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To find what arguments escape from the each application of g in the program, we use the local analysis
function L; described in section 6.2. Since we know from the global analysis of g that its first parameter can

never escape, we only need to test if the second parameter escapes (using L,). For the expression (g f 4),
L9, f,40) = (Bae[(g X1 X1 PI<O, f2)>/xq, <1, err>IXa]) 4
=((92) <0, f2>)2) <1, err>)y)
= (((AmM. <mp), An. My #>) <O, AX. <Xy, AY. <O, &r>>>) 0 <1, err>) (y
= ((AX. <X(1), AY. <O, err>>>)) <1, err>) )
=1
This indicates that the second argument to g escapes. For the expression (g h 4),
La(9, . 4, 0) = (BEae[(8 X1 X2 PI<O, N2p>/xq, <1, err>IX]) 4
= ((92) <0, h2y>)2) <1, err>)y)
= ((Am. <myq), An.mp) n>) <0, Aa. <0, Ab. <0, err>>>)5) <1, err>) (1
=((Aa. <0, Ab. <0, err>>)p) <1, err>) (1
=0.
This indicates that no argument to g escapes (even though the result is a partial application).

8. Escape Analysis on Lists

We have not yet discussed escape analysis in the presence of the list operators cons, car, and cdr. We
extend the abstract semantic function E_g as follows:

Eqel cOns]] p = <0Aa. <&y, Ab.<a(qy Ubyy), err>>>

Elcdr] p = <0Ax <X(1)&T>>

- T
Elcar] p = <0, Ax <x(1),R >>

where T is the type of the elements of the list to which car is being applied and R is defined in section 6.1.
In other words, once an object has been placed on a list, we are unable to determine when it is removed.
This means that if some head or tail of a list escapes from a function then all of the elements of the list are
seen as escaping. In addition, the function value of the car of a list is seen as the maximally escaping func-
tion of that type. Admittedly, this is an unsatisfactory analysis on lists. We are working on an escape anal-

ysis that could be applied to lists in a manner similar to the way that strictness analysis was extended to lists
[Wadler87].

9. Conclusions

We have taken an existing, useful optimization and used denotational semantics and abstract interpreta-
tion to apply it to higher order programming languages. We have yet to implement the analysis in a real
compiler and thus it remains to be seen if the benefit of the analysis outweighs its cost (mainly fixpoint find-

ing).
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p = [f/f, hh, p/p, g/q, g/g], where

f =<0 Ax. <X1), Ay. Eqe [ X+Y] p[X¥/Xyly]>>
=<0, Ax. <X(1), Ay. <0, err>>>

p =g =<0, Ab. <0, err>>

h =<0, Aa. Ex[[ (8=0) - p, q] pl[a/a]>
=<0,Aa.pll o>
=<0, Aa. <0, Ab. <0, err>>>

g =<0,Am. <my), An. Ege[mn] p[m/m,n/n]>>
=<0, Am. <My, An. myp) n>>

Figure 6. Abstract Escape Functions

let f=AX.Ay.x+y;
h=Aa. (a=0) - p, q;
p =Ab. b+1;
q = Ab. b-1;
g=Am. An. m n;

in «.(gf4)..(ghd)...

Figure 6 shows the corresponding abstract escape functions. Our aim to is analyze the escape properties of
g, both globally and locally.

7.1. A Global Escape Analysis Example
To find the global (i.e. worst case) escape property of g, we apply the global analysis function G; de-

scribed in section 6.1 to the abstract function g and the environment p shown in figure 6. We assume g is
of type (int—int—int) - int—int—int.

G1(9, P) = (Ege [ (9x1x2)] ply1/X1 YolXol)(y)
wherey, =<1, )\zl. <z
Thus

11y )\22. <Zl(1) O 22(1), err>>> and y, = <0,err>.
Gig.p) =92 YD) Yo
= (((Am. <mcpy, An. Moy 7>) Y1)(2) Vo)1)
= ((Az,. <z Az,.<z err>>) <0,err>) ;)
=0
indicating that g’s first parameter can never escape.
Go(9, p) = (Ege [ (9 %1 x2)] ply1/X1 YolXol) )
wherey; =<0, )\zl. <z
Thus

11y’ 11) U221y

11y )\22. <Zl(1) O 22(1), err>>> and Y, = <l,err>.

Gyg,p) =9 YD) Y
= (((Am. <m(p), An. My 7>) Y1)2) Y2)(1)
= ((Az;. <z Az,. <z err>>) <lerr>))
=1
indicating that the first parameter to g might escape in some situations.

