
Buckwheat: Graph Reduction on a
Shared Memory Multiprocessor

Benjamin Goldberg
Department of Computer Science

New York University
251 Mercer Street

New York, NY 10012

Abstract

Buckwheat is a working implementation of a. functional
language on the Encore Multimax multiprocessor. It is
based on a heterogeneous abstract machine model con-
sisting of both graph reduction and stack oriented exe-
cution. Buckwheat consists of two major components:
a compiler and a run-time system. The task of the
compiler is to detect the exploitable parallelism in pro-
grams written in ALFL, a conventional functional lan-
guage. The run-time system supports processor sched-
uling, dynamic typing and storage management.

In this paper we describe the organization, execution
model, and scheduling policies of the Buck.wheat run-
time system. A large number of experiments have been
performed and we present the results.

I Introduction

Functional languages have recently gained attention as
vehicles for programming in a concise and elegant man-
ner [2,12]. In addition, it has been suggested that func-
tional programming provides a natural methodology
for programming multiprocessor computers. Unfortu-
nately, there has been little empirical evidence, until
now, to support this hypothesis. This paper describes
a working implementation of a functional language on a
commercially available shared memory multiprocessor.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and lthe title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. TO
copy otherwise, or to republish, requires a fee and/or specfic
permission.

1.1 Objectives

This paper addresses the following question:

Is it feasible to execute conventional func-
tional programs on current shared memory
multiprocessors such that a significant reduc-
tion in the execution time is achieved?

Some of the terms used in the above question need to
be defined:

Conventional functional programs: We seek to cre-
ate an implementation for a functional language
that does not contain any special constructs for
specifying the parallel behavior of a program. Our
implementation must be able to au~omaliccrlly de-
compose functional programs to run on a multi-
processor.

Reduction in execution time: We are investigating
whether a functional program can run significantly
faster on a shared memory multiprocessor than on
a sequential (uniprocessor) computer. We would
ultimately like to show that functional program-
ming is the most appropriate method for program-
ming parallel computers, However, in this paper
we restrict ourselves to the investigation of the ad-
vantages of using parallel machines instead of se-
quential machines to execute functional programs.

Buckwheat is a research project started at Yale Uni-
versity (and continued at Yale and NYU) that attempts
to address these issues via an implementation of a func-
tional programming language on the Encore Multimax,
a shared memory multiprocessor. There are two major
components to Buckwheat, a compiler and a run-time
system. The task of the compiler is to detect the ex-
ploitable parallelism in programs written in ALFL, a

This research was supported in part by the US Government
under DOE grant FG02-86ER25012

@ 1988 ACM 0-89791-273-X/88/0007/0040 $1.50

40

conventional functional language. The Buckwheat run-
time system provides much of the mechanism for the
distributed execution and performs such tasks as pro-
cessor scheduling, dynamic typing, and storage man-
agement .

In addition to Buckwheat, an ALFL implementation
has been built on an Intel iPSC hypercube multipro-
cessor and is called Alfalfa. A description of Alfalfa,
along with experimental results, can be found in [4,5].

1.2 The Encore Multimax

The Encore Multimax [3] is a bus-based shared mem-
ory multiprocessor. Buckwheat was implemented on
a system that contained twelve processors. Each pro-
cessor is a 10 MHz National Semiconductor NS32032
microprocessor. Any location in memory can be ac-
cessed by any processor over a very fast bus called the
Nanobus. An important feature of the shared memory
in the Multimax is that any byte can be used as a lock
(for enforcing mutual exclusion, etc.). Atomic test-and-
set instructions are supported in order to set and reset
these locks.

1.3 The Source Language

The functional programs that get executed by Buck-
wheat are written in ALFL [7], a non-strict functional
language designed at Yale. It is similar in many ways to
other existing functional languages such as Miranda [l l]
and LML [l]. It is weakly typed, however, and forces
Buckwheat to perform run-time type checking.

