Denoising & Bilateral Filtering

Lecture 5 Rob Fergus

Admin stuff

Start homework 2 early!!!!

 Have grader for course (Jiali Huang jiali.huang@nyu.edu)

Come and see me about projects!!!!

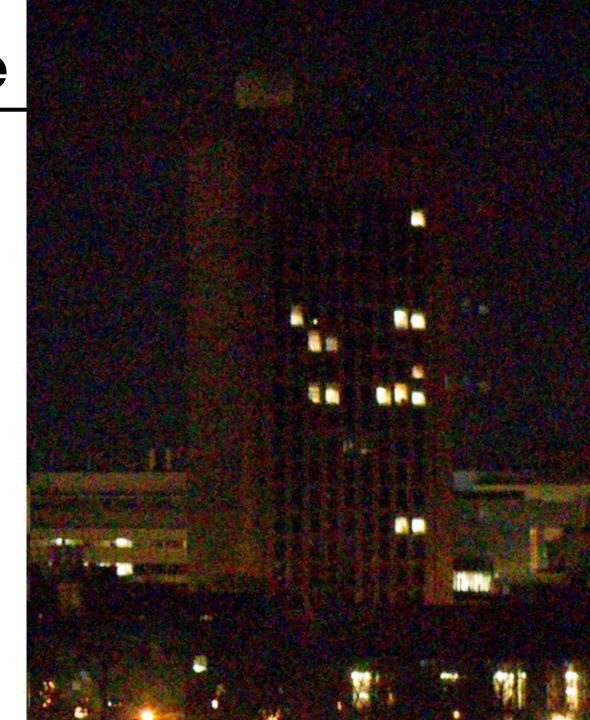
Overview of today

- Denoising
 - Averaging
 - Wiener denoising
 - Median filtering

- Bilaterial filtering
 - Cross-bilateral filter
 - Flash applications

Noisy image

Usually for dark conditions

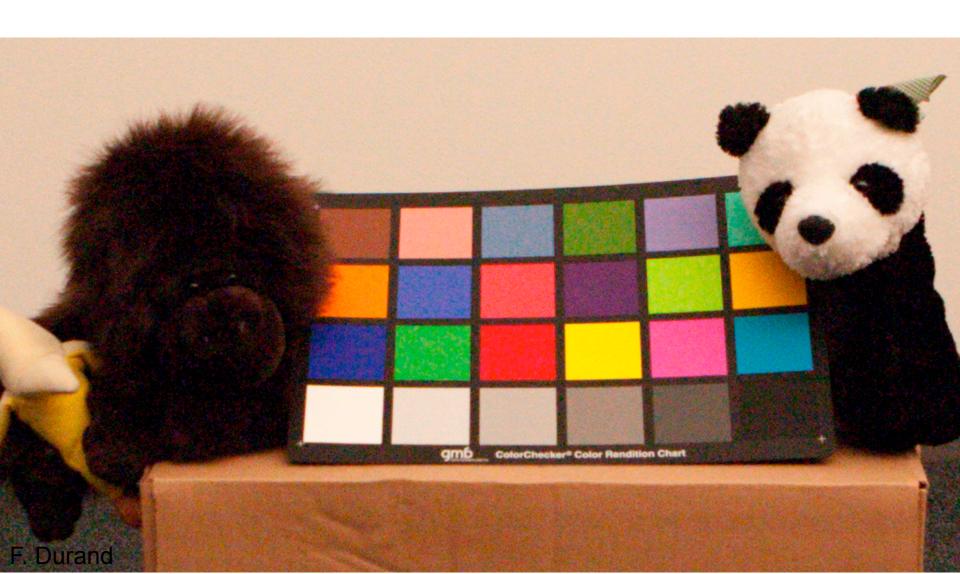


Noise

Fluctuation
 when taking
 multiple shots

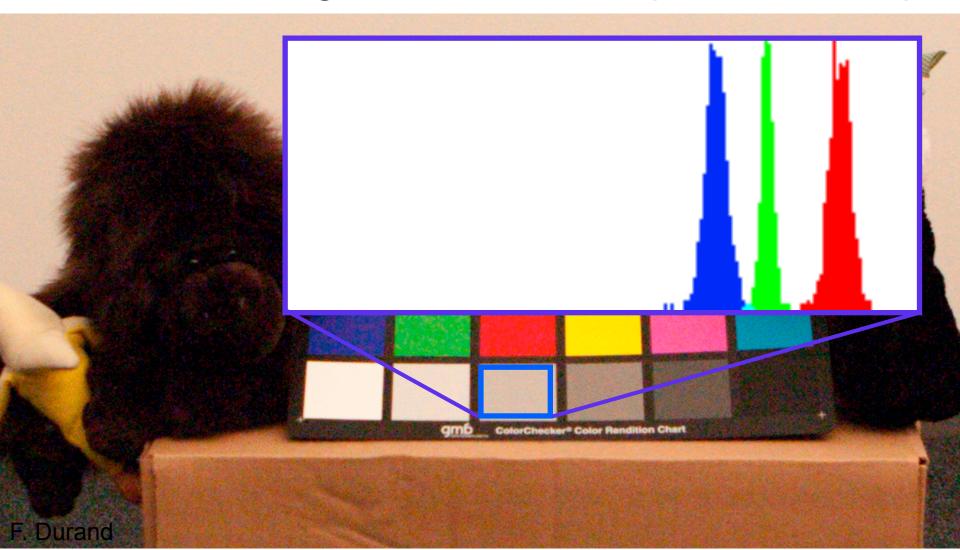


Canon 1D mark IIN at ISO 3200



Histogram of grey patch

Should be single values for RGB (constant color)



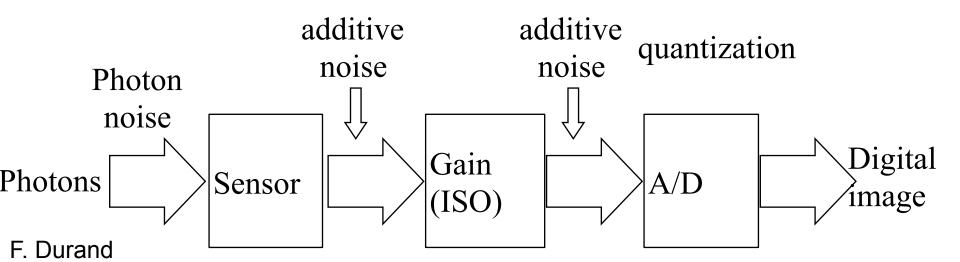
Where Does Noise come from?

