
Reference Escape Analysis: Optimizing Reference Counting

based on the Lifetime of References*

Young Gil Park and Benjamin Goldberg

Department of Computer Science

Courant Institute of Mathematical Sciences

New York University

Abstract

In reference counting schemes for automatically reclaiming

storage, each time a reference to an object is created or

destroyed, the reference count of the object needs to be up-

dated. This may involve expensive inter-processor message

exchanges in distributed environments. This overhead can

be reduced by analyzing the lifetimes of references to avoid

unnecessary updatings.

This paper describes a technique for reducing the run-

time reference counting overhead through compile-time op-

timization. We present a compile-time analysis called re~-

erence escape analysis for higher-order functional languages

that determines whether the lifetime of a reference ezceeds

the lifetime of the environment in which the reference was

created. Using this statically inferred information, a method

for optimizing reference counting schemes is described. Our

method can be applied to reference counting schemes in both

uniprocessor and multiprocessor environments.

1 Introduction

An implementation of a programming language with

dynamic (indefinite extent) storage allocation requires

some kind of storage reclamation mechanism. Auto-

matic storage reclamation is especially important for

functional languages, which have no notion of explicit

storage control and tend to use storage extensively.

There are three basic approaches, with a number of

variants, to automatically detect and reclaim storage:

reference counting, mark-and-sweep garbage collection,

*This research was funded in part by the National Science
Foundation (# CCR-8909634) and by DARPA/ONR (#Nooo14-
90-1110).

t Author~~ addre~,: 251 Mercer Street, New York, NY 10012.

Email: park@ cs.nyu.edu, goldberg@cs.nyu, edu

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.
0 1991 ACM 0-89791 -433 -3/91 /0006 /0178 . ..$1 .50

and copying garbage collection.

Reference counting is a storage reclamation method in

which each object contains a count, called the reference

count, of the number of references (pointers) pointing

to it. When an object is first allocated, its reference

count is set to one. The reference count is updated dur-

ing execution as follows: Each time a new reference to

an object is created, its reference count is incremented

by one. Each time a reference to an object is destroyed,

its reference count is decremented by one. When an ob-

ject’s reference count becomes zero, it can be reclaimed

and the reference count of each object that it points to

is decremented.

Though the reference counting strategy has disadvan-

tages, such as storage fragmentation and the inability

to reclaim cyclic structures, its major advantage is that

storage reclamation occurs inclemently throughout pro-

gram execution; storage can be reclaimed as soon as it

has become garbage. It is also especially suitable in

multiprocessor architectures with distributed memory,

since reference counting is an inherently real-time and

localized activity.

The major overhead that is incurred in reference

counting schemes are as follows:

Space overhead for maintaining a reference count

in each object.

Time and code overhead for updating reference

counts when references are created or destroyed.

Communication overhead for manipulating a re-

mote reference and for synchronizing the operations

on reference counts in distributed memory environ-

ments.

In this paper, we describe a method for reducing the

time, code, and communication overhead of reference

counting in both uniprocessor and multiprocessor envi-

ronments by compile-time program analysis. Our ap-

proach is based on the observation that such overheads

can be reduced by avoiding unnecessary reference count

updates using statically inferred information about the

178

lifetime of each reference. The lifetime of a reference

to an object is the period from when the reference is

created until its last use. Suppose Ois an object that

is active at some time to during execution. Since this

object is active, there is at least one reference pointing

to it. If its reference count OrC is n then there are ex-

actly n references pointing to it. Suppose A is one of

those references. Now, suppose that anew reference B

to the object is created. The current reference count of

the object is incremented, i.e. OrC := OTC + 1. At some

later time tl,suppose that B is discarded. Then, the

current reference count of the object is decremented, i.e.

0.. := or. – 1.

If we can determine, at compile-time, that ,4 will still

be active at time tf, then no reference count operations

are required when B is created or destroyed. Since the

reference count of O always remains greater than or

equal to one from time to to time tf, O will not to be

reclaimed between time to and time tl. Thus, the ref-

erence count updating operation for the reference B can

be avoided. This avoidance optimization is safe because

any object which is still active will not be reclaimed.

1.1 Related Work

[DB76] proposed a method for reducing the overhead of

updating reference counts in which reference counting

activities are deferred by being stored into a file called a

transaction file instead of being immediately performed.

Reference counts are then adjusted at suitable intervals.

[Bar77] showed that this particular reference counting

scheme could benefit from compile time optimization by

generating fewer transactions (reference counting activ-

ities) based on compile time analysis of jirst-order pro-

grams.

Using the idea of weighted references, i.e. each refer-

ence carries a weight such that the sum of the weights

of all references to an object is equal to the reference

count of the object, there have been a variety of works

[Bev87,WW87], in which, when a new reference is cre-

ated to an object, no access to the object is needed.

[G0189] presented a generation-based approach for

distributed systems that also avoids reference count op-

erations when a reference is created, and also described

the applicability of escape information among references

to reference counting schemes, but did not present the

analysis.

[Hud86] presented a semantic model for describing the

number of active pointers to objects for an applicative-

order interpreter of a first-order function language, and

a variety of its abstractions based on abstract and col-

lecting interpretations.

Jones and Le Metayer [JL89] presented a compile-

time optimization to replace the allocation of new cells

by the reuse of collectible cells based on sharing analy-

sis of objects in first-order strict functional languages.

c E Con Constants(including primitive functions)

{=.. . , –l,O,l,. . . , true, false,

+, -, =, nil, cons, car, cdr}

x~Id Identifiers

e E Exp Expressions, defined by

e ::=c!x/eleq Ikr.el

if el then ez else e3 I

letrecxl =el;xn=en ine

pr E Pgm Programs, defined by

pr::=letrec zl=el; xn=en in e

Figure 1: Syntax of Functional Language

This approach considers sharing as a compile-time ab-

straction of reference counting of objects and is based

on a forward analysis and backward analyses (for trans-

mission and necessity information).