12 131) U201y,

7.2. A Local Escape Analysis Example



Consider the following nml function definition (of type int —int— int, for example):
f=Ax.Ay. (x=0) - y,f(x-1)y
Using the definitions in figure4, the corresponding function in D_ is described by:

f =<0, <Xy, Ay. E, I (x=0) - y, £ x-Dy] [Xxylyfif]>>

1’
=<0, A\X. <x(1), Ay. y L (f(z) <O,err>)(2) y)>>
Therefore f is the least fixpoint of the functional F defined by
F=Af. <0, Ax <Xy Ay. y L (f(z) <O,err>)(2) y)>>
The least fixpoint is found by the following fixpoint iteration:
0= F(Uint int— in)=<0, Ax. <X(1)' AY- YU (Uintint int(2) <O'err>)(2) y)>>
=<0, AX. <X(1), )\y y U Dint-» int(2) y>>

=<0, AX. <X qy, Ay. Y U Oip)>>

1)
=<0, AX. <Xy Ay.y>>

1_ 0, —
f'= F(f") =<0, Ax <Xy Ay. y L (A <Xy AY.y>) <O,err>)(2) y))>>

=<0, AX. <Xy, Ay. y U (Ay.Y) ¥))>>

=<0, AX. <x(1), Ay. y)>>

Since {0 = f1 = F(f9), a fixpoint has been found, thus f = <0, Ax. <Xy AY.y)>>
This means that when f is applied to two arguments, only the second argument may escape.

Figure 5. An example of fixpoint finding

y; = <0, RTi>
where T is the type of x; and
y; =<1, Rli>,

Since each Yi2) is a function from which every argument escapes, and since the abstract function for f is

monotonic, Gi(f, p) provides the worst case behavior with respect to the escapement of f’'sith argument.

6.2. Local Escape Analysis

Generally, we would like to know if an argument escapes from a particular call to a function f. This de-
pends on the values of the arguments of that call. We define the function L such that L;(f, ey,..., &,, p) returns
1if theith argument of (f e ... €,) might escape, O otherwise. The environment p must be an environment
mapping the free identifiers within e; through €, to elements of D_ . The function L; is defined as follows

Li(fa €1, €, p) = (Eae i (fxl'" Xn)]] p[yj/Xj])(]_)
where, forall j<n, | #i,

yj= <0, (Eae |Iej]] p)(2)>
and

yi=<1, (Eae |Iei]] p)(2)>-

7. Examples

Consider the following nml program:



Elcl p= <0 err>
E.el XI p= pIX]

E el 1 + &l p= <0, err>, likewise for the other arithmetic operators
Ea_elI €1 82]] p= (Eael]: e]_]] p)(2) (Ea_e[[ e2]] p)
Exller -~ exesl p= (Exellenl p) U (Ejele3ll p)

Eael Ax.€] p = <V, Ay. Exdl €] ply/x] >
wherev= [ (p[ 7] )(1)> and F is the set of free variables in (Ax.€)
zF

Eclletxi=€y;..5x,=¢€,in €]l p= E [ €] p’
wherep’ = [(Egelleqdd ') X1, - - - » (Eclen]l P') %nl

Figure 4. The abstract escape semantics of nml

all functions defined according to the above equation, there must exist some | such that
F(On =F(p
for all k> .

A simple way of showing that there exists such aj is to show that every functional F must be monotonic
and that the fixpoint iteration is performed over a finite domain (using the technique described in [BHAS85]).

Every functional is composed of the monotonic operation [J (logical or) and the least upper bound op-

erator (as defined in figure4) and is thus monotonic. Furthermore, each subdomain DaeT is finite since

D, is finite for each primitive type Ty (int, bool, etc.) and D, "~ "2 s finite whenever D, * and D,
are finite. When finding the least fixpoint of a function of type T we need only search over the subdomain
DaeT. Thus, the least fixpoint can be computed in a finite number of iterations. Figure 5 contains an example

of fixpoint finding.

6. Using the Abstract Functions

In this section, we describe how the abstract functions are used to detect the escape properties of the cor-
responding functions in an nml program.
6.1. Global Escape Analysis

Using a global escape analysis, we find escape information about each nml function f that holds true for
every possible application of f. To do so, we apply the corresponding abstract function to arguments that

cause the greatest escapement possible. For each type T, we define the abstract function R that corresponds
to an nml function from which every argument escapes.

RT= )\Z]_. <Z]_(1), )\22. <Z]_(1) DZZ(]_), ey )\Zm< plj'l Zp(]_) , err> ... >>

where mis the number of arguments that a function of type T can take (before returning a primitive value).
Given an identifier f bound to a function of n arguments in some environment p, Gi(f, p) returns 1 if the
ith parameter could escape and O otherwise. G; is defined as follows:
Gilf, P) = (Bne [ (F X1 Xp)] PYLX.- - - YlXal)(o)

where forallj<n,j #i,



higher order behavior of the expression. err denotes a non-function value.