Digital pipeline

- Photosites transform photons into charge (electrons)
 - The sensor itself is linear
- Gets amplified (depending on ISO setting)
- Then goes through analog to digital converter
 - -up to 14 bits/channel these days
- Stop here when shooting RAW
- Then demosaicing, denoising, white balance, a response curve, gamma encoding are applied
- Quantized and recorded as 8-bit JPEG

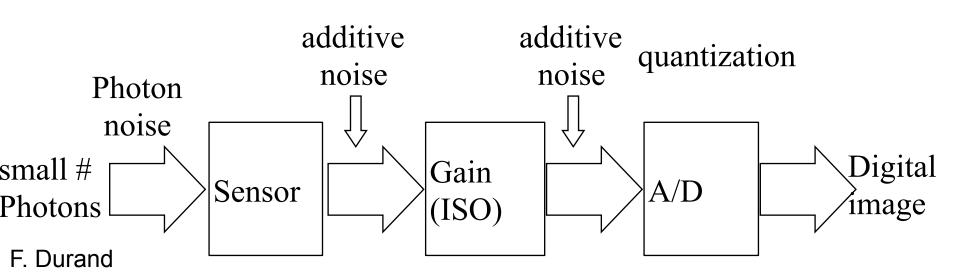
Pipeline & noise

- This is a conceptual diagram, don't take it too literally
 - -e.g. the AD converter is a serious source of noise, but usually electronic noise, not quantization artifacts
- Orders of magnitude:
 - -# of photons per photosite : 10,000-100,000
 - -Electronic noise 5-30 electrons per photosite

