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Abstract 

Buckwheat is a working implementation of a. functional 
language on the Encore Multimax multiprocessor. It is 
based on a heterogeneous abstract machine model con- 
sisting of both graph reduction and stack oriented exe- 
cution. Buckwheat consists of two major components: 
a compiler and a run-time system. The task of the 
compiler is to detect the exploitable parallelism in pro- 
grams written in ALFL, a conventional functional lan- 
guage. The run-time system supports processor sched- 
uling, dynamic typing and storage management. 

In this paper we describe the organization, execution 
model, and scheduling policies of the Buck.wheat run- 
time system. A large number of experiments have been 
performed and we present the results. 

I Introduction 

Functional languages have recently gained attention as 
vehicles for programming in a concise and elegant man- 
ner [2,12]. In addition, it has been suggested that func- 
tional programming provides a natural methodology 
for programming multiprocessor computers. Unfortu- 
nately, there has been little empirical evidence, until 
now, to support this hypothesis. This paper describes 
a working implementation of a functional language on a 
commercially available shared memory multiprocessor. 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and lthe title of 
the publication and its date appear, and notice is given that copying 
is by permission of the Association for Computing Machinery. TO 
copy otherwise, or to republish, requires a fee and/or specfic 
permission. 

1.1 Objectives 

This paper addresses the following question: 

Is it feasible to execute conventional func- 
tional programs on current shared memory 
multiprocessors such that a significant reduc- 
tion in the execution time is achieved? 

Some of the terms used in the above question need to 
be defined: 

Conventional functional programs: We seek to cre- 
ate an implementation for a functional language 
that does not contain any special constructs for 
specifying the parallel behavior of a program. Our 
implementation must be able to au~omaliccrlly de- 
compose functional programs to run on a multi- 
processor. 

Reduction in execution time: We are investigating 
whether a functional program can run significantly 
faster on a shared memory multiprocessor than on 
a sequential (uniprocessor) computer. We would 
ultimately like to show that functional program- 
ming is the most appropriate method for program- 
ming parallel computers, However, in this paper 
we restrict ourselves to the investigation of the ad- 
vantages of using parallel machines instead of se- 
quential machines to execute functional programs. 

Buckwheat is a research project started at Yale Uni- 
versity (and continued at Yale and NYU) that attempts 
to address these issues via an implementation of a func- 
tional programming language on the Encore Multimax, 
a shared memory multiprocessor. There are two major 
components to Buckwheat, a compiler and a run-time 
system. The task of the compiler is to detect the ex- 
ploitable parallelism in programs written in ALFL, a 
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conventional functional language. The Buckwheat run- 
time system provides much of the mechanism for the 
distributed execution and performs such tasks as pro- 
cessor scheduling, dynamic typing, and storage man- 
agement . 

In addition to Buckwheat, an ALFL implementation 
has been built on an Intel iPSC hypercube multipro- 
cessor and is called Alfalfa. A description of Alfalfa, 
along with experimental results, can be found in [4,5]. 

1.2 The Encore Multimax 

The Encore Multimax [3] is a bus-based shared mem- 
ory multiprocessor. Buckwheat was implemented on 
a system that contained twelve processors. Each pro- 
cessor is a 10 MHz National Semiconductor NS32032 
microprocessor. Any location in memory can be ac- 
cessed by any processor over a very fast bus called the 
Nanobus. An important feature of the shared memory 
in the Multimax is that any byte can be used as a lock 
(for enforcing mutual exclusion, etc.). Atomic test-and- 
set instructions are supported in order to set and reset 
these locks. 

1.3 The Source Language 

The functional programs that get executed by Buck- 
wheat are written in ALFL [7], a non-strict functional 
language designed at Yale. It is similar in many ways to 
other existing functional languages such as Miranda [l l] 
and LML [l]. It is weakly typed, however, and forces 
Buckwheat to perform run-time type checking. 

