
Theory and Algorithms for the Generation and Validation
of Speculative Loop Optimizations

Ying Hu Clark Barrett Benjamin Goldberg
Department of Computer Science

New York University
fyinghu,barrett,goldbergg@cs.nyu.edu

Abstract

Translation validation is a technique that verifies the re-
sults of every run of a translator, such as a compiler, instead
of the translator itself. Previous papers by the authors and
others have described translation validation for compilers
that perform loop optimizations (such as interchange, tiling,
fusion, etc), using a proof rule that treats loop optimizations
as permutations.

In this paper, we describe an improved permutation
proof rule which considers the initial conditions and in-
variant conditions of the loop. This new proof rule not
only improves the validation process for compile-time op-
timizations, it can also be used to ensure the correctness
of speculative loop optimizations, the aggressive optimiza-
tions which are only correct under certain conditions that
cannot be known at compile time. Based on the new permu-
tation rule, with the help of an automatic theorem prover,
CVC Lite, an algorithm is proposed for validating loop op-
timizations. The same permutation proof rule can also be
used (within a compiler, for example) to generate the run-
time tests necessary to support speculative optimizations.

1 Introduction

Translation Validation (TV) is a technique for ensuring
that the target code emitted by a translator, such as a com-
piler, is a correct translation of the source code. Because of
the difficulty of verifying an entire compiler, i.e. ensuring
that it generates the correct target code for every acceptable
source program, translation validation can be used to vali-
date each run of the compiler, comparing the actual source
and target codes.

There has been considerable work [7, 8, 11, 12] in this
area, to develop TV techniques for optimizing compilers
that utilizestructure preservingtransformations, i.e. opti-
mizations which do not greatly change the structure of the

program (e.g. dead code elimination, loop-invariant code
motion, copy propagation) [1, 9] as well asstructure mod-
ifying transformations, such as reordering loop transforma-
tions (e.g. interchange, tiling), that do significantly change
the structure of the program [2, 10].

For the translation validation of reordering loop transfor-
mations, in previous publications [12, 5, 4], the authors and
others have proposed a proof rulePERMUTEthat treats loop
transformations as permutations. Although rulePERMUTE

has been used to check the validity of a number of reorder-
ing loop transformations, it has the limitation of requiring
the loop transformations to be valid in all contexts without
considering any conditions outside of the loop. In this pa-
per, we introduce an improved permutation proof ruleInv-
Permute which considers the context of the loop and thus
is more powerful than rulePERMUTE.

The new permutation ruleInv-Permute can be used by
a compiler to decide whether some loop transformation is
valid at compile time given a loop invariant determined by
static analysis. Because an appropriate invariant is gener-
ally hard to find, we use an automatic theorem prover,CVC
Lite [3], to try to generate a condition under which the loop
transformation is valid so that this condition can be checked
in the loop to see whether it holds as invariant. This pa-
per gives an algorithm for generating such a condition using
CVC Lite.

In some cases, it is impossible to determine at compi-
lation time whether a desired loop optimization is legal.
This is usually because of limited capability to check ef-
fectively that syntactically different index expressions re-
fer to the same array location. In such cases, the valida-
tion condition derivedCVC Lite cannot be proved to hold
at compile-time, but it may hold at run-time. One possi-
ble remedy to this situation is to perform the optimization
conditionally, by adding code to check at run-time whether
the loop optimization is safe. If the run-time check fails,
the code chooses to use an unoptimized version of the loop
which completes the computation in a manner which may
be slower but is guaranteed to be correct. An algorithm for



generating the run-time test for speculative loop optimiza-
tions was given in a previous paper [4]. In this paper we
improve the algorithm and illustrate it with additional ex-
amples.

This paper is organized as follows. Section 2 describes
the new proof ruleInv-Permute for reordering loop trans-
formations. Section 3 describes an improved algorithm for
determining a sufficient condition under which an otherwise
invalid transformation may be applied. Using the proof rule,
we show that such a transformation is valid if the condition
can be statically verified. Alternatively, a run-time test for
the condition can be inserted. Section 4 gives several ex-
amples and shows the results of applying the algorithms in
Section 3 to these examples. Finally, Section 5 concludes.

