
Least Squares Optimization

The following is a brief review of least squares optimization and constrained optimization
techniques. I assume the reader is familiar with basic linear algebra, including the Singular
Value decomposition (as reviewed in my handout Geometric Review of Linear Algebra).

Least squares (LS) problems are those in which the objective function may be expressed as a
sum of squares. Such problems have a natural relationship to distances in Euclidean geometry,
and the solutions may be computed analytically using the tools of linear algebra.

1 Regression

Least Squares regression is the most basic form of LS optimization problem. Suppose you
have a set of measurements, yn gathered for different parameter values, xn. The LS regression
problem is to find:

min
p

N∑

n=1

(yn − pxn)2

We rewrite the expression in terms of column N -vectors as:

min
p

||�y − p�x||2

Now we describe three ways of obtaining the solution. The traditional (non-linear-algebra)
approach is to use calculus. If we set the derivative of the expression with respect to p equal
to zero and solve for p, we get:

popt =
�yT�x

�xT�x
.

Technically, one should verify that this is a minimum (and not a maximum or saddle point) of
the expression. But since the expression is a sum of squares, we know the solution must be a
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minimum.

A second method of obtaining the solution
comes from considering the geometry of the
problem in the N -dimensional space of the
data vector. We seek a scale factor, p, such
that the scaled vector p�x is as close as possi-
ble (in a Euclidean-distance sense) to �y. Ge-
ometrically, we know that the scaled vector
should be the projection of �y onto the line in
the direction of �x:

p�x = (�y · x̂)x̂ =
(�y · �x)
||�x||2 �x

Thus, the solution for p is the same as above.
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A third method of obtaining the solu-
tion comes from the so-called orthogonality
principle. The concept is that the error vec-
tor for the optimal p should be perpendicular
to �x:

�x · (p�x − �y) = 0.

Solving for p gives the same result as above.
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Generalization: Fitting with a basis set

The basic regression problem generalizes to fitting the data with a sum of basis functions, fmn:

min
{pm}

N∑

n=1

(yn −
∑

m

pmfmn)2

or in matrix form:
min

�p
||�y − F�p||2

where F is a matrix whose columns contain the basis functions. For example, if we wanted
to include an additive constant in the fitting done in the previous section, F would contain a
column with the xn’s, and another column of all ones.

As before there are three ways to obtain the solution: using (vector) calculus, using the geom-
etry of projection, or using the orthogonality principle. The geometric solution can be greatly
simplified by first computing the SVD of matrix F [verify]. The orthogonality method is the

2



simplest to obtain, so we show it here. The generalization of the orthogonality principle to a
multi-dimensional basis is quite simple: The error vector should be perpendicular to all of the
basis vectors. This may be expressed directly in terms of the matrix F :

F T ∗ (�y − F�p) = 0

Solving for �p gives:
�popt = (F T F )−1F T �y

The square matrix (F T F ) will be invertible if (and only if) F is full-rank, which is equivalent to
saying that the basis vectors are linearly independent. If they are not, one can use the pseudo-
inverse of the matrix, which gives a solution that is optimal but not unique.

Generalization: Weighting

Sometimes, the data come with additional information about which points are more reliable.
For example, different data points may correspond to averages of different numbers of experi-
mental trials. The regression formulation is easily augmented to include weighting of the data
points. Form an N ×N diagonal matrix W with the appropriate error weights in the diagonal
entries. Then the problem becomes:

min
�p

||W (�y − F�p)||2

and, using the same methods as described above, the solution is

�popt = (F T W T WF )−1F T W T W �y
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Generalization: Robustness

The most serious problem with LS regression
is non-robustness to outliers. In particular,
if you have one extremely bad data point, it
will have a strong influence on the solution.
A simple remedy is to iteratively discard the
worst-fitting data point, and re-compute the
LS fit to the remaining data.

outlier

Alternatively one can consider the use of a
so-called “robust error metric” d(·) in place
of the squared error:

min�p

∑

n

d(yn − Fn�p).

