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Abstract

With the emergence of a number of strongly typed km-
guages with very dynamic storage allocation, efficient meth-
ods of storage reclamation have become especially impor-
tant, Even though no type tags are required for type checking

programs written in these languages, current implementa-

tions douse tags to support run time garbage collection, This

often inflicts a high time and space overhead on program ex-

ecution. Since the early days of LISP (and Algo168 later on),
there have been schemes for performing tag-free garbage
collection, In this paper, we describe an improvement of ex-
isting methods that leads to more effective storage rechuna-

tion in the absence of tags.

Garbage collection has also traditionally been viewed as

being independent of the particular program being executed.

This means that results of compile-time analyses which

could increase the effectiveness of garbage collection cannot
be incorporated easily into the garbage collection process.
This paper describes a method for performing garbage col-
lection 1) in the absence of tagged data, and 2) using com-

pile-time information. This method relies on compiler-gen-

erated garbage collection routines specific to the program

bekg executed and incurs no time overhead during execu-

tion other then the cost of the garbage collection process it-

self.

We describe tag-free garbage collection methods for

monomorphically typed and polymorphically typed lan-

guages, and suggest how they might be extended to support

parallel languages.
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1. Introduction

In the past decade, a number of programming languages

with strong typing but very dynamic storage allocation have

emerged. These languages require, or could benefit from, run

time garbage collection. Such languages include ML

mLH90], Ada [DoD83], and C++ [Stroustntp86],

Traditionally, garbage collection (and dynamic type

checking) required each datum to be tagged with type infor-

mation (see ~ngar86] for description of various tagging

schemes). During garbage collection, the tag of each datum

is examined in order to determine how the datum should be

handled. Naturally, whether the datum is a number, pointer,

structure, or closure will determine how the object is treated

by the collector.

For strongly typed languages, no run-time tags are re-

quired for type checking, since type checking occurs at com-

pile-time. However, current implementations of ML, such as

[AMW], retain tags to support garbage collection (Ada and

C++ implementations don’t have garbage collection). Main-

taining these tags inflicts a space and time overhead, not only

during garbage collection itself, but during the whole pro-

gram execution.

This paper describes an method for completely tag-free

garbage collection. It is based on the following idea (which

was first described in the Algo168 literature, and which we

extend)

When compiling a program, the compiler generates

the code necessary to support garbage collection.

This code is specific to the program and, since the

compiler knows the type of each datum in the

program, requires no tagging of data. For each type in

the program, there is a garbage collection routine to

manipulate objects of that type.

~
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When garbage collection occurs, the variables of each

active procedure must be traced (i.e. marked or copied). In

strongly typed languages, the types of the variables of each

procedure in the program are known, and are the same for all

calls to that procedure. Thus the type information can be as-

sociated with the procedure instead of the data. The compiler

generates, for each procedure, garbage collection routines

that know how trace the elements of the procedure’s activa-

tion record. When garbage collection occurs, the heap-allo-

cated structures rooted in each procedure’s activation record

are traced by the garbage collection routine corresponding to

that procedure.

While a procedure is executing, the number, types, and

status (initialized or not) of the variables in its activation

record might change. This occurs if locat variables are de-

clared in nested blocks within the procedure. To handle this,

different garbage collection routines should be associated

with different points in the procedure.

The advantages of this approach over tagged garbage

collection methods are as follows:

“ More efficient use of heap space: Removing the need for

tags may save considerable space, even in implementa-

tions that use several bits in each word (pointer, integer,

etc.) as a type tag. Without such a tag, larger integers can

be represented without resorting to multi-word repre-

sentations and addressable objects do not have to be

word-aligned (T%is is the case if the lowest bits would

have otherwise been used as a tag. If the high bits would

be used, a tag-free implementation provides a larger ad-

dress space).

● More efficient execution: During program execution in

a tagged data implementation, the manipulation of type

tags incurs run-time overhead. For example, in imple-

mentations in which integers contain a one or two bit

tag, the tag must be stripped off before most arithmetic

operations are performed and reinstated in the result.

Even the tagged arithmetic instructions provided by

some processors do not eliminate the run-time overhead

completely.