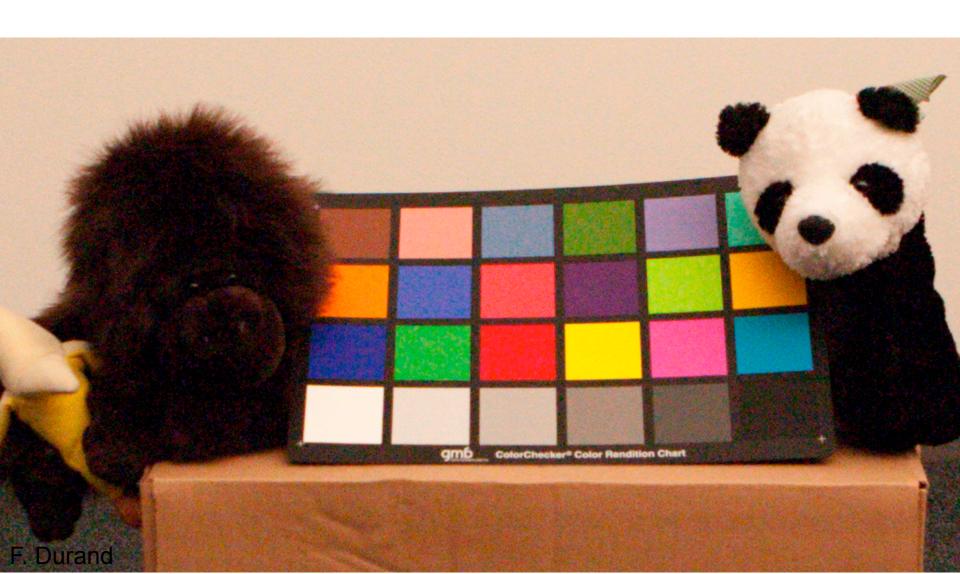


ISO amplifies

- e.g. going from ISO 100 to ISO 400 amplifies by 4
- both noise & signal
- usually use high ISO when signal is low
- => worse signal/noise ratio



Canon 1D mark IIN at ISO 3200



Canon 1D Mark II, ISO 100

Lot less noisy!

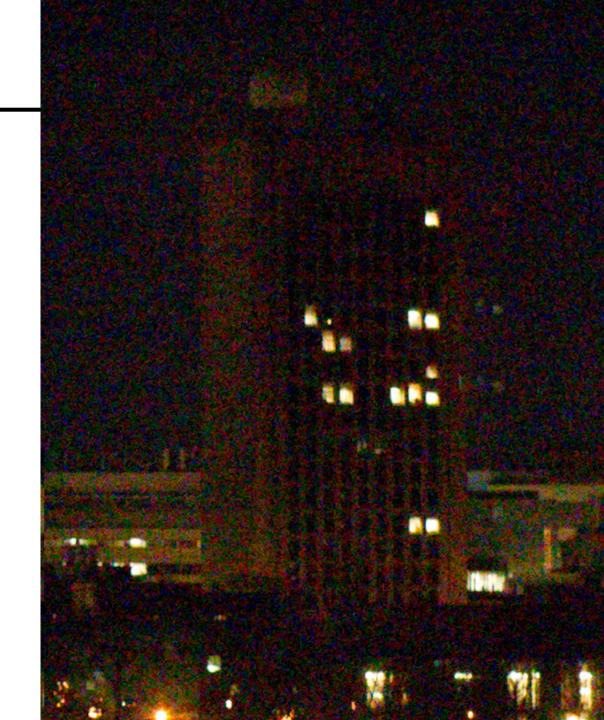


http://wiegaertnerfilms.com/tutorials/the-best-iso-settings-for-canon-video-dslrs/