Deutsch [Deu90] described a static analysis for de-

termining information about lifetime and sharing of

objects in higher-order, strict, polymorphic languages.

This method is based on a low-level operational model

for higher-order functional languages that explicits de-

tails such as storage allocation and sharing, and thus the

analysis is performed on the program that is translated

from an original program into a sequence of operations

in this model. In our method, the analysis is performed

at the source levei.

The goal of our reference escape analysis is to stati-

cally determine the lifetime of dynamically created ref-

erences, and to apply the information to lessen the

run-time overhead of reference counting scheme. Even

though our analysis is used to improve reference count-

ing, it is not based explicitly on an abstraction of refer-

ence counting (as [Hud86] and [JL89] are).

2 The Functional Language

We define a simple 11igher-order functional language

based on the iyped lambda calculus, augmented with

constants (including primitive functions). The syntax

is defined in Figure 1. For convenience, we will use

the form f Z1 . . . zn = e as syntactic sugar for

f =Xzl Axn. e. Since we are not concerned here

with the problems of type checking or inference, we will

assume that the compiler has already performed type

checking before our analysis is attempted. Thus, we as-

sume that functions will always be applied to arguments

of the correct type.

We use the following notations; the double bracket,

[], is used to surround syntactic objects, the square

bracket and map arrow, [t-+], are used for environ-

ment updates, the angle bracket, (), is used for tupling,

179

and the subscripts (1) and (2) are used to denote the first

and second elements of a pair, respectively.

3 Reference Escape Analysis

In this section we present a compile-time semantic anal-

ysis, called reference escape analysis, which is based on

abstract interpretation ([AH87], [BHA86], [Myc81]) and

provides information about the lifetimes of dynamically

created references. Initially, we will assume that the lan-

guage is strict and monomorphically typed. The anal-

ysis is extended in sections 5 and 6 to handle polymor-

phically typed and non-strict versions of the language,

respectively.

Before describing the analysis, we need to describe

the operational model in which references are created

and destroyed. We choose a model that is commonly

implemented in LISP and functional language systems,

that of a call by value language with pointer semantics

for heap allocated structures. References are created in

three ways:

1.

2.

3.

When a heap allocated object, is created, a. refer-

ence to that object is created and returned by the

allocation procedure (e.g. cons).

When a heap allocated object is passed as a pa-

rameter in a function call, a reference to the object

is copied into the activation record of the called

function.

When an assignment occurs (in a letrec, for ex-

ample) and the value of the right hand side is a

heap-allocated object, a reference to the object is

copied into the variable (or record field) on the left

hand side.

Consider the following function definition:

f x y = letrec

gab= consab

in

cons x (g x y)

When f is called, its activation record contains two ref-

erences to lists, corresponding to the parameters x and

y. Thus, when (g x y) is evaluated, the references cor-

responding to x and y are copied into the activation

record for g. Likewise, any argument to cons that is

represented by a reference is also copied.

We analyze the lifetimes of a reference by determin-

ing its escapement, that is, whether or not a reference

is returned out of the scope in which it was created.

When does a reference escape? Intuitively, a reference

can escape when it is placed in a structure or closure

that escapes. In a previous paper [G P90], we described

escape analysis for structures and closures. As we dis-

cuss later in this paper, if a reference does not escape

the scope uf its creation, m.J reference cmmling oper-

ations are necessary when the reference is created or

destroyed.

In the above example, when the references corre-

sponding to x and y are copied into g’s activation

record, no reference count increment operation is re-

quired. Likewise, when g returns, no decrement opera-

tion is required. However, when a cons cell, correspond-

ing to cons a b, is created, the reference counts of the

objects pointed to by a and b must be incremented.

This is because the lifetime of the cons cell exceeds that

of g and f, and it cannot be determined, at compile

time, when the references contained in the cons cell will

be destroyed.

Definition 1 (Reference Escapement)

Given a function .f with n formal parameters, xl . . . Z.,

and m local variables 11 . . . 1~, the jth occurrence of the

ith parameter Zi (or local variable li), which we shall

refer to as zi~ (or lij), in the body of ~, is said to:

reference-escape the function definition off globally

if, in some possible application of j“, the reference

associated with ~ij (or iij) is contained in the result

of the function application.

reference-escape locally in a

function call (~ el . . . en) if the reference asso-

ciated with Zij (or lij) is contained in the result of

a particular function application of (j el . . . en).

From the escapement of a reference, we can deduce its

lifetime: If an occurrence of a parameter or local object

does not reference-escape the function call globally then

we can conclude that the lifetime of the reference asso-

ciated with the occurrence is confined to the lifetime of

any possible call to the function. Similarly, if it does not

reference-escape the function call locally in a particular

function application then we can conclude that the life-

time of the reference associated with the occurrence is

confined to the lifetime of that particular function call.

3.1 A Reference Escape Semantics

We introduce an exact but incomputable non-standard

denotational semantics, called reference escape seman-

tics, which describes completely the escaping behaviors

of references in a program. As we discuss later, each

reference in an expression is analyzed separately to de-

termine its escape behavior. Thus, our semantics is de-

fined in terms of a single reference whose escape behav-

ior we are trying to determine. We say that a reference

is interesting if it is the one whose escape whose escape

behavior we are trying to determine.