● More accurate recognition of live data and garbagcz

Typically marldsweep and copying collectors trace

from all roots, including every variable in every activa-

tion record on the stack. However, various variables in

an activation record may no longer be needed and

should not be traced. The compiler can determine (to

some degree) the point in a procedure after which a cer-

tain variable will no longer be accessed. Therefore, if

garbage collection occurs after this point in the proce-

dure, the garbage collection code that is executed (hav-

ing been compiler-generated), does not trace that partic-

ular variable.

We have already seen that the run-time overhead of our

method should be considembly lower than that of ordinary

tagged garbage collection. There will probably be an in-

crease in code size, but this effect might be mitigated for the

following reasons:

s

.

Programs manipulating simple types will generate sim-

ple garbage collection routines: Since the garbage col-

lection routines are program-specific, a program that

manipulates mainly simple types (integers, reals, integer

lists) will have very simple and short garbage collection

routines. In current garbage collection systems, the code

of the garbage collector is independent of the program

and must be sophisticated enough to handle all possible

user-defined types. Not only might this cause garbage

collectors to be rather large, but might inhibit optimiz-

ing the representation of a complex data type because its

structure must be transparent to the garbage collector,

Recognition of program points that could cause garbage

collection: The compiler can determine (to some de-

gree) which sections of a program cannot cause the ini-

tiation of a garbage collection. In particular, an analysis

can be performed that determines whether or not a given

procedure call could ultimately lead to garbage collec-

tion. If not, then no garbage collection code need be gen-

erated to trace the variables of the calling procedure

while it is waiting for the call to complete.

In this paper we provide a detailed description of the algo-

rithms and representations we have developed for tag free

garbage collection, and describe some program analyses to

make it more efficient. The source programming language

that we shall use in our examples is ML. However, we shall

defer any discussion of garbage collection in the presence of

polymorphically typed functions to section 3.

1.1. Related Work

In the early days of LISP, tags were avoided by allocat-

ing objects of different types in different areas of the heap.

Thus the type of an object could be determined from its ad-

dress. Unfortunately, this required heap allocation of inte-

gers (using two words due to the indirection involved) and
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was difficult to extend to languages with user-defined data

types,

A number of papers [BL70Jvhrshal170,Wodon70] were

published twenty years ago on garbage collection for Al-

go168, some suggesting tagged data. In a paper by Brarquart

and Lewi [BL70] two methods were described for using

compile-time type information to avoid tags, One, called the

intemretive method, associated with each type an encoding,

typically a parse-tree like representation called a descriptor

or template, of the structure of the type. The garbage cokc-

tor, as it traverses an aggregate structure, must also traverse

the appropriate descriptor to determine how to handle the

substructures.

The other method which (in principle) is the same as one

we are espousing, is the comt)iled method, Like the name

suggests, the garbage collection routines for each type were

generated by the compiler. The fundamental difference be-

tween our method and the compiled method described in

[BL70] is as follows:

c In the Branquart and Lewi method, a table mapping

stack locations to garbage collection routines was kept

at run-time in order to figure out what garbage collec-

tion routine to use to trace each local variable in each ac-

tivation record. This table had to be updated every time

a local variable bound to a heap-allocated structure was

created (which was seldom, since Algo168 discouraged

the use of heap abated local variables in favor of

heap-allocated global variables). No table entries were

required for global variables, since both the location of,

and garbage collection routine for, each global variable

was known at compile time.

● In our method, notable is required. We are able to deter-

mine the garbage collection routines for each local vari-

able by using the return addresspointers that are already

stored in the stack.

Garbage collection schemes for Pascal, similar to the

ones for Algo168, were described in [Britton75]. Instead of

using a table, however, an extm pointer was stored in every

activation record to point to the descriptor or compiled rou-

tine corresponding to the types of the variables in the activa-

tion record,

Appel [Appe189] has proposed an extension (although

omitting many of the details) to the interpreted methods of

[BL70,Britton75] in order to support garbage collection for

polymorphically typed languages. In particular, he recog-

nized that the return address stored in each activation record

can be used to find the type information (i.e. the descriptor)

for the variables stored in that activation record. In the fol-

lowing section, we give a more extensive description of Ap-

pel’s method.

The use of the return-address pointer has been used to

implement exception handling in a number of languages

(e.g. Mesa, Ada). As exceptions traverse the dynamic chain,

the procedure represented by each activation record is exam-

ined to see if au appropriate exception handler is provided.

