
Functional Programming Languages
BENJAMIN GOLDBERG

New York University ^goldberg@cs.nyu.edu&

Functional programming languages are
a class of languages designed to reflect
the way people think mathematically,
rather than reflecting the underlying
machine. Functional languages are
based on the lambda calculus, a simple
model of computation, and have a solid
theoretical foundation that allows one
to reason formally about the programs
written in them. The most commonly
used functional languages are Standard
ML, Haskell, and “pure” Scheme (a dia-
lect of LISP), which, although they dif-
fer in many ways, share most of the
properties described here. For a com-
plete description of these languages and
of functional programming in general,
see Bird and Wadler [1988], Paulson
[1991], Sussman and Abelson [1985],
Hudak et al. [1992], Milner et al. [1990],
Artificial Intelligence Laboratory
[1992], and Hudak [1989].
In contrast to the usual imperative

languages (e.g., C, Fortran, and Ada), in
which variables represent cells in mem-
ory that can be modified using the as-
signment operator 5 (or :5), functional
languages view the use of the 5 opera-
tor as an expression of an equation. For
example, if a functional program con-
tains the declaration

let x 5 f ~y !

then this would introduce the name x
and assert that the equation x 5 f(y)
is true. There is no notion of a memory
cell, and certainly no notion that some-
how later in the program x might
change (so that the equation would be-
come false).
If one were to write

let x 5 x 1 1

in a functional program, this would rep-
resent an equation with no finite solu-
tion (and would either be rejected by a
compiler or result in a nonterminating
computation), whereas in C this would
increment the contents of the memory
cell denoted by x .
Function names are introduced in a

similar way. The declaration

let f ~x, y ! 5 x 1 y

introduces the function f and states
that f(x, y) and x 1 y are equal, for
any x and y . The expression on the
right-hand side, the body of f , cannot be
a sequence of statements modifying the
values of x and y (and perhaps other
variables). As in mathematics, a function
is a single-valued relation such that,
given the same argument(s), it will return
the same result. This is certainly not the
case in the imperative programs.
Because variables in a functional pro-

gram cannot be modified, repetition
must be expressed in a functional pro-
gram via recursion rather than through
the use of loops. Consider the factorial
function, defined formally as:

n! 5H1 if n 5 0

n~n – 1 !! otherwise

In a functional language the executable-
definition of factorial is generally writ-
ten as

let factorial ~n!5

if n 55 0 then 1

else n*factorial ~n 2 1!

Copyright © 1996, CRC Press.

ACM Computing Surveys, Vol. 28, No. 1, March 1996

and follows directly from the formal def-
inition (where 55 is the equality com-
parison operator).
This is in contrast to the C version

int fac ~int n !

$int prod 5 1;

for ~int i 5 0;

i ,5 n; i 11)

prod 5 prod * i ;

}

which can be understood only by tracing
the sequence of modifications to the vari-
ables prod and i during the iteration.
Functional languages exhibit a prop-

erty called referential transparency,
which essentially means that “like can
be replaced by like.” For example, the
expression

f ~y ! 1 f ~y !

is equivalent to

let x 5 f ~y !

in x 1 x

in which the two original occurrences of
f(y) are replaced by x . This follows
directly from the fact that the declara-
tion x5 f(y) denotes an equation in a
functional language, but certainly
would not be the case in an imperative
language. In an imperative language,
the first call to f might change the
value of a variable used in the second
call to f . This kind of behavior, known
as a side-effect, cannot occur in a func-
tional language.

HIGHER-ORDER FUNCTIONS

Most functional languages support func-
tions that operate over functions—that
is, functions that take other functions
as parameters and/or return functions
as values. A simple example is the com-
pose function, defined as

let compose ~f,g !5let h ~x !5f ~g~x !!

in h

In this case, the parameters to com-
pose, f , and g, must both be functions.
In addition, the value returned by
compose , namely h, is also a function,
defined by the equation h(x) 5
f(g(x)) .
As another example of the use of

higher-order functions, consider again
the factorial function. It might be ar-
gued that the formal definition of facto-
rial given above was tailored to suit the
recursive nature of the definition of fac-
torial in the functional language, and
that a more reasonable and common
definition of factorial is

n!5P
i51

n

i

The product operator, &, is a very useful
operator that has the general form:

P
i5m

n

f~i!

for some initial value m, some final
value n, and some function f . In a func-
tional language, & can easily be written
as a higher-order function of three pa-
rameters, m, n , and f , defined by

prod ~m, n, f !