Perhaps the most important aspect of ALFL, as it 
applies to this paper, is the fact that it contains no 
explicit constructs for expressing parallelism. The pro- 
grammer is dependent on the Buckwheat compiler and 
run-time system to detect and exploit the inherent par- 
allelism in his program.2 

1.4 Graph Reduction 

Graph reduction [13] is the evaluation method most 
often used to execute functional programs. It can be 
thought of as the graphical equivalent of reduction in 
the lambda calculus, and supports higher-order func- 
tions and lazy evaluation in a very natural manner. 
In graph reduction a program, along with its data, is 
represented as a graph. During execution, reductions 
(conversions) are applied to the graph until it has been 
reduced to a normal form, to which no more reductions 
can be applied. For example, the initial graph repre- 
senting the ALFL program 

2There is a dialect of ALFL, called ParALFL [9], that provides 
explicit constructs for expressing parallelism. 

{ f x y == h (x y) y; 

gab == a + b; 

hcd==c*d; 
, result f (g 2) 3; 

1 

is shown in figure 1. The ‘Q” symbol represents func- 
tion application. Notice that the application off to two 

J@ \ 
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f tk 
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Figure 1: The initial graph 

arguments is curried and is represented by two appli- 
cation nodes. Reduction proceeds via the construction 
of an instance of f’s body with its formal parameters 
replaced by pointers to the corresponding arguments. 
This is shown in figure 2. According to the definitions 

Figure 2: The graph after the first reduction step 

of g and h, the reduction of the graph proceeds as shown 
in figure 3. 

In the above example, the function identifier in an 
application always resided at a leaf in the graph to 
support currying. Each interior node represented the 
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application of its left child to its right child. If a func- 
tion is supplied with all the arguments it needs (as in 
the above application of f), an uncurried application 
could be represented by a node containing the function 
and arguments. For example, the uncurried version of 
f (g 2) 3 in the above program could be represented 
as shown in figure 4. In this case, the node serves as an 

g H 2 

Figure 4: The uncurried version of (f (,g 2) 3 

activation record for the function ca11.3 
Graph reduction can be used to support ,parallel ex- 

ecution of functional programs. Any sections of the 
graph that are eligible to be reduced (without via- 
lating ALFL’s non-strict semantics) can Iye reduced 
in parallel. For example, the parallel reduction of 
f (g 1 2) (h 3 41, represented in figure 5, could pro- 
ceed by the evaluation of (g 1 2) and (h 3 4) in par- 
allel, as long as f required both of their values. If this 

Figure 3: The reduction of the graph 

f 

/ I \ 

R” )$ij 

Figure 5: ‘l’he applications of g and h can be evaluated 
in parallel 

approach is taken, the functions in a program, such as 
g and h above, specify the behavior of tasks that run in 
parallel and determine the granularity of the computa- 
tion. 

1.4.1 Serial Combinators 

31n applications that cannot be un-ied, an erplicit apply 
node is required. 

We have previously [4,8] discussed transforming the 
source program into a new set of functions, called serial 
combinators, that exhibit an appropriate grain size for 
the target architecture. The body of each serial com- 
binator is sequential and can be executed on a single 
processor without sacrificing useful parallelism. Serial 
combinators are combinators, functions that contain no 
free (non-local) variables. This means that the activa- 
tion record for each serial combinator call contains all 
of the variables that may be referenced in the serial 
combinator body. 
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In section 3 we describe the mechanism for execut- 
ing serial combinators. It is worth mentioning here, 
however, that the code generated for each serial combi- 
nator is native code for the multiprocessor. It is not a 
sequence of instructions for an abstract machine, such 
as a “graph reduction engine”, that needs to be inter- 
preted at run time. If the execution of a serial combina- 
tor requires synchronization-or some other mechanism 
not provided by the hardware-then the compiler sim- 
ply generates a call to a system routine provided by the 
Buckwheat run-time system. 

2 Heterogeneous Evaluation 
Model 

We would like to minimize the overhead involved in 
execution by utilizing the mechanisms to support par- 
allelism and lazy evaluation only when required. In 
doing so Buckwheat becomes a hybrid of two evalu- 
ation models: graph reduction and sequential stack- 
based execution4. 