1.1.1 Appel’s Tag-Free Collection Scheme

In [Appe189], an important passage describing his tag-

free garbage collection method is the following:

When the garbage collector is invoked, it searches the

stack for refensmces into the heap. From the retum-

address information on the stack, it can determine

which procedure is associated with each stack frame,

Since this is the only passage describing the use of the return

address in each activation record, the reader is left to inter-

pret exactly how the return address is used. In this section,

we provide a straightforward interpretation of the passage in

which a single descriptor is associated with each procedure

definition. This is implied by Appel since his method seems

to rely only on finding out which procedure is associated

with each activation record and does not take into account

the current execution point in the procedure.

In subsequent sections we describe our algorithm, based

on the compiled method, in which we are able to associate

different garbage collection routines with various points in

each procedure. The garbage collector then determines the

current execution point of each procedure and uses that in-

formation to select the appropriate garbage collection rou-

tine. As we shall show, this allows our scheme to make use

of intraprocedural and interprocedural program analyses to

optimize the garbage collection process.

In (our interpretation of) Appel’s method, when the gar-

bage collector encounters an activation record R, it deter-

mines which procedure f is represented by R by following

the return address pointer stored in R to the call instruction

in the procedure that called~, The call instruction will con-

tain the starting address off The type descriptor for the vari-

ables ill~can be associated with~’s starting address - either

through a table or by placing the descriptor (or its address) at

some fixed distance from~.

Some problems with associating a single descriptor
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with each procedure definition are:

* The number, types, and status of variables in an activa-

tion record change during the execution of the corre-

sponding procedure. If there are variable definitions in

nested blocks in the procedure, then local variables ap-

pear and disappear.

● Variables mayor may not be initialized at various points

in a procedure. Uninitialized variables present a prob-

lem to the garbage collector (it may think that an unini-

tialized pointer contains a valid address).

The solution to this would be to create all local variables de-

fined inside a procedure as soon as the procedure is called,

and to immediately initialize the variables. This imposes an

additional time and space overhead during execution.

In addition, associating a single descriptor with a proce-

dure definition misses a significant opportunity for optimiza-

tion. At various points in a procedure, some lwd variables

will be live and others will not. If the garbage collector al-

ways performs the same action on the activation record for a

given procedure, it will have to assume that all variables are

live. This will prevent the reclamation of heap structures

pointed to by local variables that are not actually live. The

tag-free garbage collection algorithm that we describe in the

next section addresses these issues.

2. The Tag Free Garbage Collection Algorithm

In this section we describe our method for monomorphi-

cally typed sequential languages. In subsequent sections we

extend the method to work with polymorphically typed lan-

guages and languages supporting parallelism. Even though

we use ML in examples in this section, we restrict ourselves

to monomorphic functions,

For consistency throughout this paper, we will assume

that a copying garbage collector is used, However, our meth-

od will support mark/sweep collection as well (see [Co-

hen81] for a survey of garbage collection schemes).

2.1. The Basic Method

An important observation is that garbage collection can

only be initiated by a call to a procedure (such as cons, new,

or malloc, depending on the language) that allocates memo-

ry. Such a procedure must be predefine in the language.

Therefore, garbage collection can only occur when each ac-

tive user-defined procedure is waiting for a procedure call to

complete.

When garbage collection begins, the activation record of

each active procedure~ contains a valid return address. This

is typically the address of the call instruction in the calling

procedure (on the SPARC, for example). To return from ~,

the CPU increments the return address (again, on the

SPARC) by two words (8 bytes) to the second instruction

following the call (the first instruction after the call sits in the

delay slot) and then jumps to that address.

We use the return address stored in each activation

record to find the garbage collection routine for tracing the

activation record below it (i.e. of the caller). The details are

as follows:

.

.

.

Suppose, for a given procedure call, the address of the

call instruction is n. We use the word at location n+8

(which is two 32-bit words after the call instruction) to

store the address of the garbage collection routine,

which we refer to as aframe_gc_routine, that will spec-

ify how the elements of the activation record (frame) of

the calling procedure should be traced, We shall refer to

the word at location n+8 storing the address of the

frame&c_routine as the gc_word.

During garbage collection, the return address stored in

the called procedure contains the value n. To trace the

calling procedure’s activation record correctly, we sim-

ply call the framegc_routine whose address is con-

tained in the gc_word at location n+8.