Perhaps the most important aspect of ALFL, as it
applies to this paper, is the fact that it contains no
explicit constructs for expressing parallelism. The pro-
grammer is dependent on the Buckwheat compiler and
run-time system to detect and exploit the inherent par-
allelism in his program.2

1.4 Graph Reduction

Graph reduction [13] is the evaluation method most
often used to execute functional programs. It can be
thought of as the graphical equivalent of reduction in
the lambda calculus, and supports higher-order func-
tions and lazy evaluation in a very natural manner.
In graph reduction a program, along with its data, is
represented as a graph. During execution, reductions
(conversions) are applied to the graph until it has been
reduced to a normal form, to which no more reductions
can be applied. For example, the initial graph repre-
senting the ALFL program

2There is a dialect of ALFL, called ParALFL [9], that provides
explicit constructs for expressing parallelism.

{ f x y == h (x y) y;

gab == a + b;

hcd==c*d;
, result f (g 2) 3;

1

is shown in figure 1. The ‘Q” symbol represents func-
tion application. Notice that the application off to two

J@ \
J 3

f tk
s.4 2

Figure 1: The initial graph

arguments is curried and is represented by two appli-
cation nodes. Reduction proceeds via the construction
of an instance of f’s body with its formal parameters
replaced by pointers to the corresponding arguments.
This is shown in figure 2. According to the definitions

Figure 2: The graph after the first reduction step

of g and h, the reduction of the graph proceeds as shown
in figure 3.

In the above example, the function identifier in an
application always resided at a leaf in the graph to
support currying. Each interior node represented the

41

application of its left child to its right child. If a func-
tion is supplied with all the arguments it needs (as in
the above application of f), an uncurried application
could be represented by a node containing the function
and arguments. For example, the uncurried version of
f (g 2) 3 in the above program could be represented
as shown in figure 4. In this case, the node serves as an

g H 2

Figure 4: The uncurried version of (f (,g 2) 3

activation record for the function ca11.3
Graph reduction can be used to support ,parallel ex-

ecution of functional programs. Any sections of the
graph that are eligible to be reduced (without via-
lating ALFL’s non-strict semantics) can Iye reduced
in parallel. For example, the parallel reduction of
f (g 1 2) (h 3 41, represented in figure 5, could pro-
ceed by the evaluation of (g 1 2) and (h 3 4) in par-
allel, as long as f required both of their values. If this

Figure 3: The reduction of the graph

f

/ I \

R”)$ij

Figure 5: ‘l’he applications of g and h can be evaluated
in parallel

approach is taken, the functions in a program, such as
g and h above, specify the behavior of tasks that run in
parallel and determine the granularity of the computa-
tion.

1.4.1 Serial Combinators

31n applications that cannot be un-ied, an erplicit apply
node is required.

We have previously [4,8] discussed transforming the
source program into a new set of functions, called serial
combinators, that exhibit an appropriate grain size for
the target architecture. The body of each serial com-
binator is sequential and can be executed on a single
processor without sacrificing useful parallelism. Serial
combinators are combinators, functions that contain no
free (non-local) variables. This means that the activa-
tion record for each serial combinator call contains all
of the variables that may be referenced in the serial
combinator body.

42

In section 3 we describe the mechanism for execut-
ing serial combinators. It is worth mentioning here,
however, that the code generated for each serial combi-
nator is native code for the multiprocessor. It is not a
sequence of instructions for an abstract machine, such
as a “graph reduction engine”, that needs to be inter-
preted at run time. If the execution of a serial combina-
tor requires synchronization-or some other mechanism
not provided by the hardware-then the compiler sim-
ply generates a call to a system routine provided by the
Buckwheat run-time system.

2 Heterogeneous Evaluation
Model

We would like to minimize the overhead involved in
execution by utilizing the mechanisms to support par-
allelism and lazy evaluation only when required. In
doing so Buckwheat becomes a hybrid of two evalu-
ation models: graph reduction and sequential stack-
based execution4.

In distributed execution of functional languages,
graph reduction serves two basic purposes: It supports
heap (i.e. graph space) allocation of closures, and sup-
ports a multi-threaded dynamic chain for parallel func-
tion calls. Heap allocation of closures is necessary for
lazy evaluation and higher order functions; these clo-
sures represent “delayed” expressions during execution.