In distributed execution of functional languages, 
graph reduction serves two basic purposes: It supports 
heap (i.e. graph space) allocation of closures, and sup- 
ports a multi-threaded dynamic chain for parallel func- 
tion calls. Heap allocation of closures is necessary for 
lazy evaluation and higher order functions; these clo- 
sures represent “delayed” expressions during execution. 

A serial combinator may require the values of serial 
combinator calls being evaluated by other processors. 
Thus, the system has to provide a mechanism for sus- 
pending the evaluation of a serial combinator if a re- 
quired value is not yet available. This necessitates the 
creation of activation records in a heap, and not in a 
stack, in order to preserve the state of the serial combi- 
nator call during suspension. The processor has to be 

free to use the stack for other purposes while a serial 
combinator call is suspending. 

In many programs, however, there are function calls 
in which the function is sequential and is not passed 
any unevaluated arguments. In this case, no heap allo 
cation is necessary and the invocation of the function 
can be allocated on the stack, just as if it were part 
of conventional (i.e. sequential and call-by-value) lan- 
guage . 

In many programs, however, there are sequences of 
function calls that contain no parallelism and require no 
mechanism for suspending. In these cases, heap alloca- 
tion of activation records is unnecessary. The activa- 
tion records for these function calls should be (and are 

‘The G-machine [lo] uses a similar hybrid evaluation model 
for sequential evaluation of functional programs 

in Buckwheat) allocated on a stack. The stack provides 
a sequential return mechanism at very low cost. 

Briefly, we say a function is sequential (and can be 
evaluated using a stack) if it satisfies the following con- 
ditions: 

1. It makes no parallel function calls, i.e. it only calls 
one function at a time. 

2. It never “forks” a function calI, i.e. it never pro- 
ceeds without waiting for a value of a function call 
to return. 

3. It only calls functions that are themselves sequen- 
tial. 

Determining if a function, f, is sequential in a first order 
language involves solving a simple recursive set equa- 
tion. In the higher order case, f may make calls to un- 
known functions (bound to local variables) and a more 
sophisticated analysis is needed to determine if the un- 
known function is sequential. If a sequential function 
f has arity n then an application of f to n arguments 
can be executed on a stack if all arguments to the in- 
vocation have already been evaluated. The Buckwheat 
compiler currently solves the set equation for sequential 
functions in the the first order case. For those functions 
fi that it has found to be sequential, it generates two 
definitions. One is for sequential stack based execution 
when the compiler can determine that the actual pa- 
rameters in a call to fi have been evaluated. A graph 
reduction based definition is also generated for the case 
where a call to fi may involve unevaluated arguments. 

3 Shared Memory Graph Re- 
duction 

In graph reduction, the program graph logically resides 
in a single graph space. Thus, a shared memory multi- 
processor is the most natural architecture on which to 
implement graph reduction. On the Multimax any pro- 
cessor can access any component of the program graph. 
Naturally, access to any node in the graph that is being 
mutated must be restricted to the processor performing 
the mutation. 

Buckwheat’s processors are self-scheduled. That is, 
when a processor becomes free it removes a task from a 
shared task queue and performs the action dictated by 
the task. No processor needs to be aware of the state 
of any other processor in the system. 

3.1 System Organization 

The organization of buckwheat is shown in figure 6. 
Each processor has a private copy of the graph reducer 
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Figure 6: The Buckwheat system 

module, serial combinator code, and storage manager. 
Even though the Multimax has a single physical mem- 
ory, multiple copies of these modules allows the pro- 
cessors to execute the routines without memory con- 
tention. Of course, there may still be contention for 
the bus. However, the Nanobus is fast enough that the 
effect of bus contention is minimal. 

The graph space and task queue structure reside in a 
shared area of memory. In its simplest form, the queue 
structure consists of a single queue from which all pro- 
cessors access tasks to be executed. A more sophisti- 
cated task queue structure is described in section 4. 