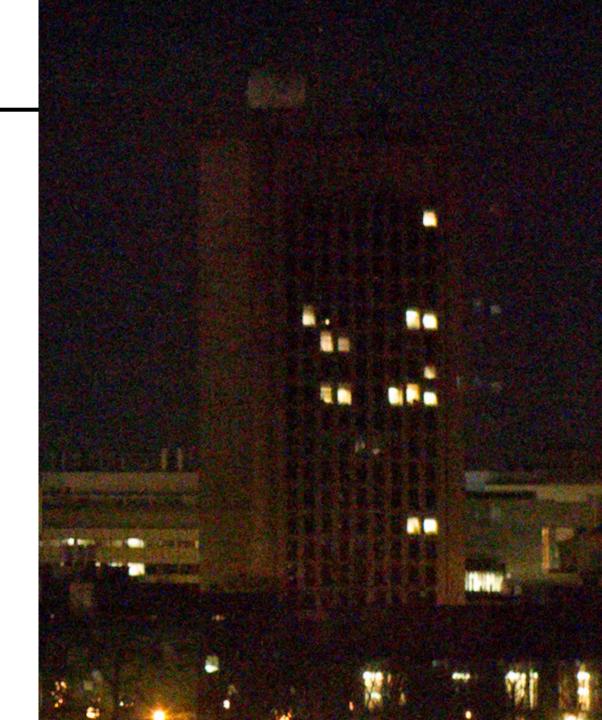
F. Durand

Denoising by Averaging

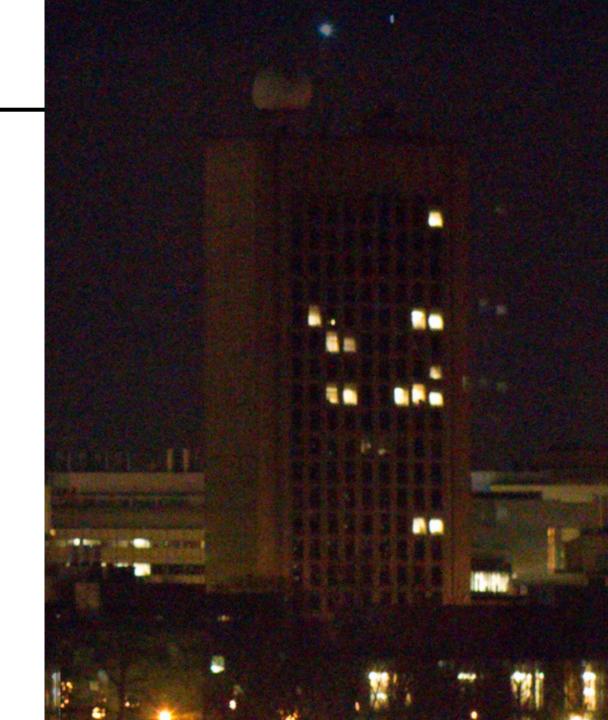
1 image



3 images



5 images



Denoising a single image

Denoising from 1 image

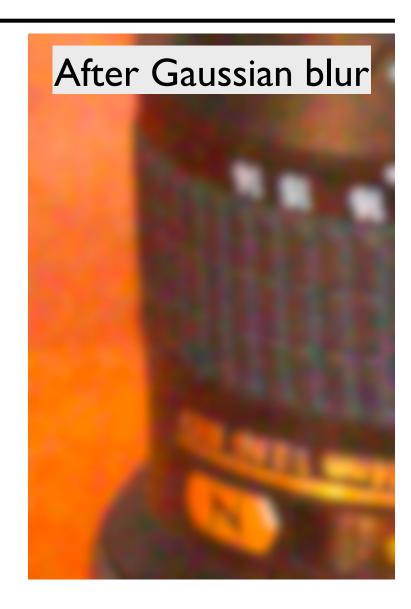
 We can't take average over multiple images

Denoising from 1 image

- We can't take average over multiple images
- Idea 1: take a spatial average
 - Most pixels have roughly teh same color as their neighbor
 - Noise looks high frequency => do a low pass
- Here: Gaussian blur

Gaussian blur

- Noise is mostly gone
- But image is blurry
 - duh!