During normal execution, when a procedure call finish-

es, control returns to the instruction at address n+12,

where n was the return address stored in the called pro-

cedure’s activation record. On the SPARC, at least, this

incurs no additional cost because the retl instruction is

just a pseudo-instruction representing jmpl 0/.07+8,0/.g0

and can simply be replaced by jmpl %07+12,0/40.

This representation is illustrated in Figure 1. When garbage

collection occurs, the collector simply traverses the stack

(from most recent activation record to least recent), execut-

ing the framegc_routine associated with each activation

record. Figure 2 shows the main loop of the garbage collec-

tor, written in C (in actual implementations it would be writ-

ten in assembly code).

The frame~c_routines associated with each procedure take

a pointer to an activation record as a parameter and trace the

variables in the activation record according to their types.

2.2. Higher Order Functions and Closures

Many languages support higher-order functions, which

means that closures must be constructed to represent func-
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Proc2

Procl

Local Variable k

. . .

Local Variable 1

Return Ad&as - —

Static Link

Dynamic Link _ .

Parameeerm

. . .

Pardmerer 1

Local Variable j

. . .

Local Variable 1

Return Addrws

Static Link *
Dynamic Link - —

Parameter n

I

,,,

Pammerer I

Procl:

. . <code before call> . .

-r

call Proc2

<instruction> in delay slot>

<address of Procl_gcl>

. . .
1

<code after return>. . .

ret I
Procl_gcl: ~

<code for tracing Procl’s

variables during call to Proc2>

ret

Proc2:

. . .

r’
STACK CODE

Figurel.Stack/Code Organization

tions as data, Consider the (monomorphic)

map:

fun map f ([]: int list) = [] : int list

I mapf(x::xs) =fx::mapfxs

ML function This problem is easily solved. A closure contains a

pointertothecode ofthefunctionitrepresents. Supposethat

the code starts at address n. In location n-4 (the word preced-

ing the start of the code) the compiler places the address of a

When map is called, the first argument must be represented

by a closure. However, the size (number of fields containing

the free variables) and shape (types of those variables) of the

closure may differ in different calls to map, There is no way

formap’s frame~c_routines to know how to trace the fields

of the closure.

garbage collection routine for tracing the closure. This works

because all closures representing the same function have the

same number and types of fields. When a closure is encoun-

tered during garbage collection, the closure’s code pointer is

followed to find its garbage collection routine.

garbage_collecto
[ frame ●current_frame;

void (“gc_routine)();
current_frame = frame_pointec /’ start at the top of the stack ‘/
gc_routine = *(current_frame->return_addr + 8); /“ get the frame_gc_routine for the next frame*/
while (current_frame != NULL) (

current_frame = current_frame->dy namic_link; /“ visit next frame in the stack’/

(“frame4c-routine) (current_frame); /’ call the frame_gc_routine’/
gc_roufine = *(current_frame->return_addr + 8); 1“ get the next frame _gc_routine’/

1
)

Figure 2. The garbage collector procedure
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2.3. Variant Records

Languages like Pascal and Ada support variant records,

which are records whose number and types of fields are de-

termined by the value of a discriminant field at run time.

Thus, when garbage collection occurs, the value of the dis-

criminant must be checked in order to determine the types of

the current fields. This is easily supported by our tag-free

collection strategy, since the framegc_routines associated

with a procedure containing a variant record can test the

record’s discriminant and perform the appropriate action.

ML has similar objects, whose types are defined by ML’s

datatype declarations, for which the same garbage collec-

tion strategy works (again, assuming only monotypes).

2.4. An Interesting Example

For easeof presentation, we write the implementation of

the garbage collection routines in C instead of assembly

code. We indicate the frarne~c_routine associated with a

procedure call as follows:

f(x,y,z); -- this-gc

namely, by writing the name of the frame~c_routine (in this

case, this_gc) to the right of the procedure call, preceded by

“--”0 This indicates that if garbage collection occurs during

the call to f, the routine this_gc will be called to trace the

fields of the activation record of the caller.