2 The proof rule

A modern compiler performs a set of advanced optimiza-
tions to make the compiled code run faster. Among them are
loop optimizations which improve parallelism and make ef-
ficient use of the memory hierarchy. Areordering transfor-
mationwas defined [2] as any program transformation that
merely changes the order of execution of the code, without
adding or deleting any executions of any statement. Many
loop transformations, including reversal, fusion, distribu-
tion, interchange, and tiling, are in the class of reordering
transformations.

Traditionally, dependence analysis has been used to de-
termine whether it is safe to perform certain kinds of pro-
gram transformations. In the presence of two accesses to a
memory location (where at least one is a write) dependence
theory [2] states that a reordering transformationpreservesa
dependence if it preserves the relative execution order of the
source and target (i.e. the first memory access and second
memory access) of that dependence. A reordering transfor-
mation isvalid if it preserves all dependences in the pro-
gram. To decide whether a reordering loop transformation
preserves the meaning of the program, the compiler usually
performs dependence analysis. The basic idea is that for
any pair of statementss1 ands2, if there is any dependence
between them then the order of executing them cannot be
changed in the transformation. LetDependence(s1; s2) be
a predicate denoting whether there is any dependence be-
tween the statementss1 ands2, and letReorder(s1; s2) be
a predicate denoting whether the transformation can safely
reorder the execution ofs1 ands2. The dependence rule can
be schematized as:

Dependence(s1; s2) =) :Reorder(s1; s2) (1)

or, equivalently,

Reorder(s1; s2) =) :Dependence(s1; s2) (2)

This rule has a stronger requirement than necessary for
the correctness of reordering loop transformations. The
right hand side requires that there is no dependence between
the pair of statements, but there are cases when this is too
conservative. For example, when two statements assign the
same value to a variable, it does not matter which one is ex-
ecuted first. From a broader view of program equivalence,
let s1; s2; � s2; s1; denote the statement that the effect of
executing the two statementss1 ands2 in either order is the
same. The rule becomes:

Reorder(s1; s2) =) s1; s2; � s2; s1; (3)

Rule (3) is more powerful than rule (2), because it val-
idates more cases than rule (2). To formalize the idea, the
rule PERMUTE [12] was proposed, which we review in this
paper, and then extend.

Consider the generic loop in Fig. 1.

for i1 = L1; H1 do
: : :

for im = Lm; Hm do
B(i1; : : : ; im)

Figure 1. A General Loop

Schematically, we can describe such a loop as
“ for ~i 2 I by �

I
do B(~i)” where~i = (i1; : : : ; im) is the

list of nested loop indices, andI is the set of the values as-
sumed by~i through the different iterations of the loop. The
setI can be characterized by a set of linear inequalities. For
example, for the loop of Fig. 1,

I = f(i1; : : : ; im) j L1 � i1 � H1 ^ � � � ^ Lm � im � Hmg:

The relation�
I

is the ordering by which the various points
of I are traversed. For example, for the loop of Fig. 1, this
ordering is the lexicographic order onI.

Consider a generic loop transformation:

for ~i 2 I by �
I

do B(~i)

=)

for ~j 2 J by �
J

do B(F (~j))

in which the loop index vector is changed from~i to ~j, the
loop index domain is changed fromI toJ , the iteration or-
der is changed from�

I
to�

J
, the permutation functionF

is a mapping fromJ to I, and the loop bodyB is parame-
terized by the loop index vector.

