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Abstract

This paper describes a technique for utilizing predica-
tion to support software pipelining on EPIC architectures
in the presence of dynamic memory aliasing. The essential
idea is that the compiler generates an optimistic software-
pipelined schedule that assumes there is no memory alias-
ing. The operations in the pipeline kernel are predicated,
however, so that if memory aliasing is detected by a run-time
check, the predicate registers are set to disable the iterations
that are so tightly overlapped as to violate the memory de-
pendences. We refer to these disabled kernel operations as
software bubbles.

1 Introduction

Software pipelining and other methods for parallelizing
loops rely on the compiler’s ability to find loop-carried de-
pendences. Often the presence or absence of these depen-
dences cannot be determined statically. Consider the frag-
ment in figure 1(a), where the value ofk cannot be deter-
mined at compile time. In such situations, the compiler can-
not rule out the possibility thatk=1, which would create a
loop carried dependence with a dependence distance of 1.
That is, the value written toa[i] in one iteration would be
read asa[i-k] in the next iteration. Pipelining this loop
would provide little benefit, since the store ofa[i] in one
iteration must complete before the load ofa[i-k] in the
next iteration.

For the purposes of this paper, we will refer to depen-
dences that cannot be analyzed at compile time asdynamic
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dependencesand those that can be analyzed statically as
static dependences.

The program fragment in figure 1(b) has the same ef-
fect in limiting the compiler’s ability to perform software
pipelining as the one in figure 1(a). In this example, the
arraysa andb may overlap and the distance (in words) be-
tweena[0] andb[0] corresponds to the valuek in fig-
ure 1(a).

One solution is to generate several different versions of
a loop, with different degrees of software pipelining. Dur-
ing execution, a test is made to determine the dependence
distance (e.g.k in figure 1(a)) and a branch to the appro-
priately pipelined loop is performed. The drawbacks of this
approach include possible code explosion due to the multi-
ple versions of each loop as well as the cost of the branch
itself.

This paper presents a technique, calledsoftware bub-
bling, for supporting software pipelining in the presence of
dynamic dependences without generating multiple versions
of the loop. This approach is aimed at EPIC architectures,
such as Intel’s IA-64 and HP Laboratories’ HPL-PD, that
support both instruction-level parallelism and predication.

The notation we’ll use in this paper for predication, i.e.
the ability to disable the execution of an operation based on
a one-bit predicate registerp, is

p: operation

whereoperationis performed only if the value of the pred-
icate registerp is 1. In the HPL-PD, thirty-two predicate
registers can collectively be read or modified as a single 32-
bit register, and in the IA-64 the same is true with 64 pred-
icate registers. We assume a similar capability here, and
refer to the aggregate register asPR. We’ll use the syntax
p[i] to refer to theith rotating predicate register (if rotat-
ing predicate registers are available) andpi to refer to the



for(i=k;i<n;i++)
a[i] = a[i-k];

(a)

void copy(int a[],int b[])
{ for(int i=0,i<n;i++)

a[i] = b[i];
}

(b)

Figure 1: Program fragments exhibiting dynamic dependences

ith non-rotating predicate register.
The idea behind software bubbling is that the compiler,

when encountering a loop that has dynamic dependences
but can otherwise be pipelined, generates a single version
of the pipeline that is constrained only by the static depen-
dences and resource constraints known to the compiler. The
operations within the pipeline kernel, however, are predi-
cated in such a way that if dynamic dependences arise, the
predicate registers are set in a pattern that causes some of the
kernel operations to be disabled each time the kernel is exe-
cuted. With this disabling of operations, the effective over-
lap of the iterations in the pipeline is reduced sufficiently
to satisfy the dynamic dependences. We refer to the dis-
abled operations assoftware bubbles, drawing an analogy
with bubbles in processor pipelines. In figure 2, we see an
example of a software pipeline with and without bubbling.
The crossed out boxes in figure 2(b) correspond to iterations
that have been disabled using predication.