Consider the ML append function for integer lists:

fun append [] (YS int list) = YS

i append (x::xs) ys = x::append xs ys

It might be implemented as follows:

cons_ceii “append(xs,ys)
cons_ceii “xs, “ys;
( int temp;

cons-ceii ‘re%
if (M == NULL) retum(ys);
eise {

temp = xs->cafi
res = append(xs->cdr, ys); -- no_trace
res = int_cons(terrrp, res); -- no_trace
return (res);

1
1

Notice the following properties of this append

o If garbage collection occurs during the recursive call to

append, then the only variable whose value is required

later is temp. Since temp is an integer on the stack, no

action needs to be taken.

.

so,

If garbage collection occurs during the call to int_cons,

no local variable or parameter is needed anymore, so

again no action needs to be taken (int-cons will trace its

parameters).

garbage collection never needs to trace the elements of

an append activation record! The frame~c_routine asscxi-

ated with both calls in the body of append simply returns.

Naturally, there is only one such frame~c_routine, in this

case called no_trace, and many gc_words will point to it.

The gc_word following many procedure calls will con-

tain the address of no_trace for one of two reason~

●

☛

Like the append function above, no heap-allocated

structures rooted in the callers activation record need to

be traced, or

The compiler has determined that no garbage collection

can occur during the call. Such an analysis is described

in seetion 5.1. Better yet, if both the calling and called

procedure are aware that garbage collection cannot oc-

cur, then the gc_word following the call instruction can

be omitted.

More examples of our garbage collection method are provid-

ed in subsequent sections.

It is worth noting that the method we have described can

be adapted to the interpreted method. In such a case, the

gc_word that currently points to framegc_routine would in-

stead point to a descriptor that describes the types of vari-

ables in the activation record. Garbage collection would be

somewhat slower, since the descriptor would have to be in-

terpreted while traversing the activation record. However,

the code size should be significantly less, since the descriptor

should take less space then the corresponding frame~c_rou-

tine. What the precise space/time trade-off is remains to be

seen from experiments that we are planning to perform in the

near future.

3. Garbage Collection for Languages with

Polymorphism

In a languages with polymo~hic functions, different

calls to the same function may supply arguments of different

types. For example, the append function in ML

fun append [1 YS = YS

I append (x::xs) ys = x::append xs ys

is polymorphic, and its type is ‘dcx. a list + a list -+ a list.

This means that for any type, append can take two lists of el-

ements of that type and return a list of elements of that type.
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In current ML implementations, there is only one defi-

nition of each polymorphic function and all calls to that func-

tion execute the same code. While that is not a necessary

condition for implementing polymorphically typed languag-

es, it is a convenient way to do so. As we shall see, it is pre-

cisely this implementation decision that makes tag-free gar-

bage collection more difficult and more interesting.

Typically, the formal parameters of a polymorphic func-

tion, especially those which get bound to arguments of dif-

ferent types in different function calls, are represented by a

single word (integer or pointer) and polymorphic functions,

such as cons and append, simply manipulate these words.

cons, for instance, creates a cell with two one-word fields

containing its arguments, no matter what the type of the ar-

guments are,

Since all calls to a polymorphic function execute the

same code, there is no way for the function’s frame4c_rou-

tines to know precisely the structure of all variables in the ac-

tivation record during garbage collection. This would seem

to make tag-free garbage collection impossible. Appel

[Appe189] suggests the following solution

● Suppose the garbage collector cannot determine the type

of a variable in a polymorphic function’s activation

record. Since the types of the arguments to a polymor-

phic function determine the types of its parameters and

local variables, the calling procedure (found by the re-

turn address) is examined to determine the type of the

arguments. If the calling procedure is itself polymor-

phic, then its caller may have to be examined, and so on,

This continues (that is, traversing down the dynamic

chain) until the precise type of each variable in the cur-

rent activation record can be determined,

The problem with this is that the tracing of each poly-

morphic function’s activation record may involve traversing

a fair amount of the stack and testing the identity of activa-

tion records many times. Furthermore, determining the type

of the parameters by accessing the encoded types of the vari-

ables of the caller (and its caller, etc.) quickly becomes very

complicated. No details are provided in [Appe189], and just

how the garbage collector can determine the types of vari-

ables in one activation record by looking at the descriptor for

another activation record is far from clear.

Our solution differs in that the stack is traversed at most

twice, no testing of activation records is required, and our

method is easier to descrike and, hopefully, implement.