The rulePERMUTEin Fig. 2 has two requirements to val-
idate the reordering loop transformation:

1. The mappingF is a bijection fromJ onto
I.

2



R1: 8~i 2 I : 9~j 2 J : ~i = F (~j)

R2: 8~j1 6= ~j2 2 J : F (~j1) 6= F (~j2)

R3: 8~i1;~i2 2 I : ~i1 �I
~i2 ^ F

�1(~i2) �J
F�1(~i1) =) B(~i1); B(~i2) � B(~i2); B(~i1)

for ~i 2 I by �
I

do B(~i) � for ~j 2 J by �
J

do B(F (~j))

Figure 2. Rule PERMUTE for reordering loop transformations

2. For every pair of loop index vectors~i1;~i2,
such that the order of executingB(~i1), B(~i2)
is reversed after the transformation, the re-
sult of executing the pair of iterations in the
either the original or the reversed order is
the same.

The symbol� in Fig. 2 means that two pieces of code
are equivalent, i.e. they transform the program state in the
same way. The rulePERMUTE has two advantages over
the standard dependence analysis approach. First, it only
needs the information inside the loop to generate the logical
formula for code equivalence, without explicitly having to
perform dependence analysis. Second, rulePERMUTE can
leave the task of proving the legality of transformations to
an automatic theorem prover, which can not only determine
whether a transformation is legal, but can actually provide
a proof in the case that it is1.

Though it is easy to implement, rulePERMUTEdoes not
take the context of a loop into account. The rule assumes
that the program is in an arbitrary state, which requires
premise 3 to be valid for all values of non-index variables.
Consider the loop in Fig. 3, where loop interchange is in-
valid according to rulePERMUTE. Notice that ifk happens
to have a non-negative value upon entering the loop, then
loop interchangeis valid. From this example, we see that
rule PERMUTEcan be improved by incorporating a loop in-
variant� (such ask � 0), so that premise 3 becomes:

8~i1;~i2 2 I : ~i1 �I
~i2 ^ F�1(~i2) �J

F�1(~i1)

=)

f�g B(~i1); B(~i2) � f�g B(~i2); B(~i1)

where the representationf�g uses Hoare’s precondition no-
tation [6], meaning that we assume� holds before each of
the two pieces of code.

It is important that the invariant� hold at the beginning
of the loop and continue to hold (i.e. be invariant) during

1In fairness, much of the machinery required to perform dependence
analysis, including solving diophantine equations involving array sub-
scripts, must be incorporated into the theorem prover.

the execution of the loop. We also require that� does not
contain any loop index variables, otherwise it may become
invalid by the updating of loop index variables at the end of
each iteration. Fig. 4 gives the improved ruleInv-Permute,
which includes an invariant� which is assumed to not con-
tain any reference to the loop index variables.

In rule Inv-Permute, premises 1 and 2 ensure that the
permutationF is a bijection, premise 3 ensures that the
property� holds at the beginning and end of each iteration
of the loop, and premise 4 ensures the equivalence of the
source and target loop by commutativity. RulePERMUTE

can be regarded as a weaker version of ruleInv-Permute
with invariant� = true.

The following lemma directly implies the soundness of
the ruleInv-Permute:

Lemma 2.1 (Soundess ofInv-Permute) Let I and J be
finite sets ordered by�

I
and�

J
respectively such that

jIj = jJ j. Let F : J 7! I be a bijection. Let� be a
property independent of the loop index variables. If

8~i 2 I : f�g B(~i) f�g

and

8~i1;~i2 2 I : ~i1 �I
~i2 ^ F

�1(~i2) �J
F�1(~i1)

=)

f�g B(~i1); B(~i2) � f�g B(~i2); B(~i1)

then
f�g for ~i 2 I by �

I
do B(~i)

�

f�g for ~j 2 J by �
J

do B(F (~j))

Proof Assume thatjIj = m, and thatI = f~i1; : : : ;~img
such that~i1 �I

: : : �
I
~im. For everyk = 1; : : : ;m, let

Ik = f~i1; : : : ;~ikg, and denoteJk = F�1(Ik). We prove,
by induction onk, that for allk = 1; : : : ;m, if

8~i1;~i2 2 Ik : ~i1 �I
~i2 ^ F

�1(~i2) �J
F�1(~i1)