2 Predication in Software Pipelining

For clarity of the presentation, we will make the following
simplifying assumptions (except where stated otherwise):

� In our examples, all operations have a latency of 1 (i.e.
the result is available in the next cycle). Although this
assumption is unrealistic, it has no impact on the tech-
nical results of this paper. It simply makes our exam-
ples more compact. This assumption wasnot made in
our experiments.

� Rotating registers, including rotating predicate regis-
ters, are available. As with normal software pipeling,
rotating registers are a convenience that reduce code
size but do not fundamentally change the pipelining or
bubbling methods.

� The 32-bit aggregate predication register,PR, is used
only to set the predication pattern for bubbling. The
predicate registers used for other purposes (condition-
als, etc.) are assumed not to be part ofPR.

� There is only one dynamic dependence in a loop. This
assumption is relaxed in section 10.

We will also use a simple instruction set rather than the
HPL-PD or IA-64 ISA. Operations appearing on the same
line are assumed to be within the same VLIW instruction.

We continue to use the code fragment in figure 1(a) as
the driving example in this paper. We’ll assume that the
assembly code generated for the body of the loop is

; q points to a[i-k]
L1: ; s points to a[i]

r = load q ; load a[i-k] into r
store s,r ; store r into a[i]
q = add q,4 ; increment q
s = add s,4 ; increment s
brd L1

where the branch operation,brd , decrements and tests a
dedicated loop counter register,LC. If rotating registers are
supported, thebrd operation also decrements the rotating
register base.

A possible pipelining of this loop is illustrated in fig-
ure 2(a), where add1 and add2 refer to the first and second
add operations in the body of the loop, respectively.

In this pipelining, the kernel of the pipeline consists of a
single VLIW instruction containing the operations in each
horizontal gray box of figure 2(a), namely1.

add 2 add 1 store load

The overlaying of iterations in figure 2(a) assumes that the
memory location written by thestore operation in one
iteration is not read by theload operation in the next iter-
ation. If there were such a dependence between thestore
and theload , then the two operations could not occur in
the same VLIW instruction and the pipelining in figure 2(a)
would be incorrect2.

In our driving example, figure 1(a), the value of the vari-
ablek directly determines the dependence distance of the
loop-carried dependence. Rather than assume the worst, i.e.
that k will be 1, a compiler performing software bubbling
generates the most optimistic pipeline, but one in which
each kernel operation is predicated. Figure 2(b) illustrates
the execution of software-bubbled code in the case wherek

1We have intentionally oversimplified this discussion by leaving out the
operands of the operations in the kernel. We address the issues of operands
in subsequent sections.

2On the IA-64, unlike HPL-PD, stores and loads to the same address
can occur in the same cycle. This increases the possible overlapping of a
pipeline by one cycle, but doesn’t change the reasoning in this paper
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Figure 2: Software pipeline (a) without bubbling and (b) with bubbling

has indeed been determined at run time to be 1. The opera-
tions in the crossed-out boxes are disabled by clearing their
predicate registers, thus eachload operation doesn’t occur
until the cycle after the previousstore , as desired. If the
store operation had a latency greater than one, additional
iterations would have had to be disabled.

It is helpful to view the crossing out of the boxes in fig-
ure 2(b) as simply pushing iterations down and to the right
in the pipeline. It is not that the second iteration is not be-
ing executed, but rather is being executed in the slot where
the third iteration was initially scheduled. Where confusion
might arise, we’ll use the termiteration slotto refer to an it-
eration in the original schedule (i.e. each box in figure 2(a))
and the termenabled iterationto refer to an iteration in an
iteration slot that is actually executed. In figure 2(b), every
other iteration slot is disabled, so the second enabled itera-
tion is executed in the third iteration slot, the third enabled
iteration is executed in the fifth iteration slot, and so on.