A serial combinator may require the values of serial
combinator calls being evaluated by other processors.
Thus, the system has to provide a mechanism for sus-
pending the evaluation of a serial combinator if a re-
quired value is not yet available. This necessitates the
creation of activation records in a heap, and not in a
stack, in order to preserve the state of the serial combi-
nator call during suspension. The processor has to be

free to use the stack for other purposes while a serial
combinator call is suspending.

In many programs, however, there are function calls
in which the function is sequential and is not passed
any unevaluated arguments. In this case, no heap allo
cation is necessary and the invocation of the function
can be allocated on the stack, just as if it were part
of conventional (i.e. sequential and call-by-value) lan-
guage .

In many programs, however, there are sequences of
function calls that contain no parallelism and require no
mechanism for suspending. In these cases, heap alloca-
tion of activation records is unnecessary. The activa-
tion records for these function calls should be (and are

‘The G-machine [lo] uses a similar hybrid evaluation model
for sequential evaluation of functional programs

in Buckwheat) allocated on a stack. The stack provides
a sequential return mechanism at very low cost.

Briefly, we say a function is sequential (and can be
evaluated using a stack) if it satisfies the following con-
ditions:

1. It makes no parallel function calls, i.e. it only calls
one function at a time.

2. It never “forks” a function calI, i.e. it never pro-
ceeds without waiting for a value of a function call
to return.

3. It only calls functions that are themselves sequen-
tial.

Determining if a function, f, is sequential in a first order
language involves solving a simple recursive set equa-
tion. In the higher order case, f may make calls to un-
known functions (bound to local variables) and a more
sophisticated analysis is needed to determine if the un-
known function is sequential. If a sequential function
f has arity n then an application of f to n arguments
can be executed on a stack if all arguments to the in-
vocation have already been evaluated. The Buckwheat
compiler currently solves the set equation for sequential
functions in the the first order case. For those functions
fi that it has found to be sequential, it generates two
definitions. One is for sequential stack based execution
when the compiler can determine that the actual pa-
rameters in a call to fi have been evaluated. A graph
reduction based definition is also generated for the case
where a call to fi may involve unevaluated arguments.

3 Shared Memory Graph Re-
duction

In graph reduction, the program graph logically resides
in a single graph space. Thus, a shared memory multi-
processor is the most natural architecture on which to
implement graph reduction. On the Multimax any pro-
cessor can access any component of the program graph.
Naturally, access to any node in the graph that is being
mutated must be restricted to the processor performing
the mutation.

Buckwheat’s processors are self-scheduled. That is,
when a processor becomes free it removes a task from a
shared task queue and performs the action dictated by
the task. No processor needs to be aware of the state
of any other processor in the system.

3.1 System Organization

The organization of buckwheat is shown in figure 6.
Each processor has a private copy of the graph reducer

43

Memory

Graph Space Queue Structure

Value and
Pointers

Graph Current
Transformations Tasks

New Tasks

Processors

Figure 6: The Buckwheat system

module, serial combinator code, and storage manager.
Even though the Multimax has a single physical mem-
ory, multiple copies of these modules allows the pro-
cessors to execute the routines without memory con-
tention. Of course, there may still be contention for
the bus. However, the Nanobus is fast enough that the
effect of bus contention is minimal.

The graph space and task queue structure reside in a
shared area of memory. In its simplest form, the queue
structure consists of a single queue from which all pro-
cessors access tasks to be executed. A more sophisti-
cated task queue structure is described in section 4.

3.2 Synchronization by serial combina-
tors

Unlike ALFL functions, serial combinators contain con-
structs that specify the synchronization necessary for
parallel execution. The algorithms used by the com-
piler to detect the inherent parallelism in an ALFL
program-and to generate the necessary synchroniza-
tion constructs-can be found in [4,8].