3



for i = 1 to N
for j = 1 to M

A[i+k, j+1] = A[i, j] + 1
=)

for j = 1 to M
for i = 1 to N

A[i+k, j+1] = A[i, j] + 1

Figure 3. A loop interchange example

R1: 8~i 2 I : 9~j 2 J : ~i = F (~j)

R2: 8~j1 6= ~j2 2 J : F (~j1) 6= F (~j2)

R3: 8~i 2 I : f�g B(~i) f�g

R4: 8~i1;~i2 2 I : ~i1 �I
~i2 ^ F�1(~i2) �J

F�1(~i1) =) f�g B(~i1); B(~i2) � f�g B(~i2); B(~i1)

f�g for ~i 2 I by �
I

do B(~i) � f�g for ~j 2 J by �
J

do B(F (~j))

Figure 4. Rule Inv-Permute for reordering loop transformations

=)

f�g B(~i1); B(~i2) � f�g B(~i2); B(~i1)

then
f�g for ~i 2 Ik by �

I
do B(~i)

�

f�g for ~j 2 Jk by �
J

do B(F (~j))

The base case is whenk = 1 and then the claim is trivial.
Assume the claim holds fork < m. DenoteF�1(~ik+1) by
~j�.

From the induction hypothesis and the properties of�,
it follows that

f�g for ~i 2 Ik+1 by �
I

do B(~i)

�

f�g for ~j 2 Jk by �
J

do B(F (~j)); B(F (~j�))

Assume thatJk = f~j1; : : : ;~jkg such that~j1 �J
: : : �

J

~jk. If ~j� �J
~jk, then the inductive step is established. Oth-

erwise, let` be the minimal index such that~j� �J
~j`. It

suffices to show that

f�g B(F (~j1)); : : : ; B(F (~j`�1)); B(F (~j�));

B(F (~j`)); : : : ; B(F (~jk))
�

f�g for ~j 2 Jk by �
J

do B(F (~j)); B(F (~j�))

Notice that the first assumption

8~i 2 I : f�g B(~i) f�g

implies that� holds at the beginning and the end of each
iteration if � holds as precondition of the loop, no matter

what the iteration order is. That means:

f�g B(F (~j1)); f�g : : : ; f�g B(F (~j`�1)); f�g B(F (~j�));
f�g B(F (~j`)); f�g : : : ; f�g B(F (~jk))f�g

Now, for eacht 2 [`; : : : ; k], we have thatF (~jt) �I

F (~j�) and~j� �
J
~jt, so by R4 of RuleInv-Permute, it

follows that

f�g B(F (~jt)); B(F (~j�)) � f�g B(F (~j�)); B(F (~jt));

and thusB(F (~j�)) can be “bubbled” into its position be-
tweenB(F (~j`)) andB(F (~j`+1)). 2

Example

Let � be the propertyk � 0. For the example in Fig. 3,
let the the loop index vector~i1 be the tuple(i1; j1), and
~i2 the tuple(i2; j2). The domainI is [1; N ] � [1;M ], the
domainJ is [1;M ]� [1; N ], the permutation functionF is
F ((j; i)) = (i; j), and the bodyB((i; j)) isA[i+k; j+1] =
A[i; j] + 1;. The ruleInv-Permute requires:

8i1; i2 2 [1; N ];8j1; j2 2 [1;M ] :

(i1; j1) <lex (i2; j2) ^ (j2; i2) <lex (j1; i1)

=)

fk � 0gA[i1 + k; j1 + 1] = A[i1; j1] + 1;

A[i2 + k; j2 + 1] = A[i2; j2] + 1;

�

fk � 0gA[i2 + k; j2 + 1] = A[i2; j2] + 1;

A[i1 + k; j1 + 1] = A[i1; j1] + 1;

4



Let read(A; i) denote reading theith element of array
A, andwrite(A; i; x) denote writingx to the ith element
of arrayA. The above verification condition can then be
expressed as:

1 � i1 � N ^ 1 � i2 � N ^ 1 � j1 �M ^ 1 � j2 �M^

i1 < i2 ^ j1 > j2

=)

k � 0 =)

(A1 = write(A; (i1 + k; j1 + 1); read(A; (i1; j1)) + 1)
^A2 = write(A1; (i2+ k; j2 +1); read(A1; (i2; j2)) + 1)
^A0

1 = write(A; (i2 + k; j2 + 1); read(A; (i2; j2)) + 1)
^A0

2 = write(A0

1; (i1+k; j1+1); read(A0

1; (i1; j1))+1))

=)

A0

1 = A0

2

which can be verified as a valid formula by the automated
theorem proverCVC Lite.

3 Using the proof rule

This section gives the algorithms for using the proof rule
Inv-Permute to validate loop transformations and to gener-
ate run-time tests for speculative loop optimizations.

3.1 Loop transformations with invariants

The compiler can decide whether some loop transforma-
tion is valid on the basis of the ruleInv-Permute and the
static analysis of the initial condition and the invariant con-
dition of the loop. For a given loop transformation, the func-
tion F is known, but the precondition� can be any condi-
tion that is implied by the initial condition of the loop. The
initial condition�0 can be determined from dataflow anal-
ysis, but it is impossible to try all the�s implied by�0. To
solve this difficulty, we observe that the ruleInv-Permute
only needs an invariant condition� that makes premise 4
valid, which suggests finding the appropriate� from val-
idating premise 4. If there is no� satisfying premise 4,
then the requirements of ruleInv-Permute can not be sat-
isfied. Thus, a feasible method is to first analyze premise 4
to find a condition� under which it is valid, then check this
� to see whether it is preserved by the loop body. The main
probem becomes how to find this� which makes premise 4
valid. Since the theorem proverCVC Lite is able to check
the validity of formulas and generate counter-examples ef-
ficiently, it can be used for the purpose of finding�. With
the help ofCVC Lite, the scheme for validating reordering
loop optimizations is:

1. Apply ruleInv-Permute for the loop under
� = true, and generate the verification con-
dition � for premise 4.

2. Check the validity of� usingCVC Lite. If
it is valid, exit with a positive result.

3. Otherwise, from the counter-example 
produced byCVC Lite, attempt to infer a
necessary condition� that makes the verifi-
cation condition valid. If no appropriate�
is found exit with a negative result.

4. Analyze the context statically to check
whether� holds as the initial condition and
is loop invariant. If� holds, exit with a pos-
itive result.

5. Otherwise, exit with a negative result.

Step 3 will be explained in more detail in Section 3.3.
In this scheme,� = true is used initially to avoid the

analysis for the initial loop condition when possible. The
verification condition (VC) according to premise 4 is in-
put toCVC Lite. If CVC Lite reports valid, then the loop
transformation is valid under all contexts. Otherwise the
counter-example reported byCVC Lite can be analyzed to
construct a candidate condition�. If the new� holds as a
precondition and is invariant in the loop, and if premise 4 is
satisifed, then the reordering loop transformation is valid.

3.2 Speculative loop optimizations

Rule Inv-Permute requires that� hold on entry to the
loop (both original and transformed versions). However, if
the values of some variables are not known at compile time,
information about them cannot be included in�. In such
cases, a loop optimization might not be able to be validated
using only compile-time information, but the optimization
might actually be valid at run-time.

To preserve the benefit of loop optimizations in the pres-
ence of variables whose values cannot be determined stati-
cally, a run-time test, testing the values of various variables
used in the loop, can be inserted into the compiled program.
Loop optimizations enabled in this manner are called specu-
lative loop optimizations. The idea of validating speculative
loop optimizations in the TV framework was introduced in
[4]. However since ruleInv-Permute was not established
in that paper, only the concept and some heuristics were
given. In this paper, Section 2 described the new proof rule
Inv-Permute, which is the formal basis for speculative loop
optimizations. Fig. 5 shows the result of applying a specula-
tive loop optimizations to the interchange example of Fig. 3.