For each expression, its corresponding value in the ref-

erence escape semantic domain should indicate whether

interesting references are returned by that expression

180

or not. In the non-standard reference escape semantics,

the meaning of an expression is a pair, called a reference

escape pair, whose first element denotes the presence or

absence of interesting references and whose second ele-

ment denotes the functional behavior of the expression

when the expression itself is applied to another expres-

sion (as in [HY86]). Thus, for a non-list type expression,

the corresponding value in the non-standard reference

escape semantic domain Dr has two components: The

first component is an element of a domain called a ba-

sic reference escape domain, By which is a two-element

domain whose elements are O and 1 ordered by O ~ 1,

and interpreted as follows:

● 1: An interesting reference is contained in the

value of the expression.

● O : No interesting reference is contained in the value

of the expression.

The second component is a function over Dr. The

second component of the value of an expression which

has no higher-order behavior is err, which denotes a

function that can never be applied. The reference es-

cape value of a list L is a list of the reference escape

values of the elements of L.

The reference escape semantic domain D. and the do-

main of reference escape environments EnvT are defined

as follows (in the style of [BHA86]):

@?lt = B, x {err}
D:OO[

= Br x {err}
D? -72 = B. X (D? ~D~)
D; li,t = (Br x {err}) + (D; x D; “5’)

D, = ~D; Reference escape domain

Envr =’ Id - D. Reference escape environment

We introduce the following reference escape semantic

functions:

K. : Con ~ D,

E. : Exp - EnvT ~ D,

P, : Pgm * D,

K, gives reference escape meaning to constants, E,

gives reference escape meaning to expressions, and P,

gives reference escape meaning to programs. The se-

mantic equations for K., E. and P. are defined in Fig-

ure 2. Note that an oracle is used, for convenience, to

resolve the exact behavior of the conditional if. This

can be otherwise be accomplished by having the exact

escape semantics directly compute the standard mean-

ing as well as escape meaning of expressions. nu!lenvr

denotes the empty environment.

3.2 An Abstract Reference Escape Se-

mantics

Even though the reference escape semantics described

in the last section can provide exact reference escape in-

formation, it cannot be used as a basis of compile-time

analysis because it must rely on the standard seman-

tics and thus is not guaranteed to terminate at com-

pile time. For a compile-time analysis, we need a com-

putable approximation of the exact reference escape se-

mantics that provides safe and useful, but less complete,

reference escape information. We safely approximate

the exact reference escape semantics by abstracting the

reference escape semantic subdomains for list type ex-

pressions, and by a,pproxinmting the reference CXcapc

semantic functions.

In order to approximate the exact reference escape

domains for lists, we treat a list to be a collection of

spines instead of an individual elements. The spines of

a list are pictured in Figure 3. This allows us to use

type information (which tells us the number of spines

of a list) to assist our analysis.

Definition 2 (Spines of a list)

Given a list L and some i ~ 1, the top dh spine of L is

defined as the set of cons cells accessible by a sequence of

operations consisting of car and cdr where the number

of occurrence of car is (i – 1). Similarly, given a list L

with d spines and some j > 1, the boiiom jth spine of

L is defined as the top (d – j + I)th spine of L.

The abstract basic reference escape domain, B:, for

some fixed d is defined as a (d + 2)-element domain

whose ordering on elements is defined by

(0,0) ~ (1,0) ~ (1,1) ~ . ..~ (l, d–1) ~

(l, d).

The interpretation of elements of @ is defined as fol-

lows:

●

●

(1, j) : An interesting reference maybe contained

in the value of the expression, and, if j > 1, it is a

reference to the cons cell at the bottom jth spine

of a list, for O < j < d. (If j = O then the object

pointed by the interesting reference is not a cons

cell.)

(O, O) : No interesting reference is contained in the

value of the expression.

Abstracting the reference escape semantic subdomains

for list type expressions is done by representing lists as

finite objects, i.e. by combining the reference

pairs of all its elements into a single reference

pair. The domain D, is an abstraction of D..

escape

escape

181

I<r [C] = (O, ew), c= {...,–1,0, 1,..., true, false, nilT1i’t}

Kr [c] = (O, ~x.(z(~), JY.(0, err))), c G {+,-,=}

Kr[cons] = (O, ~~.(z(l), N/.(x, y)))

K, [Car] = (o,Az.q,))
Kr [cdr] = (o,AH(,))

E. [c~envr = K, [C]
Er[zjenvr = envr[x~

E,[if el then ez else e3jenvr = if Oracle(el) then Er [e2]env~ else Er [e2]envr

Er[e1e2]envr = (Er[e1~envr)(2) (E,[ez]env,)

Er[k.e]env. = (Oie~,y.E,[elJenvr[z H g])

O, = (U (en~r[~l)(l))) U (U (u p(l)))

vcF tiE~l”i p in enu.[u]

pin 1 denotes each pair element in 1

F and F1iSf are the set of non-list type and list type free variables in (Xc.e).

l?r[letrec xl = el; . . .; Zn = e~in e]env, = E,[e]env~

where env~ = envr[xl ~ Er[el]env~, Zn H E~[eJ)envJ]

Reference Escape Semantic Functions

ptop L
‘tspine

2ndspine

3rd*pine

Figure 3: Spines of a List

-&ur =’Id ~ Dr Abstract escape environments

The abstract reference escape semantic functions

K, : con -+ D,

E, : Exp * Envr ~ h,

P, : Pgm - D,

are defined in Figure 4. Note that the conditional if

no longer makes an appeal to the oracle, but rather

takes the least upper bound of the escapement of both

branches. cars is the application of car to a list with s

spines. For each car in a program, s can be determined

statically by type checking. It may be arbitrary large,

but is fixed at compile-time. cars takes a list with s

spines as an argument, and returns a list with (s – i)

spines when s > I or a non-list object when s = 1. In

any case, the result cannot contain a reference pointing

to the cons cell at the bottom Sth spine of a list. Note

that cons returns a single reference escape pair that

approximates a list of reference escape pairs.