Weiner Denoising

Wiener denoising derivation

- See http://www.cs.dartmouth.edu/farid/tutorials/fip.pdf
- Pages 57→59

Wiener denoising

 Simplest model [Lee80]: every neighborhood as a Gaussian vector sample with unknown variance

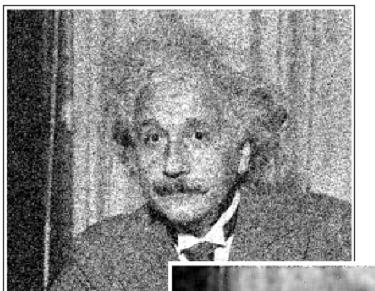
$$\mu = \sum_{n=1}^{N} x_n$$

$$\mu = \sum_{n=1}^{N} x_n \qquad \sigma_s^2 = \left[\sum_{n=1}^{N} (x_n - \mu)^2 - \sigma_\omega^2 \right]$$

$$\hat{\mathbf{x}} = \mu + \frac{\hat{\sigma}_s^2}{\hat{\sigma}_s^2 + \sigma_\omega^2} (\mathbf{x} - \mu)$$
 Local Wiener Estimation

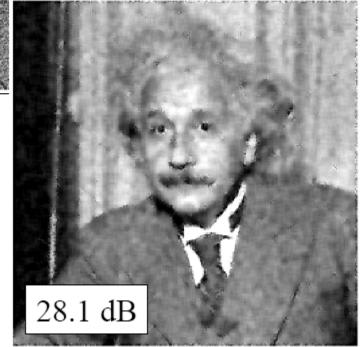
White Gaussian noise power (assumed to be known)

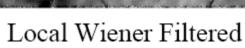
Observed Sample

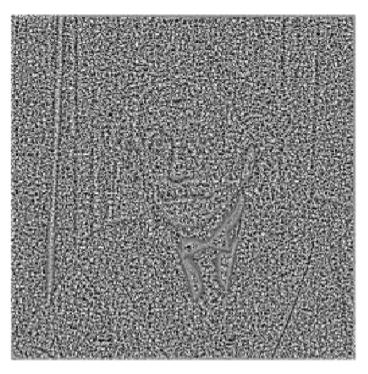


20.1 dB

- Wiener2 Matlab function
- 5x5 pixels neighborhood





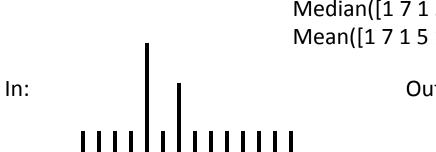


Residual

Denoising salt'n'pepper noise

Median filter

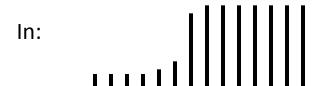
Replace each pixel by the median over N pixels (5 pixels, for these examples). Generalizes to "rank order" filters.



Median([17151]) = 1 Mean([17151]) = 2.8

Out:

Spike noise is removed



5-pixel

neighborhood

Monotonic edges remain unchanged

Median filtering results

Best for salt and pepper noise

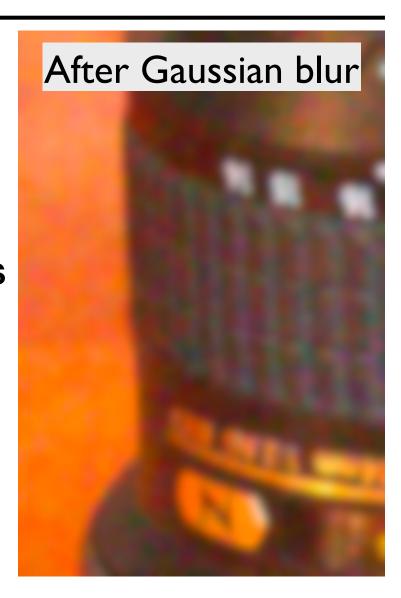
Bilateral filtering

Gaussian blur

- Noise is mostly gone
- But image is blurry
 - duh!