With rule Inv-Permute, the scheme for speculative loop
optimizations is:

5



If (k � 0)
Do j = 1 to M

Do i = 1 to N
A[i+k,j+1] = A[i,j] + 1;

end
end

Else
Do i = 1 to N

Do j = 1 to M
A[i+k,j+1] = A[i,j] + 1;

end
end

Figure 5. An example for speculative loop interchange

1. Apply ruleInv-Permute for the loop, using
� = true, and generate the verification con-
dition � for premise 4.

2. Check the validity of� usingCVC Lite. If
it is valid, exit with a positive result.

3. Otherwise, from the counter-example 
produced byCVC Lite, attempt to infer a
necessary condition� that makes the verifi-
cation condition valid. If no appropriate�
is found exit with a negative result.

4. Analyze the context statically to check
whether� holds as the initial condition and
is loop invariant. If� holds, exit with a pos-
itive result.

5. Otherwise, if� is satisfiable (i.e. it could
hold under some run-time conditions), is in-
ductive in the loop, and is not too costly to
evaluate, exit and use� to generate a run-
time test for a speculative loop optimization;
else exit with a negative result.

3.3 Automatically generating invariants using
CVC Lite

We implement Step 3 in the previous algorithms as fol-
lows:

0. Let� = true.

1. Check�! � usingCVC Lite.

2. If the result is valid, exit with�.

3. From the counter-example =
V

i
(Ci),

choose an approapriateCi, and let� =
� ^ :Ci.

4. Goto 1.

Since we choose counter-example assertions until we
have a sufficient condition�, the invariant� we get may
be stronger than necessary. To avoid� being neither too
strong nor too complicated, a good heuristic needs to be
used to pick aCi from a set of formulas.

The following are some observations: As the invariant
� must relating to non-index variables, at least one such
variable must be in the chosen formula. Because equality
is usually a stricter requirement than disequality, the cho-
sen formula should not be a disequality such as:(x = y).
Also a formula including array elements may not be a good
choice (as they generally include index variables that may
be hard to eliminate).

For the validity of interchanging the loop example in
Fig. 3,CVC Lite generates the following counter example
with six formulas:

1.) (0 ¡ (0 + i2 + (-1 * i1)))
2.) (((0 + i2 + k), (1 + j2)) = (i1, j1))
3.) NOT (((0 + i2 + k), (1 + j1)) = (i2, j2))
4.) NOT ((-1 * k) = 0)
5.) NOT (((0 + i2 + k), (1 + j1)) = ((0 + i2 + k), (1 + j2)))
6.) NOT ((i2, j1) = ((0 + i2 + k), (1 + j2)))

Since formula 1 does not includes any non-index vari-
ables, and formulas 3,4,5, 6 are disequality formulas, none
of them are candidates according to our heuristics. The only
choice is formula 2. We get the result� = :((i2 + k; j2 +
1) = (i1; j1)) using our algorithm. This� is exactly the
same as what would result from dependence analysis. The
problem is that this� is still not useful, since the invariant
in rule Inv-Permute is assumed to be independent of loop
index variables. So we have to find some way to eliminate
the loop index variables from�. To do this, we use the con-
straints on the loop index variables (i.e. the loop bounds
and the order of iterations) to aid in removing of loop index

6



for i = 1 to N
A[i] = i;

for i = 1 to N
y = A[i-k];

=)
for i = 1 to N

A[i] = i;
y = A[i-k];

Figure 6. A fusion example

for i = 1 to N
for j = 1 to M

A[i, j] = A[i-p, j-q] +1;
=)

for j = 1 to M
for i = 1 to N

A[i, j] = A[i-p, j-q] +1;

Figure 7. An interchange example

variables, as explained below.
The verification condition� derived from rule Inv-