3.2 Synchronization by serial combina- 
tors 

Unlike ALFL functions, serial combinators contain con- 
structs that specify the synchronization necessary for 
parallel execution. The algorithms used by the com- 
piler to detect the inherent parallelism in an ALFL 
program-and to generate the necessary synchroniza- 
tion constructs-can be found in [4,8]. 

The basic synchronization constructs are demand, 
wait, and spawn. For ease of explanation, we will repre- 
sent serial combinators using S-expression syntax much 
like that of LISP. 

In a serial combinator, the demand construct 

(demand (~1 . ..v,> 
body) 

indicates that the values of variables ~1.. . w,, may be 
safely demanded (in parallel). Because iserial com- 
binators preserve laziness, we must be certain, using 
strictness analysis, that the values of ~1. . . w,, will be 

needed at some point in the computation. The values 
of Vi... v, do not have to return before body is evalu- 
ated. 

The wail construct 

(wait (211 . . . w,) 
body) 

indicates that the values of ~1. . . v, must be available 
before the evaluation of body can even begin. If any of 
VI... w, are still being evaluated then evaluation of the 
current serial combinator is suspended. Even though 
evaluation of a serial combinator is blocked, the pro- 
cessor is free to evaluate any other serial combinator 
application whose value has been requested. 

The spawn construct 

(spawn ((211 expl) . . . (v, exp,>> 
body) 

indicates that expl. . . exp,, as well as body, should be 
evaluated. If there are a sufficient number of available 
processors, the spawn construct will cause these expres- 
sions to be evaluated in paraliel. When each expi has 
been evaluated its value is bound to the variable vi. 
Since evaluation of body proceeds without blocking on 
thevaluesofvi...v,, each vi must occur within a wait 
before being referenced in body. 

Figure 7 shows a divide and conquer factorial as it 
appears in ALFL and serial combinator form. Notice 
that serial combinators also contain a LISP-like let con- 
struct for evaluating simple expressions sequentially. 

3.3 The Graph Reducer 

The synchronization constructs that serial combinators 
contain are simply calls to routines in Buckwheat’s 
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< pfac 1 h == l=h->l, ( mid == (l+h)/2; 
result pfac 1 mid + pfac (mid+l) h; 
1 

result pfac I IO; 
1 

pfac 1 h == (demand (1 h) 
(wait (1 h) 

(if (= 1 h) 1 
(let ((mid (/ (+ 1 h) 2)) (vi (+ mid 1)) > 

(spawn ((~2 (pfac I mid)) (v3 (pfac vi h))) 
(wait (v2 v3) 

(+ v2 v3))))))) 

Figure 7: Divide and conquer factorial in ALFL and serial combinator form 

graph reducer module. These routines perform the nec- 
essary transformations on the graph. Before discussing 
how these transformations are performed, we describe 
the data structures involved. 

3.3.1 Data Structures 

A node in the graph is a contiguous block of bytes that 
contains the following fields: 

Sla2e: Either “unevaluated”, “pending” (which 
means that the node is in the process of being eval- 
uated) , or “evaluated”. 

Value: If the node has been evaluated, the value 
field contains the result. Otherwise it contains a 
pointer to code that specifies the computation to 
be performed when the value of the node is re- 
quested. 

Args: This is a vector containing the values of the 
arguments in the function call represented by the 
node. Each element contains either a value or a 
pointer to another node in the graph. 

Requests: A list of other nodes that have requested 
the value of this node. 

Evaljield: A bitfield indicating the status of each 
element in the args vector. If the ith bit of the 
bitfield is 1 then the ith argument has already been 
evaluated and contains a value. Otherwise the ith 
argument is a pointer to another node. 

l Waitmask A bitfield indicating which arguments 
must be evaluated before evaluation of the node 
can proceed. Evaluation proceeds when, for every 

1 in the waitmask, there is a corresponding 1 in 
the evalfield. 

a RefCount: The reference count of the node for stor- 
age reclamation purposes. 

l Lock: A lock for enforcing mutual exclusion. 

A iask is an instruction that specifies a step for the 
run-time system to take in order to reduce the graph. 
Program execution proceeds by repeatedly removing 
tasks from the task queue of each processor and per- 
forming the action specified by the task. There are two 
kinds of tasks: 

An evaltask contains pointers to a target node and 
a source node. It indicates that the value of the 
target node is being requested by the source node. 