The basic synchronization constructs are demand,
wait, and spawn. For ease of explanation, we will repre-
sent serial combinators using S-expression syntax much
like that of LISP.

In a serial combinator, the demand construct

(demand (~1 . ..v,>
body)

indicates that the values of variables ~1.. . w,, may be
safely demanded (in parallel). Because iserial com-
binators preserve laziness, we must be certain, using
strictness analysis, that the values of ~1. . . w,, will be

needed at some point in the computation. The values
of Vi... v, do not have to return before body is evalu-
ated.

The wail construct

(wait (211 . . . w,)
body)

indicates that the values of ~1. . . v, must be available
before the evaluation of body can even begin. If any of
VI... w, are still being evaluated then evaluation of the
current serial combinator is suspended. Even though
evaluation of a serial combinator is blocked, the pro-
cessor is free to evaluate any other serial combinator
application whose value has been requested.

The spawn construct

(spawn ((211 expl) . . . (v, exp,>>
body)

indicates that expl. . . exp,, as well as body, should be
evaluated. If there are a sufficient number of available
processors, the spawn construct will cause these expres-
sions to be evaluated in paraliel. When each expi has
been evaluated its value is bound to the variable vi.
Since evaluation of body proceeds without blocking on
thevaluesofvi...v,, each vi must occur within a wait
before being referenced in body.

Figure 7 shows a divide and conquer factorial as it
appears in ALFL and serial combinator form. Notice
that serial combinators also contain a LISP-like let con-
struct for evaluating simple expressions sequentially.

3.3 The Graph Reducer

The synchronization constructs that serial combinators
contain are simply calls to routines in Buckwheat’s

44

< pfac 1 h == l=h->l, (mid == (l+h)/2;
result pfac 1 mid + pfac (mid+l) h;
1

result pfac I IO;
1

pfac 1 h == (demand (1 h)
(wait (1 h)

(if (= 1 h) 1
(let ((mid (/ (+ 1 h) 2)) (vi (+ mid 1)) >

(spawn ((~2 (pfac I mid)) (v3 (pfac vi h)))
(wait (v2 v3)

(+ v2 v3)))))))

Figure 7: Divide and conquer factorial in ALFL and serial combinator form

graph reducer module. These routines perform the nec-
essary transformations on the graph. Before discussing
how these transformations are performed, we describe
the data structures involved.

3.3.1 Data Structures

A node in the graph is a contiguous block of bytes that
contains the following fields:

Sla2e: Either “unevaluated”, “pending” (which
means that the node is in the process of being eval-
uated) , or “evaluated”.

Value: If the node has been evaluated, the value
field contains the result. Otherwise it contains a
pointer to code that specifies the computation to
be performed when the value of the node is re-
quested.

Args: This is a vector containing the values of the
arguments in the function call represented by the
node. Each element contains either a value or a
pointer to another node in the graph.

Requests: A list of other nodes that have requested
the value of this node.

Evaljield: A bitfield indicating the status of each
element in the args vector. If the ith bit of the
bitfield is 1 then the ith argument has already been
evaluated and contains a value. Otherwise the ith
argument is a pointer to another node.

l Waitmask A bitfield indicating which arguments
must be evaluated before evaluation of the node
can proceed. Evaluation proceeds when, for every

1 in the waitmask, there is a corresponding 1 in
the evalfield.

a RefCount: The reference count of the node for stor-
age reclamation purposes.

l Lock: A lock for enforcing mutual exclusion.

A iask is an instruction that specifies a step for the
run-time system to take in order to reduce the graph.
Program execution proceeds by repeatedly removing
tasks from the task queue of each processor and per-
forming the action specified by the task. There are two
kinds of tasks:

An evaltask contains pointers to a target node and
a source node. It indicates that the value of the
target node is being requested by the source node.

A returntask contains a pointer to a target node
and a value. It indicates that some other node has
been evaluated and is returning its value to the
target node.

3.3.2 Execution

Execution begins via the creation of a collection of
nodes representing the initial graph. An evaltask re-
questing the value of the root node of the graph is
placed on the shared task queue. Execution proceeds
with each processor removing tasks from the shared
task queue.