 Problem: not all neighbors have the same color

 Bilateral filter idea: only consider neighbors that have values similar enough



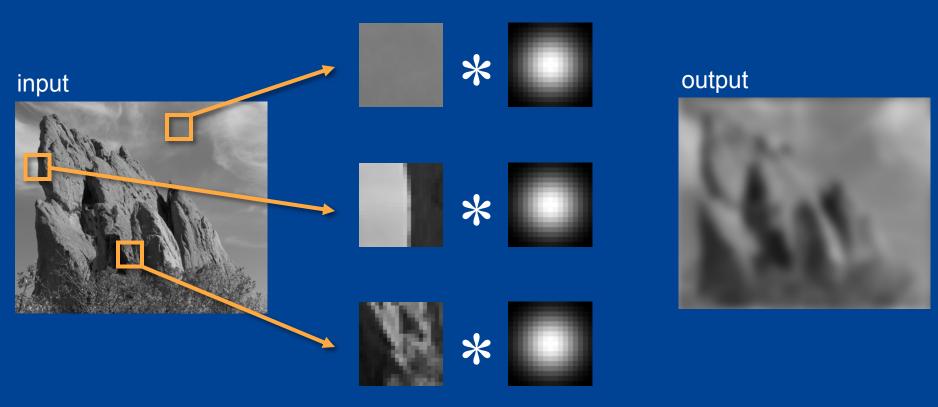
A Gentle Introduction to Bilateral Filtering and its Applications

"Fixing the Gaussian Blur": the Bilateral Filter

Sylvain Paris - MIT CSAIL

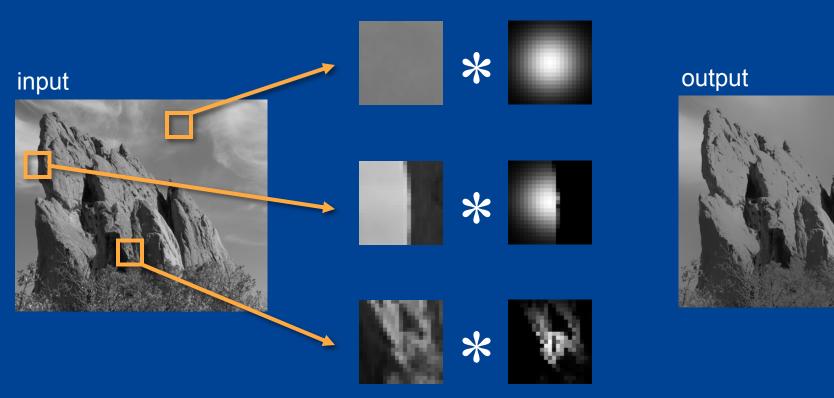
Fredo- Durand – MIT CSAIL

Blur Comes from Averaging across Edges



Same Gaussian kernel everywhere.

Bilateral Filter [Aurich 95, Smith 97, Tomasi 98] No Averaging across Edges



The kernel shape depends on the image content.

Bilateral filter

- Tomasi and Manduci 1998]
 - http://www.cse.ucsc.edu/~manduchi/Papers/ICCV98.pdf
- Developed for denoising
- Related to
 - -SUSAN filter [Smith and Brady 95] http://citeseer.ist.psu.edu/smith95susan.html
 - -Digital-TV [Chan, Osher and Chen 2001] http://citeseer.ist.psu.edu/chan01digital.html
 - -sigma filter http://www.geogr.ku.dk/CHIPS/Manual/f187.htm
- Full survey:
 <u>http://people.csail.mit.edu/sparis/publi/2009/fntcgv/</u>

 Paris 09 Bilateral filtering.pdf

F. Durand

Bilateral Filter Definition: an Additional Edge Term

Same idea: weighted average of pixels.