Theorem 1 (Termination)

For any program pr G Pgm, P,~rJJ can be found in a

jinite number of steps.

Proof : Every functional under the abstract reference

escape semantics is monotonic, because it is composed

of operators, such as the least upper bound operator U

and cut’, that are monotonic. The abstract reference

semantic domain for each type is finite. Recall that the

language is monomorphically typed. Thus, any least

fixpoint iteration is guaranteed to terminate in a finite

number of steps. •I

182

x-r[c] = ((O, O), em), cE {..., -l, O,l,..., true, false}

2, [c] = ((O, O), ~x.(xf~l, ~y.((O, O), err))), c C {+,-,=}

l?r[nil’ /’S’] = lT (bottom element in b;)

ir[cons] = ((o, o), ~z.(ql), ~y.zl..ly))

Ar[cars] = ((O, O), Jx.(cut`(z(l)), z(Z)))/*sisthe number ofspines of theargument of car*/

where

cuts(z) =if (s =Z(2)) then (0,0) else z

~r [cdr] = ((o,o),k.z)

Er[c]eiiv, = I?r[c]

fir[z]eiiq. = eiiv, [z]

~,[lf el thenez else e~]eiivr = fir[ep]efivru~r[e~]efivr

Ar[elez]ehvr = (~r[e~]e~vr)~~~ (j, [ez]etiv,)

&.[Az.e~efiv, = ~~e~~y.Er[e]efivr[z*y])

Or = (U (env, [u])(l))) and F is the set of free variables in (Jz.e).

UGF

E.[letrec xl = el; . . .;zn = en in e]eiiv. = ,E, [eJJefivJ

where env~ = erivr[xl ++ fir[el]etiv~, Xn * 13r~en]eiiv~]

P,~r] = E, ~r]nd?envr

Figure 4: Abstract Reference

The safety of interpretation under the abstract ref-

erence escape semantics can be proved as follows. Let

NAPn be an apply operator for elements in the non-

standard reference escape semantic domains, defined by:

For ep epl . . . epn G ‘r(~r),

NAPn(ep, epl, ep~) ‘~f

{

ep n=()

NAP~-l(ep(z)epl, epz, . . .,ep~) n >0

Let u and v be values of an expression e of type r or

r list in Dr and Dv, respectively. Let n be the number

of arguments that the type ~ can take before returning

a non-function value. We say that u is a safe approxim-

ation (with respect to exact reference escape information)

for v iff

(u P(l)) ~ (NAp~(u]sl . . .sk))(l)(l)

P ill NAP~(v,t,,..tk)

where Vk ~ n, Vi < k, si is a safe approximation of ii.

Theorem 2 (Safety) For all expression e and envi-

ronments env. and eiivr such that envr[y] is safe for

env. [y] for all y, &.[e]efiv. is safe (with respect to ref-

erence escape information) for Er[e]envr.

Proof : This can be proved by structural and fixpoint

inducticm[Par91]. ❑

Escape Semantic Functions

3.3 Testing for Reference Escapement

Reference escape testing is performed separately on the

reference associated with each occurrence of a foraml

parameter of a function. Thus, at any time we are only

interested in whether or not a particular reference es-

capes. Other references Imay escape in t!v= result nf a

function call, but are ignored by our analysis. If a pa-

rameter has n occurrences, then reference escape analy-

sis will be performed n times (and a different reference

is considered interesting each time).

Consider the example from before:

fxy= letrecgab=consab;

in cons x (g x y)

As we discussed previously, each occurrence of x in the

body of f denotes the creation of a new reference. To

differentiate between the occurrences of x, we label each

occurrence differently. In fact, the different occurrences

can be considered different parameters to an auxiliary

function derived from f:

f’ xl x2 y = letrec g a b = cons a b;

in cons xl (g x2 y)

Our abstract reference escape semantics will give the

escapement of the parameters to f‘, and thus of the

references corresponding to XI and x2. We describe

below how this ana!ysis proceeds.

183

3.3.1 Auxiliary Functions

In order to make each occurrence of each parameter of a

function distinct, we introduce an auxiliary function f’

for each function f. Then, we perform reference escape

testing on f’ to determine reference escape property of

each occurrence of each parameter of f. Given a func-

tion

the auxiliary function f’ is given as follows:

where o(i) is the number of occurrences of Zi in e and

e’ is derived from e by replacing the jth occurrence of

zi by xij for all i and j. Note that each parameter

of f’ will now have only one occurrence, and f’ will be

never called from anywhere and thus is not recursive. To

determine the escape behavior of references associated

with occurrences of parameters of ~, we perform the

test on its auxiliary function ~.

3.3.2 Global Reference Escape Test

Using a global reference escape test, we find reference

escape information about each function in a program

that holds true for any possible application of the func-

tion.

Definition 3 (Worst-Case Escape Function)

For each non-list type T, we define the abstract function

IV that corresponds to a function from which every

argument escapes.

W ‘Af ALrl. (zl(l), AZ2. (L’1(1) u ~2(1),

Jzm. (U z~(l),err) . . .))

i=l, rn

where m is the number of arguments that a function of

type r can take before returning a non-function value.