For example, a common choice is the
“Lorentzian” function:

d(en) = log(1 + (en/σ)2),

plotted at the right along with the squared
error function. Note that this function gives
less penalty to large errors.

x2

log(1+x2)

Use of such a function will, in general, mean that we can no longer get an analytic solution
to the problem. In most cases, this means that we’ll have to use a numerical algorithm (e.g.,
gradient descent) to search the parameter space for a minimum. We may not find a minimum,
or we may get stuck in a local minimum.

2 Total Least Squares (Orthogonal) Regression

In classical least-squares regression, errors are defined as the squared distance from the data
points to the fitted function, as measured along a particular axis direction. But if there is not
a clear assignment of “dependent” and “independent” variables, then it makes more sense to
measure errors as the squared perpendicular distance to the fitted function. The drawback of
this formulation is that the fitted surfaces must be subspaces (lines, planes, hyperplanes).

Suppose one wants to fit the N -dimensional data with a subspace (line/plane/hyperplane) of
dimensionality N − 1. The space is conveniently defined as containing all vectors perpendic-
ular to a unit vector û, and the optimization problem may thus be expressed as:

min
�u

||M�u||2, s.t. ||�u||2 = 1,
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where M is a matrix containing the data vectors in its rows.

Performing a Singular Value Decomposition (SVD) on the matrix M allows us to find the
solution more easily. In particular, let M = USV T , with U and V orthogonal, and S diagonal
with positive decreasing elements. Then

||M�u||2 = �uT MT M�u

= �uT V ST UT USV T�u

= �uT V ST SV T�u

Since V is an orthogonal matrix, we can modify the minimization problem by substituting the
vector �v = V T�u, which has the same length as �u:

min
�v

�vT ST S�v, s.t. ||�v|| = 1.

The matrix ST S is square and diagonal, with diagonal entries s2
n. Because of this, the expres-

sion being minimized is a weighted sum of the components of �v which must be greater than
the square of the smallest (last) singular value, sN :

�vT ST S�v =
∑

n

s2
nv2

n

≥
∑

n

s2
Nv2

n

= s2
N

∑

n

v2
n

= s2
N ||�v||2

= s2
N .

where we have used the constraint that �v is a unit vector in the last step. Furthermore, the
expression becomes an equality when �vopt = êN = [0 0 · · · 0 1]T , the standard basis vector
associated with the N th axis [verify].

We can transform this solution back to the original coordinate system to get a solution for �u:

�uopt = V �vopt

= V êN

= �vN ,

which is the N th column of the matrix V . In summary, the minimum value of the expression
occurs when we set �v equal to the column of V associated with the minimal singular value.

The formulation can easily be augmented to include a shift of origin. That is, suppose we wish
to fit the data with a line/plane/hyperplane that does not necessarily pass through the origin:

min
�u,u0

||M�u − u0�1||2, ||�u|| = 1.

where �1 is a column vector of ones. For a given �u, the optimal solution for u0 is easily found
to be u0 = m̄T û, where m̄ is a vector whose components are the average of each column of M
[verify].

5



Suppose we wanted to fit the data with a line/plane/hyperplane of dimension N − 2? We
could first find the direction along which the data vary least, project the data into the re-
maining (N − 1)-dimensional space, and then repeat the process. Because V is an orthogonal
matrix, the secondary solution will be the second column of V (i.e., the column associated
with the second-largest singular value). In general, the columns of V provide a basis for the
data space, in which the axes are ordered according to variability. We can solve for a vector
subspace of any desired dimensionality in which the data are closest to lying.

The total least squares problem may also be formulated as a pure (unconstrained) optimization
problem using a form known as the Rayleigh Quotient:

min
�u

�uT MT M�u

�uT�u
.

The length of the vector doesn’t change the value of the fraction, so one typically solves for
a unit vector. As above, this fraction takes on values in the range [s2

N , s2
1], and is equal to the

minimum value when �u = �vN , the first column of the matrix V .

Relationship to Principal Component Analysis

Often, one has a data set in some large-dimensional space, but the actual data are close to
lying within a much smaller-dimensional subspace. In such cases, one would like to project
the data into the small-dimensional space in order to summarize or analyze them. Specifically,
the least squares formulation of the problem is: find a subspace that captures most of the
summed squared vector lengths of the data. This problem is just a variant of the TLS problem
discussed above. The axes (basis) for this low-dimensional space are known as the Principal
Components of the data, and correspond to the columns of V (the second orthogonal matrix
in the SVD) associated with the largest singular values. In a typical problem setting, one
looks at the decreasing sequence of singular values and decides how many dimensions are
necessary to adequately represent the data. One then transforms the data into this subspace
(by projecting onto these axes).