3 Simple Bubbling vs. Generalized
Bubbling

There are actually two bubbling techniques described in this
paper:

1. Simple Bubbling, used when the dependence distance,
k, is constant over every iteration of the loop (but
whose value is unknown at compile time), and

2. Generalized Bubbling, used when the dependence
distancek changes within the loop.

We describe simple bubbling over the next several sections.
Section 8 commences the description of generalized bub-
bling. Much of what is described for simple bubbling also
applies to generalized bubbling.

4 The Kernel in Simple Bubbling

Upon examination of figure 2(b), where every other itera-
tion slot has been disabled, we see that only two operations
in the kernel are being executed each time. These two oper-
ations are

add 2 store

followed by
add 1 load

and repeating in this manner. This pattern can be accom-
plished by predicating the kernel as follows:

p1:add 2 p2:add 1 p1:store p2:load

The first time the kernel is executed, we setp1 = 1 and
p2 = 0. The second time, we setp1 = 0 andp2 = 1. This
pattern is repeated over and over. A formal description of
how the predication pattern is created is given in subsequent
sections.

5 The Predication Pattern in Simple
Bubbling

As is common, we refer to the number of cycles from the
start of one iteration slot to the start of the next as theitera-
tion interval, II . We’ll use the termdynamic interval, DI, to
refer to the number of cycles between the initiation of suc-
cessive enabled iterations in the bubbled code. For example,
in figure 2(b),II=1 andDI=2.



For the moment, we only consider bubbling loops that
have a single dynamic dependence. Given a dynamic de-
pendence from operationo1 to operationo2 with a depen-
dence distance ofk, the relationship betweenDI andII can
be expressed by

DI = (L=k)� II (1)

where

L = d(latency(o1)� offset(o1; o2))=IIe (2)

andoffset(o1; o2) is the number of cycles from the initiation
of o1 to the initiation ofo2 within the same iteration slot.

To understand the formulation ofL, notice that the quan-
tity latency(o1)� offset(o1; o2) expresses the number of cy-
cles that must elapse between the start of the iteration con-
taining o1 and the start of the iteration containing the op-
erationo2. Since consecutive iteration slots are offset by
II , dividing the above quantity byII and taking the ceiling
of the result gives you the whole number of iterations slots
that must elapse between the iterations containingo1 and
o2. That is, the operationso1 ando2 must be executedL
iterations slots apart. Notice that the computation ofL does
not depend on any run-time quantity, thus is computed by
the compiler.

Given a dependence distance ofk, we enablek out of
everyL iteration slots. This way, we are sure that the op-
erationso1 ando2, executedk enabled iterations apart, are
separated byL iteration slots, satisfying the dynamic depen-
dence.

Consider again our driving example in figure 1(a). In this
example, the dependence distancek is exactly the value of
the variablek in the program. Suppose (for this example)
the latency of astore is 2. Given the pipeline illustrated
in figure 2(a), the value ofL is given by

L = d(latency(store )� offset(store ; load ))=IIe
= 3

since II = 1, latency(store ) = 2 and
offset(store ; load ) = �1.

Suppose that during execution, upon entry to the loop the
value of the variablek is 2. SinceL = 3 andk = 2, for
every three iteration slots in the original pipeline, only two
slots should be enabled. This leads to the bubbling situa-
tion illustrated in figure 3(a). The desired predication pat-
tern is achieved by usingL predication registers, sayp[1]
throughp[L] , where the kernel operations from theith iter-
ation slot are predicated onp[((i�1) modL)+1]. Initially,
the firstk predicate registers are set to 1 and the remain-
ing predicate registers to 0. Upon each execution of the
pipeline kernel, the predication pattern rotates, as we saw in
figure 2(b).