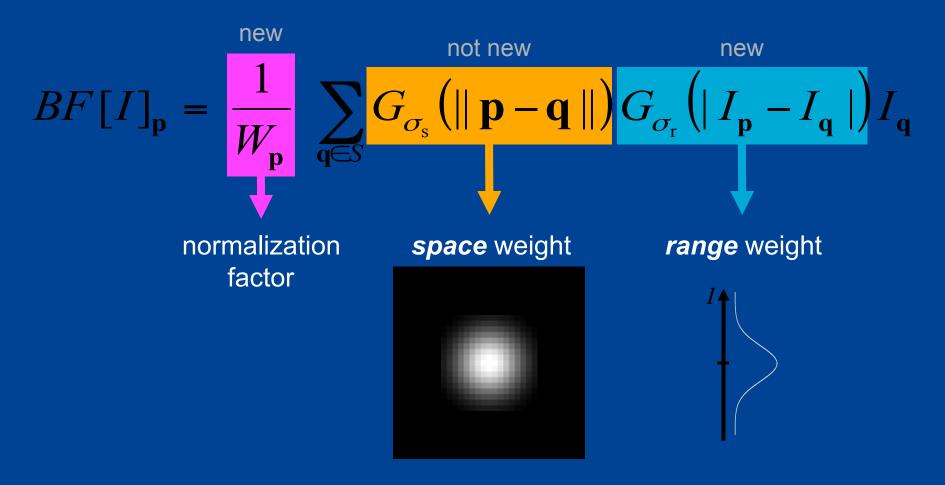
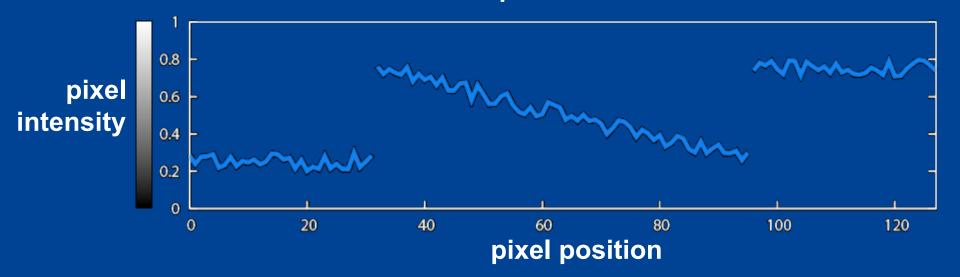