●

●

●

✎

Our solution is as follows:

The stack is traversed from the oldest activation record

to the most recent (i.e. in the opposite direction of the

dynamic chain). In order to do this, an initial traversal of

the stack may be necessary, to perform pointer-reversal

on the dynamic links.

The frame~c.routines associated with a polymorphic

function~are parametrized by garbage collection rou-

tines corresponding to the types offs parameters We

shall refer to these routines as type_gc_routines because

they trace objects of a certain type rather than entire ac-

tivation records. During garbage collection, fs

frame~c_routine is passed the type~c_routines corre-

sponding to fs arguments by the framegc_routine of

the procedure that called J Thus the structure of each

frame~c_routine will be:

f_frame_gc(p, parl_gc,..o, par&9c)

stack_frame ‘p;
type_gc_routine parl_gc,..., par._gc;

( frame_gc_routine next_gc;

... trace variables using parl_gc,..., par~gc ...

rtext_gc = ... next frame’s frarneAc_routine ...

next_gc(p->next_frame, argl_gc,..., arg._gc)

1

where argl_gc,..., argn_gc are the type_gc_routines

passed to the next frame’s frame~c_routine. They cor-

respond to the types of the arguments passed by f to the

function it called.

Garbage collection starts simply by calling the

frame~c_routine of the bottom (oldest) activation

record on the stack. Of course, the frame~c_routine

calls are tail recursive and can be implemented as a loop.

Closures representing typeXc_routines my be con-

structed during garbage collection, and reflect the cre-

ation of structures during execution. In this way, the

process of garbage collection for a polymorphic lan-

guage greatly reflects the execution process.

Consider, for example, the following program fragmerm

let fun f x = let y = [x, x]

in (y, [3])

end
in (f [true], f 7)

end

If garbage collection occurs during the creation of [31 in f,

the fr~e~c_routine for f must call a type~c_routine to
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trace y. The type~c_routine for y cannot know the exact

structure of y, since it will vary across different calls to f and

is dependent on the type of x. All y’s typ~c_routine can

know is that it is a list, and thus must be parameterized by the

t~~c_routine for x. The frame~c_routine for f, which

will have been passed the t~&c_routine for x, must pass

that routine to y’s type~c_routine. y’s type&c_routine will

then apply x’s type~c_routine to each element of y, as well

as copying the cons cells of y.

The function f and the “main” function (which computes

the result expression) might be implemented as

f(x)
unknown x;
[ cons_cell “templ, ‘~

tuple-cell “temp2;
templ = cons(x,Nll); -- f_gcl
y = cons(x,templ ); -- f_gc2
templ = cons(3,NltJ; -- f_gc3
temp2 = tuple(y,temp); -- f-gc4
return(temp2);

)

and

maino
( cons_cell c;

tuple_cell “templ, ●temp2;
c = cons(true, Nil); --main_gcl
templ = f(c) --main_gc2
temp2 = f(7); --main_gc3
templ = tuple(templ ,temp2); --main_gc4
return(templ);

1.

First, consider the code for f. If garbage collection occurs

during the first call to cons, then x must be traced. If garbage

collection occurs during the second cons call, then no vari-

ables need be traced. We have already described what must

happen during the construction of [3], and no tracing is nec-

essary if the tuple call causes garbage collection.

In the main routine, it is only if garbage collection oc-

curs during the second call to f that a variable in main’s acti-

vation record must be copied. This variable is temp 1 and is

bound to an object of type bool list list* int list.

The frame~c_routines for main are defined as follows:

main_gc 1(p)
main_stack_frame “p;
( frame_gc_routine next_gc;

next_gc = ... next hrne’s frarne_gc_routine ...

next_gc(p->next, const_gc, const_gc);

1

main_gc2(p)
main_stack_frame(p);
{ frame~c_routine next_gc;

next_gc = ... next frame’s frameJc_routine ...

next_gc(p->next, trace_list_of(const_gc));

1

main_gc3(p)
main_stack_frame ●p;
{ frame_gc_roufine next-gc;

templ_gc(p->templ);
next_gc = ... next frame’s frame~c_routine . ..

next-gc(p->next, const_gc, const-gc);

1

main~c4(p)
main_stack_frame(p);
{ frame_gc_routine next_gc;

next_gc = ... next frame’s frarne~c_routine ...