The predication pattern in simple bubbling is inexpensive
to compute at run time. A pattern ofk consecutive ones is
given by the integer2k � 1, constructed by:

PR = shl 1,r k

PR = sub PR,1

wherer k containsk andPR is the aggregate predicate reg-
ister3

5.1 The predication rotation

How the rotation of the L-bit pattern in the predicate regis-
ters is accomplished depends on whether the machine sup-
ports rotating predicate registers or not. If so, then the only
extra operation that must be inserted into the kernel is

p[0] = move p[ L]

The next time the kernel is executed (i.e. after the rotating
register base is decremented),p[1] will contain the value
of p[ L] from the previous kernel, which gives the desired
rotating behavior.

If the machine does not support rotating predicate regis-
ters, an explicit shift of the aggregate predicate register is
necessary.

p0 = move pL
PR = shl PR,1

The shift operation should be performed in the last cycle
of the kernel so that it doesn’t affect the other predicated
operations in the kernel.

5.2 Determiningk

It remains, at run time, to compute the dependence distance,
k. The computation ofk is generally straightforward, since
it essentially arises due to simple array references, as in the
driving example, or from the difference between two pointer
values, as we saw in figure 1(b). Existing dependence analy-
sis techniques (see Wolfe [11] or Muchnick [5] for a survey
of this field) are generally sufficient to determine howk is
to be computed. For example, if the compiler computes a
dependence distance vector of the form< 0; 0; :::; 0; j >,
wherej is a program variable whose value cannot be deter-
mined at compile time, then the dependence distancek used
for bubbling is the value of the variablej .

6 The Loop Counter

If a dedicated loop counter register is used, as is often the
case, this loop counter is generally decremented after each
execution of the pipeline kernel, as in

LC = ...
L1:

... kernel...
brd L1

3If the machine doesn’t support these operations onPR, a general pur-
pose register will have to be used and then copied toPR.
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(b) Problematic register dependence

Figure 3: Bubbling examples

In the presence of software bubbles, a new iteration isn’t
necessarily initiated every time through the loop, thus the
number of times the loop is executed must be increased.

A brute force way to accomplish this is to observe that a
new iteration slot is enabled only whenp[1] is 1. Thus, the
LC should only be decrementedwhen p[1] is 1, which
can be implemented by managingLC explicitly and using a
branch operation that doesn’t decrementLC:

L1:
...<kernel> ...

p[1]: LC = sub LC,1
p = cmpp> LC,0

p: br L1

Another possibility is to insert an operation to incrementLC
wheneverp[1] is 0

pn[1]: add LC,1

wherepn[1] is the complement ofp[1] . If the archi-
tecture doesn’t support predication upon the complement of
a predicate register, then the compiler will have to main-
tain a set of predicate registerspn[0] throughpn[ L] that
contain the complements ofp[0] throughp[ L] . Using a
two-outputcmpp operation to assign top[0] andpn[0]
simultaneously accomplishes this.

A more attractive method, which can be used only for
simple bubbling, is to adjust the value ofLC before entering
the loop. Given a predication pattern of lengthL of which
the firstk bits are 1 (i.e. onlyk iterations are being executed
everyL iteration slots) the loop counter must be adjusted
according to the formula:

LC 0 = (b(LC=k)c � L) + (LC modk) (3)

This choice would be worthwhile only if the loop executed
a sufficient number of times to amortize the cost of the divi-
sion and multiplication.

7 Register-Carried Variables

In a software pipeline, there are often register-resident vari-
ables that are propagated across iterations in the pipeline
(i.e. where one iteration writes to a register and another
iteration reads from the same register). This poses a prob-
lem for bubbling. Suppose, for example, that an enabled
iteration reads a register in order to get the value computed
by the previous iteration slot. If the previous iteration slot
was disabled, the value found in the register would not be
correct. This situation is illustrated in figure 3(b). These
register-carried variables can be divided into two categories:
induction variables and non-induction variables.