If an evaltask is encountered and the target node 71 is
unevaluated, evaluation of n proceeds by a jump to the
code pointed to by n’s value field. This code is the code
generated for a serial combinator by the Buckwheat
compiler. When the serial combinator code is finished

45

executing, a returntask is created to return the resulting
value v to any requesting node. n’s state iis modified
to “evaluated” and its value field is overwritten with
v. Otherwise, if n has already been evalu.ated when
the evaltask is encountered, the reducer irnmediately
creates a returntask with n’s value.

When a processor encounters a returntask returning
a value to a node n, the appropriate elements of n’s
args vector and evalfield are updated. If the evalfield
now has a 1 in every bit position that the waitmask
does, n is ready to be awakened. This is accomplished
by simply jumping to the code pointed to by n’s value
field. Otherwise, no action is taken.

Figure 8 shows the state of a node n before it is
evaluated. The code for the serial combinator applica-
tion represented by n will contain the synchronization
constructs (spawn, demand, and wait) and .will specify
transformations to be applied to n. The list of vari-
ables in the demand, wait, and spawn constructs will
have been translated into a list of indices i into n’s args
vector.

For each index i in a demand construct, if the ith bit
of n’s evalfield is 1 (i.e. the ith argument has already
been evaluated) then no action is taken. Otherwise an
evaltask is created to request the value of the node to
which the ith argument points. As discussed above, the
execution of n’s code continues without blocking.

For each index i in a wait construct, the ith bit in
n’s waitmask is set to 1. n’s value field is then modified
so that it now points to a continzlalion-code that will
be executed when the needed arguments return. When
the required arguments return, execution p.roceeds via
a jump to the continuation. Figure 9 illustrates a sus-
pended node about to resume.

When a spawn is executed, a new subgraph is cre-
ated to represent the activation record of each spawned
expression. An evaltask is placed in the shared task
queue for the root of each new subgraph. Ultimately,
the result of the program is the value returned by the
root node in the graph.

4 Queue-based Scheduling

Processor scheduling is accomplished by maintaining a
central queue structure which every processor accesses.
The simplest approach would be for every processor to
remove tasks from the single shared queue. However,
a shared queue causes contention between processors
attempting to access the queue. This pro’blem is ex-
acerbated as the number of processors in the system
grows. Unless the hardware supports efficient access
to a central queue (as in the NYU Ultracomputer [S]),
it is often necessary to modify the queue structure to

prevent contention.
The solution we have implemented for Buckwheat is

a two-level queue structure illustrated in figure 10. A
processor can directly access a task queue, called a pri-
mary queue, that it shares with a small number of other
processors. There may be many primary queues in the
system. Each primary queue has a rather small fixed
size. We define the set of processors accessing a single
primary queue to be a primary cluster.

If a processor is ready to execute a task and its pri-
mary task queue is empty, it can access another queue,
called the secondary queue, which is shared among all
the processors in the system. Similarly, if a processor
attempts to put a task onto is primary queue and its
primary queue is full, then the task is put onto the
secondary queue.

There are several advantages to the two-level queue
structure:

1. Since a primary queue is shared by a relatively
small number of processors, contention for the
queue is reduced.

2. The secondary queue provides a way to send tasks
from a busy primary cluster to other primary clus-
ters. The cost of the extra indirection needed to
access the secondary queue is only incurred by
idle processors in idle primary clusters or when
a primary cluster becomes very busy. If the size
of the primary queue is chosen appropriately, the
vast majority of queue accesses will be to primary
queues.

5 Execution Results

Four applications programs were executed on Buck-
wheat to test the effectiveness of our approach. The
four programs were pfac, a divide and conquer fac-
torial, queens, a program to find all solutions to the
g-queens problem, quad, an adaptive quadrature algo-
rithm, and matmult, a matrix multiplication program.
Almost 600 runs were performed to measure the follow-
ing:

1. The performance of Buckwheat using a single
shared task queue.

2. The effect of using a twolevel queue structure.
The number of processors in a primary cluster as
well as the sizes of the primary queues were varied
in order to find the best task queue configuration.