Given an X[Dg we use the notation X1y and X to refer to the first and second elements of X, respective-
ly. The domain D is partially ordered in the standard way:

Xy ODe X< yiff X1y <Y1y and xp) < y(p)
For each type T =T, — T, there is a bottom element [t of D¢ defined as follows:
=<0, M. U,

For each primitive type T, Ly =< 0, err>.

In order to return the actual escape value of each expression, we must be able to determine which branch
of a conditional would be evaluated at run-time. The only way to do this would be to embed the standard

semantics within the escape semantics. For convenience, we instead resort to an oracle to choose the appro-
priate branch of the conditional.

Given an nml function f, its meaning under the escape semantics will be a pair <f(1),f(2)>. We then use
f(2) to determine if a particular argument in a call to f escapes. Suppose, for example, we want to know, giv-
en the function application (f x), if X escapes. To do so, we let < X1y X(2)> be the value of X under that escape
semantics and let y = f(5) <1, X2)>. If y(q) = 1 then X escapes in the standard semantics, otherwise X does

not. Section 6 gives a detailed description of how the escape semantics is used.

4. The Abstract Escape Semantics

We now present an abstraction of the exact escape semantics that allows an approximation of the exact
escape behavior to be found at compile time. The semantic domains are essentially identical to those of the
exact escape semantics:

D™= D> = .. . =2 x{err},

DaeTl ~T2e=2x (DaeTl DaeTz)’
Dae= Z DaeT g

Envge=1d - Dge.
The semantic function
Eae EXp — EnVae — Dge
is defined in figure 4. The difference between the exact and the abstract semantics lies in the handling of

the conditional. Rather than referring to the standard semantics (as denoted by the oracle) the conditional is
handled by taking the least upper bound of the escape values of the two branches.

5. Termination

In our abstract escape semantics, a function may be expressed recursively and is thus defined as the least

fixpoint of the corresponding functional. That is, for the function
f=F(f)
wheref is of type T and F is a functional (corresponding to the body of f), the meaning of f is defined to be
the least function satisfying the above equation. Domain theory tells us that the least fixpoint f can be found
as follows:
f= limF (0
| - o0

where FO(x) = x and F'(X) = F(F"1(x)).

To ensure that our analysis terminates, we must show that a fixpoint is reached in finite time. That is, for



E[[ c] p =c, for each constant ¢ [ Con
E[X]] p = p[X], for each identifier x (I Id

Ele; +eo] p=(Eleq] p) + (El el p)
Ele;=e5] p=(E[eq] p=Ele] p)
Ele, el p=(Ele p) (Ele] p)
Ele, - e,ell p=E[e] p -~ Ele] p E[es] p
E[Ax.€] p =Ay.E[ €] p[y/X]
E[letxi=ey..5Xy=€,in €] p=E[€] p’
wherep’ = [(E[edl p’)/ X1 - - -, (E[en]l ')/ Xnl

Figure 2. The standard semantics of nml

The standard semantic function E is defined in figure 2. For notational convenience, all syntactic objects
are printed in boldface type, including all nml identifiers. Variables referring to syntactic objects are printed
in boldface italic type. Semantic variables are printed in non-bold italic type.

3. An Exact Escape Semantics

In this section, we describe a nonstandard semantics for nml such that the result of a function call indi-
cates whether a particular parameter escapes. The escape semantic domains are defined as follows:

Dei nt — DebOOI =...=2x{err}, where 2 is the two element domain ordered by 0< 1,

DeTl -Ta= 9 (DeTl - DeT2), for any types T, and T»,
De= 2D’

Enve=1d - Dg, the domain of escape environments.
The semantic function is

Ee EXp — Envg — Dg
and is defined in figure 3.

Under these semantics, the value of an expression is a pair whose first element is a boolean (0 or 1) that
indicates whether a particular parameter escapes, and whose second element is a function that captures the

Eldlcll p= <O, err>,forany constant C
EJLx] p= pIx]
Ell €1 + el p = <O, err>, likewise for the other arithmetic operators
Ede el p= (Eded P Edlead p)
Edle; - ey e p= Oracle[eq] — Egl[eo]]l p, Ec[ €3]l p
Edl Ax.€] p= <v,Ay. EJ[ €] p[y/x] >

wherev= [ (p[Z])(1), and F is the set of free variables in (AX.€)
zZ0F

Ellletx;=e;..5xp=¢e,in e p= EJf €] p’
wherep’ = [(Ec[lel]l p')/ Xq. - . .. (Elenll p')/ Xn]