7.1 Induction Variables

A common situation, which we’ve seen in every example
above, is when a register contains an induction variable (a
variable whose value changes by some constant amount in
each iteration). Figure 4 shows the pipeline kernel, with
operands this time, generated from the code in figure 1(a).
The induction variables are those containing the addresses
of a[i] anda[i-k] , namelys andq, respectively. No-
tice that the operations[0]=add s[1],4 uses the value
of s[1] which was assigned ass[0 ] in the previous cycle
by the previous iteration slot. Suppose, however, that every
other iteration slot is disabled, as in figure 2(b). In this case,
the s[1] used by an enabled iteration slot would refer to
thes[0] assigned to in a disabled iteration slot. Since, due
to bubbling, this assignment didn’t occur, the use ofs[1]
is incorrect.

When performing simple bubbling, the solution for in-
duction variables, such asq ands above, arises from noting



s[0]=add s[1],4 q[0]=add q[1],4 store s[2],r[1] r[0]=load q[2]

Figure 4: Pipeline Kernel wth Operands

that if an iteration slot is enabled, then the iteration slotL
iteration slots before must also be enabled (since the firstk
out of everyL iteration slots are always enabled). Instead
of computing the new value of an induction variable based
on its value in the previous iteration slot, the value of an in-
duction variable is computed based on its valueL iterations
slots before4. Thus, an assignment to an induction variable
of the form

r[i] = add r[i+1],d

is replaced by
r[i] = add r[i+ L], r kd

wherei+ L is a compile-time constant and, before entering
the loop, registerr kd is assigned the value ofk�d.

If the compiler had already performed induction variable
expansion, so that the assignment is:

r[i] = add r[i+c],e

then this operation would be replaced by
r[i] = add r[i+ L], r kc

where registerr kc is assigned the value ofk�(e/c) ,
where(e/c) is a compile-time constant.

7.1.1 Other register-carried variables

Not all register-carried values correspond to induction vari-
ables, of course. Consider the loop

for(i=k;i<n;i++) {
a[i] = a[i-k] + b
b = b + i;

}

b is not an induction variable and thus its value must be ex-
plicitly propagated across disabled iterations. Suppose that
the operation for computingb in the pipelined loop is

r[3] = add r[4], r i

where the new value ofb is stored inr[3] and computed
by adding the value ofb from the previous iteration (previ-
ously in r[3], now inr[4] ) to the register containingi. In
the bubbled version, the above operation would be replaced
by the two operations
p: r[3] = add r[4],r i pn: r[3] = move r[4]

wherep would be the predicate register used for bubbling
(as usual) andpn would be the complement ofp. This sim-
ply ensures thatr[3] always contains the current value of
b, whether or not that iteration slot is enabled.

4This is similar to induction variable expansion used in modulo
scheduling.

8 The Generalized the Bubbling
Technique

So far, we have assumed that the dependence distance,k,
is unknown statically but is constant throughout the loop.
We relax that constraint in this section. For illustrative pur-
poses, we will continue to assume that there is a single dy-
namic dependence, but this is by no means necessary.

As with simple bubbling, the predication pattern is of
lengthL (defined by equation 2 earlier). An iteration with
dependence distancek can be enabled only if thekth pre-
vious iteration began at leastL iteration slots before. That
is, a new iteration slot can be enabled only if it would be no
more than thekth enabled iteration within the most recent
L iteration slots.

Perhaps the easiest way to ensure this condition is satis-
fied is to use a register rc to store the number of 1-bits (i.e.
enabled iterations) in the predication pattern. As the pred-
ication pattern changes due to changingk, the value of rc
is modified. At the beginning of each iteration slot, rc is
compared against rk, the register containingk, to see if the
iteration slot should enabled. The extra code is:

p[L+1]: r c = sub r c,1
p[1] = cmpp.< r c, r k

p[1]: r c = add r c,1

The first operation indicates that if a 1 has been shifted out
of the firstL predicate bits, then rc should be decremented.
The next two operations say that if there are now less than
k 1-bits in the predication pattern thenp[1] is set, rc is in-
cremented, and the rest of the operations in the iteration slot
(predicated on p[1]) are enabled. Notice that the first oper-
ation can be executed concurrently with the computation of
rk and the third operation can be executed concurrently with
other operations in the iteration slot. The value of rc after
the third operation is needed to determine if the next itera-
tion slot will be enabled. Thus, unless rc for an iteration slot
can be precomputed several cycles ahead (which in many
cases should be possible), iteration slots must be scheduled
at least three cycles apart. Thus, a bubbled kernel can be no
fewer than three cycles in the generalized case.