Figures 11 through 14 plot the execution times (in
microseconds) for the four programs as a function of
the number of processors used.

46

Graph Space

*---------------a(

010000

Code Space

Zode for f

if (n->args[l].valee) = 6 then
getvalueh,O);
getvalue(n.2);
n->waitmask = 5;
n->value.cont = fcontl;
possiblysesume (n) ;

else
return-value h, 1) ;

Code for fcontl
. . .

Figure 8: A node in its initial state

Graph Space

*-a-

Code Space

Zode for f

. .

Code for fcontl

return-value (n, n->args 101 . value +
n-Bargs C21 . value) ;

Figure 9: A suspended node about to resume

47

Processors

Figure 10: Buckwheat’s two-level queue structure

+..-.- ----_--. + *,

P
1
;E! 1000000 - 0 --------- 0 -8

m---------o ll1n.u lfp..dup-

600000 -

r

0 I I I I I I I I I I
0 6 J4

-r or Rocmr,or~

Figure 11: The execution

E\
@...--- 4FM

- PZ!

e---- _____ 0 *,
1

Pfac: Varying queuesiee eoooooo , , , , I 8 ’

- Q-ma

\

x---------x sing1* Qlnw

*--.- .__--.. 4 *loo

D---------D L1n.u @.mdu,,

I

lanbmr Of Proo*mrors

times for pfac on Buckwheat

Figure 12: The execution times for queens on Buckwheat

48

,,,,~d,ap. Quad: Varying no. of proceslres per queue eoQoow Adaptive Quad: Varying qututsiet
I ’ ’ 8 n I ’ ’ I 1 1 ’ 8 I 8 0

bWOO0 -

.‘
5

R
10000000

> /

eoow&trix Mult: Varying no. of proctlrses per queue ewoM)o eoow&trix Mult: Varying no. of proctlrses per queue ewoM)o Matrix Mult: Varying queues3iee Matrix Mult: Varying queues3iee
I 1 r ’ 8 I ’ ’

c”“““““-
I ’ 8 ’ ’ I ’ 8 I ’ 8 8 ’ I ’ 8

0 _________ 0 p, 0 _________ 0 p, x- _---...--.- x x- _---...--.- x +,M) +,M)

- Blrqh CAmurn - - Blrqh CAmurn - - plro - plro
laowow - - lbwowo-

+------.* pe +------.* pe (t-----o sIngI* eww - (t-----o sIngI* eww -

VP-4 VP-4 0 __------- 0 9-w 0 __------- 0 9-w
.‘
5 10000000 - y -.-...-- --..-+(y -.-...-- --..-+(-8 -8
R > - iI--

0 __------- 0 0 __------- 0 w w

t o---------o ldn.v sp.dup- o---------o ldn.v sp.dup- D _-------- 0 L1-u spndup- D _-------- 0 L1-u spndup-

t
6000000 - 6wowo- 6000000

1

Figure 13: The execution times for quad on Buckwheat

Figure 14: The execution times for matmult on Buckwheat

49

5.1 Finding the Appropriate Cluster
Size

In each figure, the graph on the left plots the execution
times using a single shared task queue. It also plots
the execution times using a two-level queue structure
for various values of P, the number of processors in a
primary cluster. The size Q of each primary queue was
fixed at 10 (tasks).

In every program the two-level queue structure per-
formed better than a single queue. For small numbers of
processors the difference was small, but as .the number
of processors grew the single queue caused the execu-
tion time to increase. This effect is due to contention
for the access to the single queue. The two level queue
structure significantly reduced the effect of contention
for task queues.

With Q = 10 the two-level queue structure performed
very well over the range of values for P. In pfac and
matmult, the performance with P = 1 was Ipoorer than
for other values for P. With one processor per primary
queue, parallelism can only be exploited by having tasks
spill over onto the secondary queue. In three of the pro-
grams, the performance with P = 1 was still superior
to the single queue case.