Figure 3. The exact escape semantics of nml




cJCon constants
xOJId identifiers
el Exp expressions, defined by

er= c|x|eele »eye;lep+eplej=erlir el
let xy=ey...;Xp=€qine

Figure 1. The syntax of nml

nize that there are safety issues (such as stack overflow, etc.) that are important (see [Chase88]). There are
also persuasive arguments in favor of heap allocation. In the Standard ML compiler [AM87], all closures
are allocated in the heap. It appears that with a large amount of memory and a sophisticated garbage col-
lection strategy, the overhead of garbage collection is quite small. However, on most current systems (and
especially in distributed systems where garbage collection is more expensive), stack allocation of closures
is preferable.

A simple escape analysis was used in the Orbit compiler for Scheme [Kranz88]. It is a first order escape
analysis in which the following program could not be analyzed accurately.

let fab=a+b
ghab=hba
in gfl12

because h is an unknown function (i.e. a function bound to a formal parameter) in the body of g. Orbit’s
escape analysis assumes that any argument to an unknown function will escape from that function. Thus, it
will assume that both a and b escape from the call to h inside of g, and therefore escape from g. In fact,
neither a nor b escape from g.

Another analysis, called lifetime analysis [RM88], was developed to compute, if possible, the relative
lifetimes of dynamically allocated objects in a first order language with structures and recursive types (such
as trees). Escape analysis is a particular instance of lifetime analysis in which the lifetime of a function’s
activation record is compared to the objects defined inside the function. Other analyses for optimizing stor-
age allocation were proposed in [JM76], [MJ81], [Schwartz75], [Barth77], and [Chase87].

In the following sections, we present an analysis that, using abstract interpretation ([CC77],[My-
croft81]), gives escape information in the presence of higher order functions (although we do not deal with
structures and recursive types). Higher order abstract interpretation has been mainly used for strictness anal-
ysis ((BHAS85],[HY86]), although other higher order analyses have been developed (such as sharing anal-
ysis [Goldberg87]). Our use of abstraction interpretation differs from that of Mycroft, and is similar to that
of Hudak and Young, because we form an abstraction of a nonstandard semantics, rather than the standard
semantics, of our programming language.

2. A Simple Higher Order Functional LLanguage

For this discussion a very simple higher order monomorphically typed strict functional language, nml
(for not much of alanguage), will suffice. The syntax of the language is given in figure 1, although we omit
the type declarations. The standard semantic domains of nml are as follows:

D, the standard domain of values,
Env=1d - D, the domain of environments,
E: EXp —» Env - D, the semantic function for expressions.



Higher Order Escape Analysis:
Optimizing Stack Allocation in Functional Program Implementations

Benjamin Goldberg and Young Gil Park

Department of Computer Science?
Courant Institute of Mathematical Sciences
New York University

Abstract.

In this paper, we present a method for optimizing the allocation of closures in memory. This method is
based on escape analysis, an application of abstraction interpretation to higher order functional languages.
Escape analysis determines, at compile time, if any arguments to a function have a greater lifetime than the
function call itself. Such arguments, especially if they are closures, must be allocated in the heap rather than
in the stack. In most implementations, however, stack allocation of closures is preferable due to the lower
cost of allocation and reclamation. Therefore, we use escape analysis to determine when arguments can be
stack allocated safely.

In the past, first order escape analysis has been used in optimizing LISP compilers, and has been
described in various data-flow analysis frameworks for a language with complex types. The analysis
described here, being higher order, provides more accurate escape information, although for a very simple
higher order functional language.

1. Introduction

Higher order functions are an important part of functional languages. They have generally been seen,
however, as having a high implementation overhead. Two reasons for this view are that 1) they force an
implementation to use a heap to store closures, and 2) programs using higher order functions are particularly
difficult to analyze for optimization purposes.

The need for heap allocation arises when parameters and locally defined objects within a function outlive
a call to that function. For example, in the following program fragment

let fxyz=x+y+z

gab=fba

in g12

a closure representing the partial application of f during the execution of g will outlive the call to g. Thus,

the closure containing the parameters a and b will have to be heap allocated. In this case, the partial appli-
cation of f, along with g’s parameters a and b, are said to escape from the call to g.

Notice that in the following program fragment

let fxyz=x+y+z

hx=x3
gab=h({ba)
in g12

the closure representing the partial application of f does not escape from g. In this case, the closure and pa-
rameters can be allocated in g’s activation record on the stack. Escape analysisis a compile time analysis
that determines whether an object, such as a closure or a parameter, needs to be heap allocated.

In this paper we assume that stack allocation is less expensive than heap allocation, although we recog-
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