Permute with invariant� can be divided into three parts:
the first part is the assumption for loop index variables
which includes the loop bound and the condition of reorder-
ing, let’s denote it as�; the second part is the invariant�;
and the third part is the formula for equivalence of execut-
ing the two iterations in both orders, let’s denote it as�. So
the formula� can be expressed as� ! � ! �. This
formula is equivalent to:

(� ^ �) ! � ! �:

Assume we find a condition�0 stronger than� under�, i.e.
� ! �0 ! �, then it is guaranteed that

(�0 ^ �) ! � ! �;

which is equivalent to�0 ! � ! �. Thus, as long as we
find a formula�0 which is stronger than� under�, using
this�0 instead of� can also ensure the validity of the loop
transformations.

The condition� generated fromCVC Lite is always
some disequality or inequality since the heuristic we use
discards equality. Since, in most cases, the expressions for
the subscripts of array elements are linear,� can be assumed
in the form ofe1 op e2(~i1; ~i2) wheree1 is an expression free
of loop index variables, ande2 is an expression containing
no variables except loop index variables, and the relational
operatorop 2 f>;<;�;�; 6=g. As long ase2 is linear
in the loop variables,� can be used to eliminate the loop
variables frome2. According to the above observations, an
algorithm was designed to derive a�0 free of loop index
variables from� and�. For the above interchange example,
from � = :((i2 + k; j2 + 1) = (i1; j1)), after using the
algorithm eliminating the loop index variables with
� : i2� i1 > 0 ^ i2� i1 < N ^
j2� j1 < 0 ^ j2� j1 > �N
and� : A1 = write(A; (i1 + k; j1 + 1); A[i1; j1] + 1) ^
A2 = write(A1; (i2 + k; j2 + 1); A1[i2; j2] + 1) ^

A0

1 = write(A; (i2 + k; j2 + 1); A[i2; j2] + 1) ^
A0

2 = write(A0

1; (i1 + k; j1 + 1); A0

1[i1; j1] + 1)
�!
A2 = A0

2;

we arrive at�0 beingk � 0. This condition is checked
again byCVC Lite to make sure the verification condition
is valid.

4 Results

We have implemented our algorithm to generate the in-
variant� usingCVC Lite for loop optimizations such as fu-
sion, interchange, strip mining, and reversal. The condition
� was generated successfully for all the (small) examples
we tested. This section gives the results for the following
three examples.

The first example is the fusion example in Fig. 6. The
following table gives the logic formula for�; �; �, and�0.
The result shows that fusion is valid whenk is nonnegative
or out of loop bound.

� : i1� i2 > 0 ^ i1� i2 < N

� : A1 = write(A; i1; x) ^ y = A1[i2� k]^
y0 = A[i2� k] ^ A0

1 = write(A; i1; x)
�!

A1 = A0

1

� : �i2 + i1 + k 6= 0
�0 : k � 0 _ k � �N:

The second example is an intarchange example given in
Fig. 7. The following table gives the logical formula for
�; �; �, and�0. The result shows that, here, interchange is
valid when

pq � 0 _ p � N _ p � �N _ q �M _ q � �M

7



for i = 1 to N
A[i] = A[i-k] + 1;

=)
for i = N to 1

A[i] = A[i-k] + 1;

Figure 8. A reversal example

� : i2� i1 > 0 ^ i2� i1 < N^
j2� j1 < 0 ^ j2� j1 > �N

� : A1 = write(A; (i1 + p; j1 + q); A[i1; j1] + 1)^
A2 = write(A1; (i2 + p; j2 + q); A1[i2; j2] + 1)^
A0

1 = write(A; (i2 + p; j2 + q); A[i2; j2] + 1)^
A0

2 = write(A0

1; (i1 + p; j1 + q); A0

1[i1; j1] + 1)
�!