A returntask contains a pointer to a target node 
and a value. It indicates that some other node has 
been evaluated and is returning its value to the 
target node. 

3.3.2 Execution 

Execution begins via the creation of a collection of 
nodes representing the initial graph. An evaltask re- 
questing the value of the root node of the graph is 
placed on the shared task queue. Execution proceeds 
with each processor removing tasks from the shared 
task queue. 

If an evaltask is encountered and the target node 71 is 
unevaluated, evaluation of n proceeds by a jump to the 
code pointed to by n’s value field. This code is the code 
generated for a serial combinator by the Buckwheat 
compiler. When the serial combinator code is finished 

45 



executing, a returntask is created to return the resulting 
value v to any requesting node. n’s state iis modified 
to “evaluated” and its value field is overwritten with 
v. Otherwise, if n has already been evalu.ated when 
the evaltask is encountered, the reducer irnmediately 
creates a returntask with n’s value. 

When a processor encounters a returntask returning 
a value to a node n, the appropriate elements of n’s 
args vector and evalfield are updated. If the evalfield 
now has a 1 in every bit position that the waitmask 
does, n is ready to be awakened. This is accomplished 
by simply jumping to the code pointed to by n’s value 
field. Otherwise, no action is taken. 

Figure 8 shows the state of a node n before it is 
evaluated. The code for the serial combinator applica- 
tion represented by n will contain the synchronization 
constructs (spawn, demand, and wait) and .will specify 
transformations to be applied to n. The list of vari- 
ables in the demand, wait, and spawn constructs will 
have been translated into a list of indices i into n’s args 
vector. 

For each index i in a demand construct, if the ith bit 
of n’s evalfield is 1 (i.e. the ith argument has already 
been evaluated) then no action is taken. Otherwise an 
evaltask is created to request the value of the node to 
which the ith argument points. As discussed above, the 
execution of n’s code continues without blocking. 

For each index i in a wait construct, the ith bit in 
n’s waitmask is set to 1. n’s value field is then modified 
so that it now points to a continzlalion-code that will 
be executed when the needed arguments return. When 
the required arguments return, execution p.roceeds via 
a jump to the continuation. Figure 9 illustrates a sus- 
pended node about to resume. 

When a spawn is executed, a new subgraph is cre- 
ated to represent the activation record of each spawned 
expression. An evaltask is placed in the shared task 
queue for the root of each new subgraph. Ultimately, 
the result of the program is the value returned by the 
root node in the graph. 

4 Queue-based Scheduling 

Processor scheduling is accomplished by maintaining a 
central queue structure which every processor accesses. 
The simplest approach would be for every processor to 
remove tasks from the single shared queue. However, 
a shared queue causes contention between processors 
attempting to access the queue. This pro’blem is ex- 
acerbated as the number of processors in the system 
grows. Unless the hardware supports efficient access 
to a central queue (as in the NYU Ultracomputer [S]), 
it is often necessary to modify the queue structure to 

prevent contention. 
The solution we have implemented for Buckwheat is 

a two-level queue structure illustrated in figure 10. A 
processor can directly access a task queue, called a pri- 
mary queue, that it shares with a small number of other 
processors. There may be many primary queues in the 
system. Each primary queue has a rather small fixed 
size. We define the set of processors accessing a single 
primary queue to be a primary cluster. 

If a processor is ready to execute a task and its pri- 
mary task queue is empty, it can access another queue, 
called the secondary queue, which is shared among all 
the processors in the system. Similarly, if a processor 
attempts to put a task onto is primary queue and its 
primary queue is full, then the task is put onto the 
secondary queue. 

There are several advantages to the two-level queue 
structure: 

1. Since a primary queue is shared by a relatively 
small number of processors, contention for the 
queue is reduced. 

2. The secondary queue provides a way to send tasks 
from a busy primary cluster to other primary clus- 
ters. The cost of the extra indirection needed to 
access the secondary queue is only incurred by 
idle processors in idle primary clusters or when 
a primary cluster becomes very busy. If the size 
of the primary queue is chosen appropriately, the 
vast majority of queue accesses will be to primary 
queues. 