5 if m 55 n then f ~m!

else f ~m! p prod ~m, n, f !

where 55 is the equality comparison
operator. Thus, factorial can be defined
as:

let fac ~n! 5 let f ~i ! 5 i

in prod ~1,n,f !

and the power function, computing xn,
can be defined as

let power ~x,n ! 5 let f ~i ! 5 x

in prod ~1,n,f !

250 • Benjamin Goldberg

ACM Computing Surveys, Vol. 28, No. 1, March 1996

NON-STRICT FUNCTIONAL LANGUAGES

In most programming languages, a
function call of the form

f (e1, . . . , e n)

causes the argument expressions,
e1. . .en, to be evaluated before the body
of the function f is executed. This is
also the case in ML and Scheme. How-
ever, in a class of functional languages
called non-strict functional languages,
of which Haskell is the most popular, no
function evaluates its arguments unless
they are needed. For example, the func-
tion f defined by

let f ~x,y,z ! 5 if x 55 0

then y 1 1 else z

always evaluates its first, parameter, x ,
but only one of y or z will be evaluated.
Thus, in the call

f ~4, g ~3!, h ~2!%

the expression g(3) will not be evalu-
ated.
Non-strictness is attractive for two

reasons. First, it frees the programmer
from worrying about various issues of
control, such as choosing the correct
order of evaluation among various ex-
pressions. In a non-strict language, an
expression program won’t be evaluated
unless it is needed. For example, in a
producer-consumer problem, the pro-
ducer is guaranteed to produce only
what the consumer needs.
Another feature of non-strictness is

that it allows the construction of infi-
nite data structures. To see this, con-
sider the recursive definition

let ones 5 1 :: ones

where the :: operator constructs a list
whose first element is the left operand, in
this case 1, and whose subsequent ele-
ments come from the right operand, in
this ones . That is, ones is a list that is
recursively defined to be 1 followed by all
the element of ones . Clearly, the only
solution to this equation is if ones is the
infinite list of 1’s. In a strict language,
where :: requires the value of its argu-

ments, the evaluation of the right-hand
side of the equation would never termi-
nate. However, in a non-strict language,
the :: does not evaluate its operands until
they are actually needed. Ultimately, only
those elements of ones that are required
by other parts of the programs will be
computed. The rest of ones (which is infi-
nite) would be left uncomputed.

RESEARCH ISSUES IN FUNCTIONAL
LANGUAGES

The functional language research com-
munity is very active in a number of
areas. Of particular, interest is improv-
ing the speed of functional language
implementations. There are two pri-
mary approaches: through compiler-
based program analysis and optimiza-
tion techniques, and through the
execution of functional programs on
parallel computers. Another area of re-
search attempts to increase the expres-
siveness of functional languages for ap-
plications in which the notion of state
and the change of state (through assign-
ment) is seen as necessary in conven-
tional programs. New constructs have
been proposed that, although they ap-
pear to be side-effect operators such as
array updates, actually preserve the ref-
erential transparency property.

REFERENCES

ARTIFICIAL INTELLIGENCE LABORATORY 1992.
Report on the algorithmic language scheme.
Tech. Rep., Cambridge, MA, (Nov.), revised.

BIRD, R. AND WADLER, P. 1988. Introduction to
Functional Programming. Prentice Hall,
Englewood Cliffs, NJ.

HUDAK, P., ET AL. 1992. Report on the program-
ming language Haskell. SIGPLAN Not. 27, 5,
Section R.

HUDAK, P. 1989. The conception, evolution, and
application of functional programming lan-
guages. ACM Comput. Surv. 21, 3, 359–411.

MILNER, R., TOFTE, M., AND HARPER, R. 1990.
The Definition of Standard ML. MIT Press,
Cambridge, MA.

PAULSON, L. C. 1991. ML for the Working Pro-
grammer. Cambridge University Press, Cam-
bridge, UK.

SUSSMAN, G. AND ABELSON, H. 1985. Structure
and Interpretation of Computer Programs.
MIT Press, Cambridge, MA.

Functional Programming Languages • 251

ACM Computing Surveys, Vol. 28, No. 1, March 1996