A P value of 4 provided the best performance over all
the programs. Surprisingly, this proved to be program
independent (although P = 2 performed just about as
well). Having found an appropriate number of proces-
sors per cluster, it remained to find the best primary
queue size for Buckwheat.

5.2 Finding the Appropriate Primary
Queue Size

In each of figures 11 through 14, the graph on the right
plots the execution times for various values of Q, the
size of the primary queues. The number of processors
P per cluster was fixed at four. In every case, a large
value of Q performed poorly. When Q is large, fewer
tasks will spill over to the secondary que:ue and the
task distribution will be poor. The smaller Q values
performed much better. The execution times for values
of Q under twenty were very similar, although a Q value
of 4 (the smallest value of Q we tested) performed the
best. Again, the best Q value seemed to be program
independent.

6 Conclusions

All the programs (with sufficient potential parallelism)
that we tried performed extremely well. Matmult had
the greatest reduction in execution time over the se-
quential case. Since the experiments were performed

on a machine with only twelve processors, and since we
have only examined speedup rather than absolute per-
formance, we hesitate to draw conclusions about per-
formance on massively parallel shared memory archi-
tectures. However, the results have reinforced our be-
lief that functional language implementations on shared
memory machines have the potential for providing a
useful programming environment for parallel process-
ing.

7 Acknowledgments

I would like to thank Paul Hudak for his contributions
to this research. I would also like to thank those in the
wrestling group at Yale, as well as the following people
at Los Alamos National Laboratory: Joe Fasel, Randy
Michelsen, and Bonnie Yantis.

References

PI

PI

[31

PI

[51

161

PI

PI

L. Augustsson. A compiler for Lazy ML. In Proc.
1984 ACM Conf. on LISP and Functional Prog.,
pages 218-227, August 1984.

J. Backus. Can programming be liberated from
the von Neumann style? A functional style and
its algebra of programs. CACM, 21(8):613-641,
August 1978.

Multimax Technical Summary. Encore Computer
Corporation, Marlborough, MA, 1986.

B. Goldberg. Multiprocessor Execution of Func-
tional Programs. PhD thesis, Yale University, De-
partment of Computer Science, May 1988.

B. Goldberg and P. Hudak. Implementing func-
tional programs on a hypercube multiprocessor.
In Proceedings of Third Conference on Hypercube
Concurrent Computers and Applications, ACM,
January 1988.

A. Gottlieb, R. Grishman, C.P. Kruskal, K.P.
McAuliffe, L. Rudolph, and M. Snir. The NYU
Ultracomputer - designing an MIMD shared mem-
ory parallel computer. IEEE Trans. on Comp.,
C-32(2):175-189, February 1983.

P. Hudak. ALFL Reference Manual and Program-
mer’s Guide. Research Report YALEU/DCS/RR-
322, Second Edition, Yale University, October
1984.

P. Hudak and B. Goldberg. Serial combinators:
“optimal” grains of parallelism. In Functional

50

Programming Languages and Computer Architec-
ture, pages 382-388, Springer-Verlag LNCS 201,
September 1985.

[9] P. Hudak and L. Smith. Para-functional program-
ming: A paradigm for programming muItiproces-
sor systems. In Proc. 12th Sym. on Prin. of Prog.
Lang., pages 243-254, ACM, January 1986.

[lo] T. Johnsson. The G-machine: an abstract ma-
chine for graph reduction. Technical Report,
PMG, Dept. of Computer Science, Chalmers Univ.
of Tech., February 1985.

[ll] D.A. Turner. Miranda: a non-strict functional lan-
guage with polymorphic types. In Functional Pro-
gramming Languages and Computer Architecture,
pages 1-16, Springer-Verlag LNCS 201, September
1985.

[12] D.A. Turner. The semantic elegance of applicative
languages. In Functional Programming Languages
and Computer Architecture, pages 85-92, ACM,
1981.

[13] C.P. Wadsworth. Semantics and Pragmatics of the
Lambda Calculus. PhD thesis, Oxford University,
1971.

51

