3 Optimizations based on Escape Analysis

A.3.1 Stack Allocation

Our escape analysis has determined that the spine of the original list [5,2,7,1,3,4] does not escape from PS.
Thus the spine of that list can be allocated in PS activation record. All the cells of the spine will disappear when
PS’s activation is removed from the stack.

A.3.2 In-place Reuse

¿From the global escape analysis, we know that APPEND returns all of its second argument y, and all but the top
spine of the first argument x. We also know that, for any expression (PS e) where e is a list with one spine, the
top spine of the result of (PS e) is unshared. Thus, the definition of PS can be transformed into PS’ as follows:

PS’ x = if (null x) then nil

else letrec y = SPLIT (car x) (cdr x) nil nil;

in APPEND’ (PS’ (car y))

(cons (car x) (PS’ (car (cdr y))));

where APPEND’ is a version of APPEND in which cons cells in the top spine of its first argument x are directly
reused. It is defined by

APPEND’ x y = if (null x) then y

else DCONS x (car x) (APPEND’ (cdr x) y);

Furthermore, if we know that the top spine of the argument of PS is unshared, then the definition of PS can be
transformed into PS’’ in which cons cells in the top spine of its argument x are reused as follows:

PS’’ x = if (null x) then nil

else letrec y = SPLIT (car x) (cdr x) nil nil;

in APPEND’ (PS’’ (car y))

(DCONS x (car x) (PS’’ (car (cdr y))));

Consider, as another example, a naive reverse function REV:

REV l = if (null l) then nil

else APPEND (REV (cdr l)) (cons (car l) nil);

¿From our analysis, REV can be transformed into REV’ which reuses cons cells in the top spine of its argument
l, if unshared, as follows:

REV’ l = if (null l) then nil

else APPEND’ (REV’ (cdr l)) (DCONS l (car l) nil);

A.3.3 Block Allocation/Reclamation

Suppose we are given a program identical to the partition sort program, except that the result expression was

PS (create list i)

where create list is some recursive function creating a list and i is some variable. The list that create list

returns cannot be allocated in PS’s activation record because the activation record doesn’t exist when the list is
created. An optimization that can be performed is as follows: create list should allocate the spine of the list
in some block of memory. The spine of the list does not escape from PS, so when PS is finished, the whole block
of memory can be put back on the free list. This block of memory is the ”local heap” described by Ruggieri and
Murtagh [18].