Here is a very simple example (a variant of which a num-
ber of benchmarks we examined contained):

for(i=0;i<n;i++) {
a[i] += ... a[i] ... a[j] ...;

}

where we assume the RHS of the assignment is somewhat
expensive to compute. Notice that the dependence distance
starts atj-i and decreases in each iteration. Assuming the
sequential code for the loop body is:



r = load t
q = load s
...
...
...
store r,s
add s,4

a safe pipelining of the loop is shown in figure 5(a), pro-
viding very little ILP. A bubbled version of the loop code
would look like

r k = sub r k,1 p[L]: r c = sub r c,1
p[1] = cmpp.< r c, r k

p[1]: r c = r c,1 p[1]: r = load t
p[1]: q = load s
...
...
...
p[1]: store r,s
p[1]: add s,4

The pipelined execution of this bubbled loop is shown in
figure 5(b), where b1...b4 refer to the four additional opera-
tions required for bubbling. A new iteration is able to start
every three cycles (given a sufficient number of functional
units), regardless of the size of the body of the loop.

The three cycle lower limit for the kernel holds only when
there is no early computation of rc and rk for an iteration
slot. In fact, the simple bubbling mechanism (described in
previous sections) for an invariantk can be looked at as a
precomputation of rc and rk for all iteration slots, outside
the loop.

An additional cost incurred by generalized bubbling is the
cost of passing register-carried values across disabled iter-
ation slots, as described in section 7. Taking advantage of
induction variables (as described in section 7.1) is not gen-
erally possible, since there is no guarantee that if an iteration
slot is enabled, then the iteration slotL iteration slots before
was also enabled (due to the changing predication pattern).
Therefore, the technique described in section 7.1.1 of insert-
ing operations to propagate register values across disabled
iteration slots must be used. This adds onemove operation
in the bubbled kernel for each such variable.

9 Bubbling vs. Using Disambiguation
Hardware

Several EPIC architectures, including HPL-PD and the IA-
64, contain operations that support run-time memory dis-
ambiguation. In HPL-PD, for example, the speculative load
operation,

lds loc

performs a load from the locationloc. The load-verify op-
eration,

ldv loc

checks to see if a store toloc has occurred since the last
lds from loc. If so, a new load is issued and the processor
stalls. Otherwise, execution proceeds without an additional
load. In the IA-64, the ALAT facility provides the same
functionality.

A question that naturally arises is: Why is software bub-
bling better than usinglds and ldv for pipelining in the
presence of aliasing? Consider again the code in figure 1(a),
along with the pipelined code for it in figure 2(a). If it is pos-
sible for the store operation in one iteration to write to the
same location as that loaded in the next iteration (i.e. where
k=1), then, usinglds /ldv , we still have to be sure that the
store operation in one iteration occurs before theldv oper-
ation of the next iteration. At best, the code would have to
be as shown in figure 6(a). Notice that the iteration interval
is 2, compared to 1 in the bubbled case. This is because
the ldv in each iteration must occur after the store in the
previous iteration if aliasing is possible.

It may be that a store appears much further down the body
of the loop than the potentially conflicting load, as seen in
figure 6(b). In such a case, pipelining usinglds /ldv pro-
vides very little instruction level parallelism.

10 Handling Multiple Dynamic De-
pendences

If there are several dynamic dependences in the loop, gen-
eralized bubbling can still be performed. What is required
is thatL is computed statically for each dependence and a
separate rk and rc is maintained for each such dependence at
run time. The rc for a given dependence counts how many
1-bits in the predication pattern there are in the firstL bits,
for that particular dependence’sL. If the rc is less than the
rk for each dependence, the iteration can be enabled.