For each type r list, W’ ‘i’t is defined to be W’.

Given an identifier f bound to a function of n parame-

ters and an abstract reference escape environment envr

in which f is defined, the global reference escape test

function G, determines whether the jth occurrence of

the i’h parameter could possibly escape. It is defined as

follows:

where f’ is the auxiliary function for f,

~ = &.[f’]env,,

?/ij = ((l,.$i)jwT’),

ri is the type of the ith parameter of f, and Si is the

number of total spines of type 7$ (when ri is not list

type, Si is O). For all k < o(i), k #j,

Yik = ((0,0), W7*),

and for all h < n, h # i, and for all k < o(h),

yhk = ((0,0), w“),

where o(i) is the number of occurrences of ith parameter

off. From the result of the global reference escape test,

we can conclude the following:

If G,(f, i, j, enq.) = O then in any possible applica-

tion of f to n arguments, the reference associated

with the jth occurrence of the i~h argument does

not escape the function call.

If G,(f, i, j, env,) = 1 then in some possible appli-

cation off to n arguments, the reference associated

with the jth occurrence of the ith argument could

escape the function call.

3,3.3 Local Reference Escape Test

Using a local reference escape test, we find reference es-

cape information about a function in a particular call

to the function, which depends on the values of argu-

ments of that call. Given an identifier f bound to a

function of n parameters, an application f e~ . . . en,

and an abstract reference escape environment envr in

which f and all identifiers in el through en are defined,

the local reference escape test function L, determines

the escapement of the jth occurrence of the f’s ith pa-

rameter during the evaluation of f el . . . em as follows:

Lt-(f~i, j,el ,.. .,en, envr)=

(Er[f’ z,, . . . Zlo(l) . . . Znl . . . Zno(n)]

env, [f’ ~ f’, ~io(i) + Yio(~)l)(l)(l)

where where f’ is the auxiliary function for f,

F = fir[f’]cnvr,

W = ((1, si), (.& Kei]e~vr)(2j,

and Si is the number of total spines of the type of the

it~ parameter off (when ri is not list type, Si is O). For

all k < o(i), k # j,

Yik = ((0, 0), (E,[e,]en~~)(z)),

and for all h < n, h # i, and for all k < o(h),

Yhk = ((0, 0), (~r[eh]en%)(2))

where o(i) is the number of occurrences of i~h parameter

of f. From the result of the local reference escape test,

we can conclude the following:

184

● If.L~(~, i,j, el, ..., e~,env~) = O then, in the par-

ticular application of ~ to el through en, the refer-

ence associated with the jth occurrence of the iih

argument does not escape the function call.

● If L~(~, i,j, el, ..., en, en%) = 1 then, in the par-

ticular application of ~ to el through en, the refer-

ence associated with the jth occurrence of the dh

argument may escape the function call.

Notice that we only consider those applications of ~ to

n arguments. If ~ is applied to fewer than n arguments,

no references corresponding to occurrences of the formal

parameters of ~ escape. This is because the body of ~

isn’t executed in a partial application of ~.

3.4 Examples

Consider the following program:

letrec

map f 1 = if (l=nil) then nil

else cons (f (car 1))

(map f (cdr 1));

sum 1 = if (l=nil) then O

else 1 + sum (cdr

addsum x y = cons x (cons

(map (lambda(z) .

x) nil));

in . . .

We assume that

1);

y (cons

(sum y) + z)

map : (int ~ int) -+ int list ~ int list

sum : int list ~ int

addsum : int list ~ int list * (int iist)list

The definitions of reference escape semantic values of

map, sum, and addsum are:

map f 1 = ((O, O), err-) U

(f (+~(l))j ~(2))) u (~aP f 0
sum 1 = ((O, O), err) U (sum/)

addsum x y = Xuyu
(map (yf~~, A.2.((0, O), em)) z)

Since map and sum are defined recursively, the mean-

ings of map and sum are found by a fixpoint iteration:

map(o) f 1 = ((O, O), err)

map(l) f 1 = ((O, O), err) U (f (OJtl(~(l)), ~(z)))
U (map(o) ~ 1)

= f (cut’ (~(1)), 1(2))

map(2) f 1 = ((O, O), err) U (f (cut1(i(lJ)7 1(2)))

U (map(l) f 1)

= f (Cutl(i(,)), I(2))

Since map(l) = map(2), we have that map= map(2).

sum(o) 1 = ((O, O), err)

sum(l) 1 = ((O, O), err) U (sum /)

= ((O, O), err)

sum(2) 1 = ((O, O), em-)

Similarly, we have that sum = surn(2J.

add.surn z ~1 = T1.-lyu

(map (y~l], Az.((0, O), err)) x)

= Zuyu

(kif.((0, O), err)) (CUtl(Z(I)), z(2j

= ZUU U ((O, O), err=)

= zu~

The auxiliary functions map’ and addsum’ for map and

addsum are defined as follows:

map’ fl f2 11 12 13 = if (ll=nil) then nil

else cons (fl (car 12))

(map f2 (cdr 13));

addsum’ xi x2 yl y2 = cons xl (cons yl

(cons (map (lambda(z) .(sum y2)+z)

x2) nil));

Note that maps ‘ is not recursively defined. Then, the

definitions of reference escape semantic values of map’,

and addsum’ are given as follows (without a fixpoint

iteration):

map’ fl f2 11 12!2 = ((o, o), ei’i’)u

(fl (cut1(t2(,)), q2)))

LJ(map f2 /3)

= ((O, O), err)U

(fl (cutl(ql)), q2)))

(f2 (cut1(~3(l)), 13(z)))

addsum’xl x2yl y2 = xluyl

Let envr= [map R map, add = add, addsum I-+

addsum]. Then,

G,(addsum, 1,1, enq.) =

(Er~addsum’ xl x2 yl y2]

env, [addsum’++ addsum’,

xl * ((l, l), em),

*2, vl, v2~((0) O), e~~)l)(l)(l)= 1

Thus, the reference xl associated with the first occur-

rence of the first parameter x of addsum escapes. And,

Gr(addsum, 1,2, env,) =

(Er[addsum’ xl x2 yl y2]

envr [addsum’ ~ addsum’,

xz t- ((1, l), err),

xl,lA, Y2 H ((0,0), e~~)l)(l)(l) = O

185

Thus, the reference x2 associated with the second occur-

rence of the first parameter x of addsum does not escape.