Relationship to Eigenvector Analysis

The Total Least Squares and Principal Components problems are often stated in terms of eigen-
vectors. The eigenvectors of a square matrix are a set of vectors that the matrix re-scales:

S�v = λ�v.

The scalar λ is known as the eigenvalue associated with �v.

The problems we’ve been considering can be restated in terms of eigenvectors by noting a
simple relationship between the SVD and eigenvector decompositions. The total least squares
problems all involve minimizing expressions

||M�v||2 = �vT MT M�v

Substituting the SVD (M = USV T ) gives:

�vT V ST UT USV T�v = �v(V ST SV T�v)
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Consider the parenthesized expression. When �v = �vn, the nth column of V , this becomes

MT M �vn = (V ST SV T ) �vn = V s2
n�en = s2

n�vn,

where �en is the nth standard basis vector. That is, the �vn are eigenvectors of (MT M), with
associated eigenvalues λn = s2

n. Thus, we can solve total least squares problems by seeking
the eigenvectors of the symmetric matrix MT M .

3 Fisher’s Linear Discriminant

Suppose we have two sets of data gathered under different conditions, and we want to find
a line/plane/hyperplane that best separates the two sets of data. This problem may be ex-
pressed as a LS optimization problem (the formulation is due to Fisher (1936)).

We seek a vector �u such that the projection
of the data sets maximizes the discriminabil-
ity of the two sets. Intuitively, we’d like to
maximize the distance between the two data
sets. But a moment’s thought should con-
vince you that the distance should be con-
sidered relative to the variability within the
two data sets. Thus, an appropriate expres-
sion to maximize is the ratio of the squared
distance between the means of the classes
and the sum of the within-class squared dis-
tances:

max
�u

[�uT (ā − b̄)]2
1
M

∑
m[�uT�a′m]2 + 1

N

∑
n[�uT�b′n]2

where {�am, 1 ≤ m ≤ M} and {�bn, 1 ≤ n ≤
N} are the two data sets, ā, b̄ represent the
averages (centroids) of each data set, and
�a′m = �am − ā and�b′n = �bn − b̄.

data1

data2

histogram of projected values

data1 data2

discriminant

Rewriting in matrix form gives:

max
�u

�uT [(ā − b̄)(ā − b̄)T ]�u

�uT [AT A
M + BT B

N ]�u

where A and B are matrices containing the �a′m and �b′n as their rows. This is now a quotient
of quadratic forms, and we transform to a standard Rayleigh Quotient by finding the eigen-
vector matrix associated with the denominator1. In particular, since the denominator matrix

1It can also be solved directly as a generalized eigenvector problem.
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is symmetric, it may be factorized as follows

[
AT A

M
+

BT B

N
] = V D2V T

where V is orthogonal and contains the eigenvectors of the matrix on the left hand side, and
D is diagonal and contains the square roots of the associated eigenvalues. Assuming the
eigenvalues are nonzero, we define a new vector relate to �u by an invertible transformation:
�v = DV T�u. Then the optimization problem becomes:

max
�v

�vT [D−1V T (ā − b̄)(ā − b̄)T V D−1]�v
�vT�v

The optimal solution for �v is simply the eigenvector of the numerator matrix with the largest
associated eigenvalue.2 This may then be transformed back to obtain a solution for the optimal
�u.

To emphasize the power of this approach,
consider the example shown to the right. On
the left are the two data sets, along with the
Principal Components of the full data set.
Below this are the histograms for the two
data sets, as projected onto the first compo-
nent. On the right are the same two plots
with Fisher’s Linear Discriminant. It is clear
the latter provides a much better separation
of the two data sets.

PCA Fisher

2In fact, the rank of the numerator matrix is 1 and a solution can be seen by inspection to be �v = D−1V T (ā− b̄).
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