For simple bubbling, a fixed predication pattern must be
created upon entry to the loop such that for each depen-
dencei and eachki andLi for that dependence, there are
no more thanki 1-bits out ofLi bits of the predication pat-
tern. Although this is not cheap to compute, it occurs only
when the loop is entered. Essentially, it involves finding at
compile timeLm, the largestL value, and finding at run-
time the smallest ratio ofki toLi over all the dependences.
Then, upon entry to the loop a predication pattern of length
Lm consisting of a repeated pattern ofki 1-bits followed by
Li � ki 0-bits is created. We have found that, for the bench-
marks we considered, this pattern can be created in 20 to 30
cycles before entering the loop.
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Figure 5: Software pipeline (a) without bubbling and (b) with generalized bubbling
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11 Experimental Results

A number of experiments were performed using the Tri-
maran Compiler Research Infrastructure [9], whose com-
piler performs modulo scheduling. We first examined the
literature on dynamic disambiguation, particularly [4], [8],
and [2]. These papers identified some benchmarks where
dynamic disambiguation improved performance. We chose
several of these benchmarks to determine the effectiveness
of software bubbling on a wide range of machine configu-
rations whose number and types of functional units varied.

11.1 Simple Bubbling

For simple bubbling, where the dependence is constant
within a loop, there were only a few examples in common
benchmarks. These cases arise, for example, in loops for
performing operations among arrays (such as copying, ad-
dition, etc.) where the source and target arrays are not ac-
tually aliased but the C compiler cannot determine that for
certain. We ran three such codes, a matrix copy, matrix ad-
dition, and “Loop s152” taken from the Callahan-Dongara-
Levine benchmark suite [3] for vectorizing compilers. This
last piece of code was identified in [4] as benefiting from
dynamic memory disambiguation for C compilers. The re-
sults of the benchmarks for five different machine config-
urations are presented in table 1. Each machine configu-
ration in the leftmost column is given as a triple identify-
ing the number of integer, floating point, and memory func-
tional units, respectively. The total cycles are given for the
benchmarks when safe pipelining and when software bub-
bling were used. The speedup factor (safecycles divided
by bubbledcycles) is given as well.mcopy is an interest-
ing case because, since the loop is very short, the little bit of
bubbling overhead incurred actually degraded performance
on the smallest machine.

The speedups due to bubbling, over the safe pipelining
performed using modulo scheduling, are significant. How-
ever, it is not clear that such examples are sufficiently com-
mon to provide substantial benefit on a range of computing
problems. Furthermore, it seems apparent that since the ar-
rays are rarely aliased, a test for aliasing followed by a con-
ditional jump to a pessimistically pipelined loop is probably
a better choice.

11.2 Generalized Bubbling

Generalized bubbling, wherek varies within the loop,
shows possibly greater potential than simple bubbling for
improving performance on a range of programs. Such loops
are quite common, including those with array indirection,
such as

a[b[i]] = ...a[i] ...

and nested loops, such as

for(i=0;i<n;i++)
for(j=0;j<m;j++)

a[i] += ... a[j] ...

as well as in a variety of other situations.
For experimentation, we chose two benchmarks that con-

tained loops with varyingk, namely the SPEC Alvinn
benchmark and the Livermore Loops Kernel2 code. The
loop of interest in the Alvinn Benchmark is

for (; sender <= end_sender; )
*receiver += (*sender++) * (*weight++);

which is manipulating floating point data and appears in the
input hidden() procedure. This benchmark, and the
loop in particular, was identified in [2] as being amenable
to dynamic disambiguation. Notice the varying dependence
distance between *receiver and *sender and between *re-
ceiver and *weight. This loop is actually more complex
than it appears, since many machines require a conversion
of the loaded values to double precision for the multiplica-
tion and then a conversion back to single precision after the
multiplication.