Similarly, we can conclude that the reference yi associ-

ated with the first occurrence of the second parameter

y of addsum escapes, but the reference y2 associated

with the second occurrence of the second parameter y

of addsum does not escape.

In the same way, we also can conclude that both the

reference f i and f 2 associated with occurrences of the

first parameter f of map does not escape.

3.5 Complexity of Reference Escape

Analysis

The abstract interpretation framework for our refer-

ence escape analysis is very similar to the framework

for strictness analysis in [BHA86,HY86,Wad87] except

for the size of the basic abstract cloma.in. T,ike any

other analysis based on abstract interpretation, the ma-

jor complexity of our analysis comes from finding the

fixpoints of recursive functions in the abstract semantic

domains. In our analysis, the reference escape testing is

performed on each reference associated with each occur-

rence of a parameter of a function separately using its

auxiliary function. However, since the auxiliary func-

tion for a function is never recursive even though the

original function is a recursive function, the process of

finding fixpoint is needed only for an original function,

but is never needed for its auxiliary function. Thus, the

order of complexity of reference escape analysis that

deals with higher-order functional languages with non-

flat domains is similar to and comparable with that of

strictness analysis for higher-order languages with non-

flat domains, which is exponential in the number of ar-

guments to the function being analyzed.

4 Improving Reference

Analysis

Up to now, our reference escape analysis

Escape

has treated

each list as follows: Once an interesting reference is put

in a list, no matter how many times cdr is applied to the

list, we assume that the interesting reference remains in

the portion of the result list, which can be returned

when car is applied to the result list, In this section,

we present a method of improving the accuracy of the

reference escape analysis described so far by keeping

track of a reference’s position within a list.

Definition 4 (Positions of a list)

A reference is said to be at position k of a list L if it only

resides somewhere in the sublist of L whose root cell is

specified by cdr~ L for some k ~ O. In other words, the

reference is not contained in the first (k — 1) positions

of L(See Figure 5).

Pos.=o Pos.=1 POS.=2 POS.=3 . . .

+

.

Figure 5: Positions of a List

Since no finite bound on the length of lists can be com-

puted at compile time, we impose a bound on the po-

sition in the list that we are willing to keep track of.

Beyond this position, we assume that the reference re-

mains in the list. We extend the basic abstract refer-

ence escape domain by including position information

of references in a list. The improved basic abstract ref-

erence escape domain, B~*P, for some fixed d and p is a

((d + l)(p + 1) + 1)-element domain whose ordering on

elements is defined by

The

●

●

The

(0,0,0)g
(l, O, P) E(l, O, P-l) P... G(l, O,O)C

. . . ~(1, d,p)~(l, d,p–l)~... ~(1, d,O)

elements of @J’ are interpreted as follows:

(1, j, k) : An interesting reference maybe contained

in the value of the expression, and, it is a reference

to the cons cell at the bottom jth spine of a list and

it may occur only at z k positions in the result, for

O<j<dand O<k<p. (Ifj= Othen the

object pointed by the interesting reference is not a

cons cell, and if the expression does not denote a

list then k is always O.)

(O, O, O) : No interesting reference is contained in

the value of the expression.

improved abstract reference escape semantic do-

main Dr is defined as follows:

[y = ~$p X {em}
gooi = qtP ~ {~~~}
gl+ra = q,p x (Q1 + 5:)

D; list
= D;

Dr = ~Q Improved abstract domain

Eivr =’ Id + D, Improved abstract environments

where p is some fixed constant that is a bound on lists

that we keep track of. The improved abstract reference

escape semantic function

E. : Con -+ D,

186

k, [c] = ((O, O, O), err), ce {...l,O,l,l, true,false}lse}

k, [c] = ((O, O, O), ~x.(ZflJ, ~y.((O, O, O), e@)),c E {+$-)=}

~r[nil’ “S’] = J_, (bottom element in @)

K. [cons] = ((0,0, 0), Az.(x(,), ~Y.(P~s~(~(l), Y(l))> Z(2) u Y(2))))

where

push(u, v) = if (u(l) = 1) then (1, w2),0)

elseif (v(l) = 1) then (1, ~(z), min[u(3) + 1, P])

else (O, O, O)

Xr [cars] = ((o,o,o),k.(kufs(q,))> q2)))
where

iCUP(Z) = if (s = Z(2)) or (2(3) > O) then (0,0,0)

else z

Kr [cdr] = ((O, O, O), ~c.(rest(~(l)), Z(2)))

where

rest(z) = (z(l), 2(2), ma~[q3) – 11 01)

Figure 6: Improved Abstract Reference Escape Semantic Function

is defined in Figure 6. cars takes a list with s spines

and returns the element in the Oth position, having s —

1 spines. Thus, the result cannot contain a reference

pointing to a cons cell in the bottom Sth spine of a

list or a reference that occurred at a position z 1 in

the original list. Note that both cons and cdr update

the position information appropriately. Notice that the

semantic function I<r for cons, car and cdr provides

more precise information than l~r.