next_gc(p->next, templ_gc, temp2_gc);

)

where templ _gc is a routine to trace a structure of type

bool list list* int list and temp2_gc is a routine to trace a

structure of type int list * int list. const_gc is the

type~c_routine that can be used for all objects, such as in-

tegers and booleans, that are not represented by pointers into

the heap, but rather by single word. const_gc takes a single-

word value and simply returns that value. trace_list_of is a

function that takes a typegc_routine r and returns a closure

representing anew type~c_routine that can trace a list, each

of whose elements can be traced by r. For example, Figure 3

shows the closures resulting from trace_list_of(const_gc)

for tracing a list of integers or booleans, and

traceJist_of(trace_list-of(const_gc)) for tracing a list of

lists of integers or booleans.

The frame gc routines for f are defined as follows:

L.gcl (P,x_gc)
f_stack_frame ●p;
gc_routine x_gc;
[ next_gc = ... next frame’s frarne~c_routine . ..

next_gc(p->next, x_gc, const~c);

)

f_gc2(P,xsc)
stack_frame “p;
gc_routine x_gc;
[ next_gc = ... next frame’s frarne~c_routine . . .

next_gc(p->next, x_gc, trace_list_of(xgc));

1
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t=

trace_list_of

const~c

(a)

Closure for gc_routine for

tracing a list of integers

(b)
Closure for gc_routine for tracing a

list of lists of integers

Figure 3. The closure representation of gc routines

f_gc3(p,x_gc)
f_stack_frame “p;
gc_routine x_gc;
( p->y = apply(trace_list_of(x_gc), p->y);

next_gc = ... next frame’s tkunefic_routine ...

next_gc(p->next, const_gc, const_gc);

1

f-gc4(p,x_gc)
stack_frame ●p;
gc_roufine x_gc;
{ next_gc = ... next frame’s framegc_routine ...

next_gc(p->next, trace_list_of (x_gc),

trace_list_of(const_gc));

)

Tag-free garbage collection gets more complicated in

the presence of higher-order polymorphic functions. Consid-

er, for example, the following function definition

fun f g (x::xs) = let y = (g x)

in (y, 1)

end

in which case f has type (a + ~) + cx list + ~ * int. The

difficulty lies in determining, while performing garbage col-

lection on f, how to find the type2c_routines for x and for

the result of (g x). This is due to f’s fiame3c_routine being

passed a ty@~c_routine for the list (x::xs) rather than for x,

and that the type~c_routine for (g x) is dependent on an in-

teraction between the type&c_routine for g and the

typegc_routine for X. The solution to these problems is as

follows:

● The type~c_routine for (x::xs), passed to f’s

frame~c_routine, must be a closure resulting from an

application of trace_tist_of to a type~c_routine appro-

priate for each elements of (x::xs), and thus appropriate

for x. ~us, the type~c_routine for x can be extracted

from the closure (see Figure 3).

● The type~c_routine to trace the result of (g X) can be

4.

created by applying a special higher-order function,

call~ a resuk~c_routine, associated with g to the

type~c_routine for x. The result3c_routine for g is ac-

cessed via the code pointer of the closure representing

tie type~c_routine for g. Figure 4 shows the represen-

tation of the closure for the type4c_routine for 9,

where trace_g is the routine for tracing g and hace_re-

sult_of_g is the resultgc_routine for g.

Tag-Free Garbage Collection for Languages

with Tasking

We now describe how our tag-free garbage collection

method might be extended to support languages with task-

ing, such as Ada. We will not attempt to describe all possible

tag-free garbage collection techniques for all different class-

es of parallel languages. Rather, we will choose a simple

model of parallelism and describe an extension of our meth-

od. The model we choose is that of Ada, namely multiple

tasks operating in a shared memory environment. We further

simplify the problem of garbage collection in this environ-

ment by placing the restriction that all executing tasks must

be suspended during garbage collection.