5 Execution Results 

Four applications programs were executed on Buck- 
wheat to test the effectiveness of our approach. The 
four programs were pfac, a divide and conquer fac- 
torial, queens, a program to find all solutions to the 
g-queens problem, quad, an adaptive quadrature algo- 
rithm, and matmult, a matrix multiplication program. 
Almost 600 runs were performed to measure the follow- 
ing: 

1. The performance of Buckwheat using a single 
shared task queue. 

2. The effect of using a twolevel queue structure. 
The number of processors in a primary cluster as 
well as the sizes of the primary queues were varied 
in order to find the best task queue configuration. 

Figures 11 through 14 plot the execution times (in 
microseconds) for the four programs as a function of 
the number of processors used. 

46 



Graph Space 

*---------------a( 

010000 

Code Space 

Zode for f 

if (n->args[l].valee) = 6 then 
getvalueh,O); 
getvalue(n.2); 
n->waitmask = 5; 
n->value.cont = fcontl; 
possiblysesume (n) ; 

else 
return-value h, 1) ; 

Code for fcontl 
. . . 

Figure 8: A node in its initial state 

Graph Space 

*-a- 

Code Space 

Zode for f 

. . 

Code for fcontl 

return-value (n, n->args 101 . value + 
n-Bargs C21 . value) ; 

Figure 9: A suspended node about to resume 
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Processors 

Figure 10: Buckwheat’s two-level queue structure 
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Figure 14: The execution times for matmult on Buckwheat 
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5.1 Finding the Appropriate Cluster 
Size 

In each figure, the graph on the left plots the execution 
times using a single shared task queue. It also plots 
the execution times using a two-level queue structure 
for various values of P, the number of processors in a 
primary cluster. The size Q of each primary queue was 
fixed at 10 (tasks). 

In every program the two-level queue structure per- 
formed better than a single queue. For small numbers of 
processors the difference was small, but as .the number 
of processors grew the single queue caused the execu- 
tion time to increase. This effect is due to contention 
for the access to the single queue. The two level queue 
structure significantly reduced the effect of contention 
for task queues. 

With Q = 10 the two-level queue structure performed 
very well over the range of values for P. In pfac and 
matmult, the performance with P = 1 was Ipoorer than 
for other values for P. With one processor per primary 
queue, parallelism can only be exploited by having tasks 
spill over onto the secondary queue. In three of the pro- 
grams, the performance with P = 1 was still superior 
to the single queue case. 

A P value of 4 provided the best performance over all 
the programs. Surprisingly, this proved to be program 
independent (although P = 2 performed just about as 
well). Having found an appropriate number of proces- 
sors per cluster, it remained to find the best primary 
queue size for Buckwheat. 

5.2 Finding the Appropriate Primary 
Queue Size 

In each of figures 11 through 14, the graph on the right 
plots the execution times for various values of Q, the 
size of the primary queues. The number of processors 
P per cluster was fixed at four. In every case, a large 
value of Q performed poorly. When Q is large, fewer 
tasks will spill over to the secondary que:ue and the 
task distribution will be poor. The smaller Q values 
performed much better. The execution times for values 
of Q under twenty were very similar, although a Q value 
of 4 (the smallest value of Q we tested) performed the 
best. Again, the best Q value seemed to be program 
independent. 

6 Conclusions 

All the programs (with sufficient potential parallelism) 
that we tried performed extremely well. Matmult had 
the greatest reduction in execution time over the se- 
quential case. Since the experiments were performed 

on a machine with only twelve processors, and since we 
have only examined speedup rather than absolute per- 
formance, we hesitate to draw conclusions about per- 
formance on massively parallel shared memory archi- 
tectures. However, the results have reinforced our be- 
lief that functional language implementations on shared 
memory machines have the potential for providing a 
useful programming environment for parallel process- 
ing. 
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