The improved abstract reference escape semantic

functions

E, : Exp * E;vr ~ fir

F, : Pgm ~ D.

are defined the same as ET and Pr, respectively.

Termination is still guaranteed, since push, icut’, and

rest are all monotonic functions. The abstract refer-

ence escape semantics described in last section is equiv-

alent to the improved abstract reference escape seman-

tics when p is 0. Thus, any improved abstract reference

escape semantics with some p >0 provides more precise

reference escape information than the abstract reference

escape semantics.

The improved global reference escape test function G;

is defined as follows:

G~(~zi,j, env,) =

(Er[f’ x~~ . . . Xlo(l] . . . xn~ . . . %(n)]

envr[~’ ~ ?, ~io(i) ~ Yio(i)l)(l)(l)

where $’ is the auxiliary function for ~,

F = 12r[f’]env,,

Yij = ((l, si, O), W7i),

Ti is the type of the ith parameter of f, and s~ is the

number of total spines of type ri. For all k < o(i), k # j,

Yik = ((0,0,0), w’),

and for all h < n, h # i, and for all k < o(h),

Yhk = ((0,0, 0), W’”)

where o(i) is the number of occurrences of ith parameter

of ~. Similarly, the improved local reference escape test

function L: is defined as follows:

L(. (fLi, j,el, . . .,en, envr) =

(Er[f’, ql,..., zlO(l), . . . zn,,..., zno(m)]

env. [f’ ~ f’, zio(i) ~ Yio(i)l)(I)(l)

where f’ is the auxiliary function for f,

F = R[f’]env,,

Yij = ((1, sil 0), (G-iIeile~vr)(2))j

and s~ is the number of total spines of the type of the

ith parameter off. For all k < o(i), k # j,

Yi~ = ((O,O,O),(Er[ei]en~r)(z)),

and for all h < n, h # i, and for all k < o(h),

yhk = ((0,0, 0), (R[ehle~W)(2))

where o(i) is the number of occurrences of ith parameter

of f.

5 Polymorphic Invariance

So far, we have described the reference escape analysis

for a monomorphically-ty ped language. Most modern

functional programming languages have a polymorphic

type system. In this section, through the notion of poly-

morphic invariance[Abr86], we describe the reference

187

escape analysis for a higher-order functional language

with a polymorphic type system.

The polymorphic invariance of reference escape anal-

ysis says that whether a reference escapes a call to a

polymorphic function or not is independent of the type

of the reference. This means that given a polymorphic

function, reference escape analysis will provide the same

result on any two monotyped instances of that function.

Consider two monotyped instances e’ of type T’ and e{!

of type of r“ of a polymorphically-ty ped expression e.

Let n be min[n,~, n,~~] where n,, and nT,, are the num-

ber of arguments that r’ and r“ can take before return-

ing a non-function value. Let u! and u“ be the values in

b. of e! and e“, respectively. WJe define the equivalence

of u’ and u“ (written u’ * u“) as follows:

u’ N u“ifl

(NAPk(u’, SI . . .Sk))(l) = (NAPk(u’’, tl . . .tk))(~),

where Vk < n,lfi < k,si N ti.

Lemma 1 Let f be a polymorphic recursive function

defined as f = Axl. . . . Axn.e where Axl. . . .Agn.e con-

tains free variables VI . . . Vm. Let f’ and f“ be two

monoiyped instances off, typed as follows:

where each u and r is a monotype. For monotyped

abstract reference escape environments env~ and envy

that map each vi to an element in D. and for each vi,

env~ [vi] N envy [vJ, respectively,

Proof : This can be proved by structural and fixpoint

induction [Par91]. u

Theorem 3 (Polymorphic Invariance) Let f be a

polymorphic function of arity n, and let ~ and f“ be

any two monotyped instances of f. Assume that env’

and env” are abstract reference escape semantic envi-

ronments that map f’ and f“ to elements of Dr, re-

spectively. Then, for 1 ~ i < n and for 1< j < o(i),

G,(f’, i,j, env’) = G,(f”, i,j, env”).

Proof : Let f: and f: be the auxiliary functions for

f’ and Y’, respectively. Then,

fj = ~r[fQenv’[f’ H F]

f:= E~llf~lenv’’[f” H ?’]

Gt. (f’, i,j, env’) =

(NAF’n (f;, Y;,,... I YLo(n)))(l)(l)

G,(f”, i, j, env”) =

(NAPn(i{, y~l, ~..> Y;o(n)))(l)(l)

By Lemma 1, ~ N $t and ~~ N f;. By the definitions

of the worst-case escape function W and y~j and y;,

y{j w ~j for all 1< i< n and 1< ~ < o(i). Thus,

We conclude that

Gr(f’, i,j, env’) = Gr(f”, i,j, env”)

❑

As a consequence of this fact, the reference escape anal-

ysis problem for polymorphic functions can be reduced

to the problem for monomorphic functions. The refer-

ence escape analysis algorithm need only be applied to

the simplest monotyped instance of a function. Smaller

types implies fewer elements of that type, and the effi-

ciency of reference escape analysis and similar analyses

requiring fixpoint finding is dependent on the number

of elements in the domain.

6 Extension to Nonstrict Lan-

guages

We have described the reference escape analysis for

strict functional languages. In this section, we describe

a method for extending the reference escape analysis to

non-strict functional languages. In non-strict languages

each argument in a function call is not evaluatea unless

and until its value is required. One way to implement

non-strict semantics is to delay the evaluation of expres-

sions that are not immediately needed using closures,

and to force the evaluation when their values is needed

by applying closures to a dummy argument.