Up to now, we have made the assumption that available

heap space can only be exhausted during a procedure call

and not at arbitrary times. In a multi-tasking language, such

as Ada, this assumption cannot automatically be made. In a

shared-memory environment, one process may attempt to al-

locate space from an exhausted heap while other processes

are executing normally. If, upon the attempt to allocate

space, all tasks were immediately suspended and garbage

collection initiated, then the other tasks might not be in a
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m
<address of trace_result_of_g>

trace_g:

< . . . code for tracing g...>

.,. ret

t

trace_result_of_g: ~

< . ..tM.B function, parametrized by a type_gc_routine for

x, return8 a tp_gc_routine for tracing (g x)..>

Closure representing a

t~Jc_routine for g

Figure4. Theclosure representation oftype#c_routines forfunctionvalues

state that would allow the garbage collector to traverse their

stacks.

To solve this problem, we enforce our old assumption

thataprocess can onlybe suspended for garbage collection

purposes when the process makes a procedure call. This im-

plies that when the heap is exhausted, some processes will

continue executing until they make a procedure call. De-

Pendingonhowlong oneiswillingtolet someprocessesrun

while others are suspended, aprocess could suspend inone

oftwosituations:

o ‘l%eheapisexhausttxlandtheprocess callsanallocation

routine,or

● Theheapisexhaustedandtheprocess makesanyproce-

durecall.

In the first case, only the allocation routines incur the over-

headofcheckingto see ifanotherprocess hasexhausted the

heap. This reduces the number of times a test is made to see

if the process should suspend, but might allow some process-

es to run for a long time while others are suspended. In the

second case, a test to see if the process should suspend must

be made at every call.

To improve the case where a testis made at every call,

it may be possible to utilize the addressing modes of some

processors to make the test inexpensive (providing processes

can share registers). Here is how:

● A register Rgc, initially containing O, is dedicated for

the purpose of testing for suspension.

. If the heap is exhausted when a storage allocation pro-

cedure is called, the procedure modifies Rgc to contain

.

some (probably negative) value n.

When a procedure call occurs, the target address of the

jump instruction is computed by adding the value of Rgc

to the address of the procedure being called. If the heap

has not been exhausted by another process, the value of

~c will be O and the call will procecxl normally. Other-

wise, the address will be a procedure (whose address is

offset from the intended procedure by n) that causes the

suspension of the process.

When all processes are suspended, garbage collection starts

and the stack of each process is traversed in turn. When gar-

bage collection is complete, the processes are resumed.

We have not yet investigated the compatibility of our

tag-free scheme with multiprocessor garbage collection

schemes described in the literature (a comprehensive survey

can be found in mudalics88]).

5. Program analysis for improving tag free

garbage collection

In this section, we describe some program analyses that

would reduce the cost of tag free garbage, and suggest ways

in which they could be performed.

5.1. Detecting when garbage collection is possible

Garbage collection can be initiated only when a heap al-

location request, such as a call to the new operator in Pascal,

is made. In a first order language it is easy to determine

which calls can ultimately lead to garbage collection. The set

S of functions that may ultimately lead to garbage collection

can be computed by a simple fixpoint iteration,
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F={new}

~i = ~i-1 ~
{f I ~contains a call to a function in Si-l}

Since there are only a finite number of functions in a pro-

gram, there exists some j such that Y = Y-l and therefore

#= S, the set we are looking for.

A similar analysis on programs with higher order func-

tions is more difficult. One way to perform a higher order

analysis is via abstract interpretation, as in [BHA85]. Anoth-

er approach might be to use higher-order analysis based on

type-inference methods, as in [MK89].

5.2. Live Variable Analysis

We have already discussed how live variable analysis

(see [ASU86]) can be used to reduce the number of struc-

tures that are traced during garbage collection. Those wri-

ables in an activation record that are not live when garbage

collection starts can be ignored by the collector.

60 Summary

In this paper, we have given a method for performing

tag-free garbage collection for monomorphically typed and

polymorphically typed languages, and for sequential lan-

guages as well as languages with tasking. The major contri-

bution of this work has been to:

1. Formulate a method for garbage collection that incurs

no run-time overhead in time or heap space, aside

from the garbage collection process itself.

2. Show how compile-time analysis can be used to

optimize the garbage collection process.

3, Provide a detailed description (missing in previous

work) of the code that a compiler could generate in

order to perform efficient garbage collection for

polymo~hically typed languages.

We have implemented, by hand, tag-free garbage collection

routines for a number of small programs. In order to gain

meaningful statistics on the efficacy of our approach, a real

implementation is required. This entails modifying the back-

end of a compiler, and we are currently in the planning stages

of such a project.
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