A2 = A0

2

� : (�i2 + i1 + p 6= 0 _ �j2 + j1 + q 6= 0) ^
(i2� i1 + p 6= 0 _ j2� j1 + q 6= 0)

�0 : (p � 0 _ p � �N _ q �M _ q � 0) ^
(p � N _ p � 0 _ q � 0 _ q � �M)

The third example is the reversal example in Fig. 8. The
following table gives the logic formula for�; �; �, and�0.
The result shows that here reversal is valid only when

k = 0 _ k � N _ k � �N

� : i1 < i2
� : A1 = write(A; i1; A[i1� k] + 1)^

A2 = write(A1; i2; A[i2� k] + 1)^
A0

1 = write(A; i2; A[i2� k] + 1)^
A0

2 = write(A0

1; i1; A
0[i1� k] + 1)

�!
A2 = A0

2

� : k + i2 +�i1 6= 0 ^ k � i2 + i1 6= 0
�0 : k = 0 _ k � N _ k � �N:

5 Conclusion

This paper began by reviewing the translation valida-
tion technique and the previous permuatation proof rule for
the translation validation of reordering loop optimizations.
Then we introduced an improved permuatation rule, which
considers the initial and invariant conditions of the loop.
This rule can be used by a compiler or a validator to check
the correctness of the loop optimizations.

Based on the new permuatation rule, with the help of
an automatic theorem proverCVC Lite, an algorithm was
proposed to generate the conditions which make the loop
transformations valid. These conditions can be inserted as

run-time tests for speculative optimizations. In this paper,
we also showed the results of implementing the algorithm
to generate the run-time tests for speculative loop optimiza-
tions byCVC Lite.

Acknowledgement. As always, we would like to thank
Amir Pnueli and Lenore Zuck for many helpful discussions
and for their pioneering work in Translation Validation.

References

[1] A. Aho, R. Sethi, and J. Ullman.Compilers Principles,
Techniques, and Tools. Addison Wesley, 1988.

[2] R. Allen and K. Kennedy.Optimizing Compilers for Modern
Architectures. Morgan Kaufmann, 2002.

[3] C. Barrett and S. Berezin. CVC Lite: A new implementa-
tion of the cooperating validity checker. InProceedings of
the 16th International Conference on Computer Aided Veri-
fication (CAV), Apr. 2004. To appear.

[4] C. Barrett, B. Goldberg, and L. Zuck. Run-time validation
of speculative optimizations using CVC. In O. Sokolsky and
M. Viswanathan, editors,Third International Workshop on
Run-time Verification (RV), pages 87–105, July 2003. Boul-
der, Colorado, USA.

[5] B. Goldberg, L. Zuck, and C. Barrett. Into the loops: Practi-
cal issues in translation validation for optimizing compilers.
In Third International Workshop on Compiler Optimization
meets Compiler Verificaiton (COCV), Apr. 2004. To appear.

[6] C. Hoare. An axiomatic basis for computer programming.
Communications of the ACM, 12(10):576–580, 1969.

[7] G. Necula. Translation validation of an optimizing compiler.
In Proceedings of the ACM SIGPLAN Conference on Prin-
ciples of Programming Languages Design and Implementa-
tion (PLDI) 2000, pages 83–95, 2000.

[8] A. Pnueli, M. Siegel, and E. Singerman. Translation valida-
tion. In TACAS’98, pages 151–166, 1998.

[9] M. Wolf and M. Lam. A data locality optimizing algorithm.
In Proc. of the SIGPLAN ’91 Symp. on Programming Lan-
guage Design and Implementation, pages 33–44, 1991.

[10] M. Wolfe. High Performance Compilers for Parallel Com-
puting. Addison-Wesley Publishing Company, 1995.

[11] L. Zuck, A. Pnueli, Y. Fang, and B. Goldberg. A transla-
tion validator for optimizing compilers.Journal of Univer-
sal Computer Science, 2003. Preliminary version inENTCS,
65(2), 2002.

[12] L. Zuck, A. Pnueli, B. Goldberg, C. Barrett, Y. Fang, and
Y. Hu. Translation and run-time validation of loop trans-
formations. Journal of Formal Methods in System Design,
2004. To appear, preliminary version inENTCS, 70(4),
2002.

8