Thus, the reference escape anal~~~;c ffir nen-strict !an-~ .,.., . . .

guages can be achieved by first transforming nonstrict

programs into equivalent strict programs, and then by

applying the reference escape analysis technique for

strict languages to them. Of course, this does not han-

dle lazy evaluation, in which delayed expressions are

represented by closures that are modified when the ex-

pression is evaluated. In order to provide an analy-

sis that works for lazy evaluation, order of evaluation

information is required (such information is provided

by[Blo89,Par91]).

7 Optimizations using Refer-

ence Escape Information

In section 3, we described the operational model for

creating references. Reference escape information, from

the analyses described here, can be used as follows: If a

reference, created within a function by the occurrence of

188

a formal parameter does not escape from the function,

then no reference count operations need be performed

when the reference is created or destroyed.

Furthermore, given two references A and B to a heap

allocated object, the relative lifetimes of A and B can be

computed by determining if there is a scope from which

one of them escapes but not the other. If so, when

the shorter-lived reference is created and destroyed, no

reference count operations are necessary. In some pro-

grams, in fact, our analysis can determine if some refer-

ence R to an object outlives all others. Thus, the object

can be reclaimed as soon aa R is destroyed. No other

reference counting operations are needed. Notice, how-

ever, that it may not be possible to determine lifetime

of R (if it is embedded in a structure, for instance), and

thus of the object, at compile time.

8 Conclusion

We have presented a compile-time analysis called ref-

erence escape analysis for higher-order functional lan-

guages that provides safe static information about the

run-time lifetime of references. Based on the statically

inferred lifetime of references, a method for optimizing

reference counting schemes has been presented. This

method should significantly reduce the time, code, and

communication overhead that is incurred in reference

counting schemes for uniprocessor and multiprocessor

implementations.

References

[Abr86]

[AH87]

[Bar77]

[Bev87]

[BHA86]

S. Abramsky. Strictness analysis and polymor-

phic invariance. In Proceedings of Workshop on

Programs as Data Objects, pages 1-24, LNCS 217

Springer-Verlag, 1986.

S. Abramsky and C.L, Hankin, editors. Ab-

stract Interpretation of Declarative Languages.

Ellis Horwood, 1987.

J.M. Barth. Shifting garbage collection overhead

to compile time. Communications of the ACM,

20(7), pages 513-518, 1977.

D.I. Bevan. Distributed garbage collection u=

ing reference counting. In Proceedings of PA RLE

Parallel Architectures and Languages Europe II,

pages 176-187, LNCS 259 Springer-Verlag, 1987.

G.L. Burn, C.L. Hankin and S. Abramsky. The

theory of strictness analysis for higher order

functions. In Procccdings of Workshop on Pro-

grams as Data Objects, pages 42-62, LNCS 217

Springer-Verlag, 1986.

[B1089]

[Deu90]

[DB76]

[G0189]

[GP90]

[Hud86]

[HY86]

[JL89]

[Myc81]

[Par91]

[Wad87]

[WW87]

189

A. Bless. Path Analysis: Using Order-of-

Evaluation Information to Optimize Lazy Func-

tional Languages. Ph.D. Thesis, Yale University,

1989.

A. Deutsch. On determining lifetime and alias-

ing of dynamically allocated data in higher-order

functional specifications. In Proceedings of the

1 ‘Yth ACM Symposium on Principles of Program-

ming Languages, pages 157-168, 1990.

L.P. Deutsch and D.G. Bobrow. An efficient

incremental automatic garbage collector. Com-

munications of the ACM, 19(9), pages 522-526,

1976.

B. Goldberg. Generational reference counting:

a reduced-communication distributed storage

reclamation scheme. In Proceedings of the SIG-

PLAN ’89 Conference on Programming Language

Design and Implementation, pages 313-321, 1989.

B. Goldberg and Y.G. Park. Higher order escape

analysis: optimizing stack allocation in func-

tional program implementations. In Proceedings

of the %d European Symposium on Programming,

pages 152-160, LNCS 432 Springer-Verlag, 1990.

P. Hudak. A semantic model of reference count-

ing and its abstraction. In Proceedings of the 1986

ACM Symposium on Lisp and Functional Pro-

gramming, pages 351-363, August 1986.

P. Hudak and J. Young. Higher-order strict-

ness for untyped lambda calculus. In Proceedings

of the l.%h ACM Symposium on Principles of

Programming Languages, pages 97-100, January

1986.

S.B. Jones and D. Le Metayer. Compile-time

garbage collection by sharing analysis. In Pro-

ceedings of the 1989 Functional Programming

Languages and Computer Architecture Confer-

ence, pages 54-74, 1989.

A. Mycroft. Abstract Interpretation and Optimiz-

ing Transformations for Applicative Programs.

PhD thesis, University of Edinburgh, 1981.

Y.G. Park. Semantic Program Analyses for Stor-

age Optimization in Functional Language Imple-

mentations. Ph.D. Thesis, New York University,

1991. (To appear)

P. Wadler. Strictness analysis on non-flat do-

mains. In Abstract Interpretation of Declarative

Languages. C.L. Hankin and S. Abramsky, edi-

tors. Ellis Horwood, 1987.

P. Watson and I. Watson. An efficient garbage

collection scheme for parallel computer architec-

ture. In Proceedings of PARLE Parallel Architec-

tures and Languages Europe Ii, pages 432-443,

LNCS 259 Springer-Verlag, 1987.