The loop of interest in the Livermore Loops Kernel2 code
is
for ( j=ipnt+1 ; j<ipntp ; j=j+2 ) {

i++;
x[i] = x[j] - v[j]*x[j-1] - v[j+1]*x[j+1];

}

Notice that the dependence distance varies becausei is in-
creasing by one andj by two.

Figure 7shows the number of cycles per iteration of
the above loops in the two benchmarks when performing
safe pipelining, generalized software bubbling, and unsafe
pipelining (which possibly violates dependences), for the
same variety of machine configurations as before. In addi-
tion, the machine configurationinf corresponds to a ma-
chine with a unbounded number of functional units.

Although bubbling was more expensive than unsafe
pipelining, it is a clear improvement over the safe pipelining
generated by Trimaran’s modulo scheduler. Because gener-
alized bubbling adds a number of integer operations, both
for modifying of the predication pattern and for propagating
register-carried values across disabled iteration slots, ma-
chines with few integer functional units will be less likely
to exploit bubbling usefully. Figure 8 compares the total ex-
ecution time for the two benchmarks using safe pipelining
and bubbling, for the various machine configurations. The
overall improvement is substantial, mainly for machines
with a sufficient number of integer functional units.

Admittedly, the experimental work presented here does
not necessarily provide a compelling reason for adopting
software bubbling. In particular, it remains to be seen if the
technique has truly wide application. A source of difficulty
in finding standard benchmarks that exhibit dynamic alias-
ing is the fact that the benchmarks were written in order to
test the compilers ability to find static aliasing. Thus, few



S152 madd mcopy
machine safe bubbling speedup safe bubbling speedup safe bubbling speedup

2,2,2 711802 263102 2.71 87699 63539 1.38 55398 57158 0.97
3,2,2 609602 160902 3.79 81219 57059 1.42 55298 50578 1.09
4,2,2 609498 160798 3.79 74497 50337 1.48 55057 50337 1.09
4,3,3 609498 160798 3.79 74497 50337 1.48 55057 50337 1.09
6,4,4 608389 109589 5.55 74257 43617 1.70 48497 37297 1.30

Table 1: Speedups due to Simple Bubbling
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Figure 7: Number of Cycles per Iteration
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such benchmarks include true dynamic aliasing. Clearly,
further experimental work is needed.

12 Related Work

This is the first technique that we know of that uses pred-
ication to compensate for memory aliasing in software
pipelines. There is, of course, a large body of work on
the area of software pipelining, see [1] for an extensive sur-
vey of the field. A small portion this work is concerned
with software pipelining in the presence of memory alias-
ing. Davidson et. al [4] describe a method for using dy-
namic memory disambiguation and loop unrolling to im-
prove software pipelining performance. The result of the
disambiguation test is a possible jump to sequential code.
Similar work is described by Bernstein et al. [2], where a
run-time test and a jump to a less aggressively parallelized
version of the code is performed. Su et al. [8] performed an
empirical study of memory aliasing in software pipelined
code, finding that it occurs very rarely, even in those cases
where the compiler determines that aliasing is possible. In
the same paper, Su et al. describe a scheme where run-time
checks with jumps to compensation code are inserted within
the pipelined code. An early use of run-time disambiguation
for VLIW machines was described by Nicolau [6].

There is also work on using predication in software
pipelining, although not to handle memory aliasing. Warter
et. al. [10] showed that performing if-conversion on condi-
tional statements in loop bodies greatly facilitates pipelin-
ing. Predication within software pipelined code, quite sim-
ilar in flavor to the work we present here but for a different
purpose, is described by Rau et al. in [7] and used to obviate
the need for separate pipeline prologue and epilogue code.
In thiskernel-onlyscheme, predicated kernel operations are
gradually enabled during the prologue and then gradually
disabled during the epilogue.
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