Illustration a 1D Image

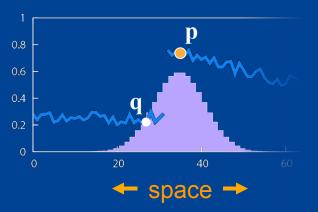
1D image = line of pixels

Better visualized as a plot



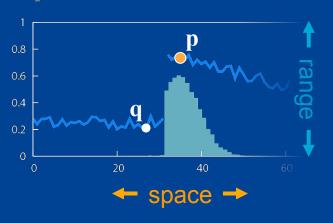
Gaussian Blur and Bilateral Filter

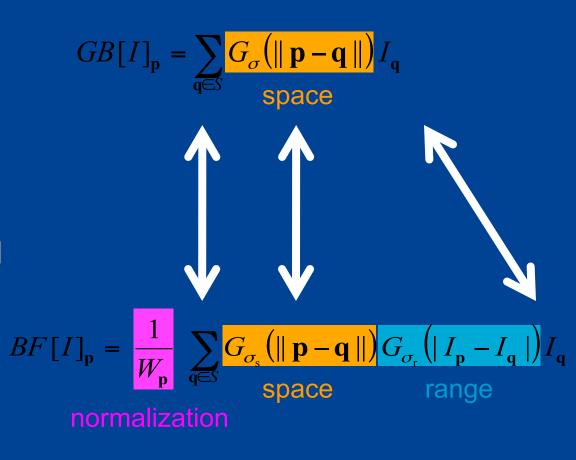
Gaussian blur



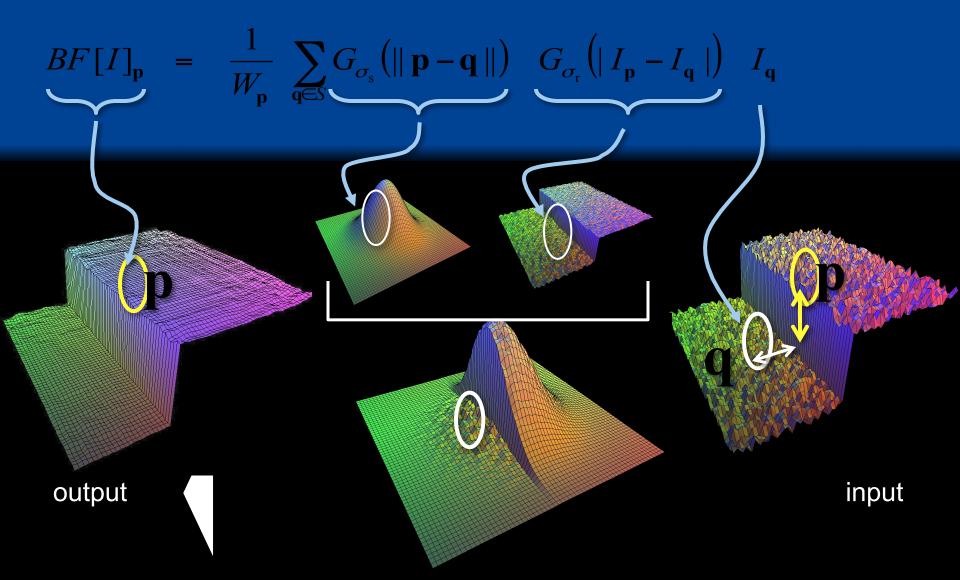
Bilateral filter

[Aurich 95, Smith 97, Tomasi 98]





Bilateral Filter on a Height Field



Space and Range Parameters

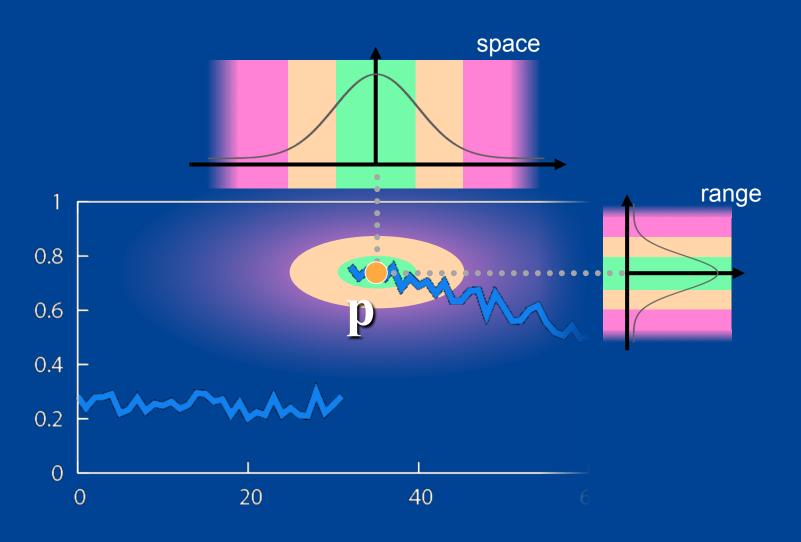
$$BF[I]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in S} G_{\sigma_{\mathbf{s}}} (\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{\mathbf{r}}} (|I_{\mathbf{p}} - I_{\mathbf{q}}|) I_{\mathbf{q}}$$

• space $\sigma_{\rm s}$: spatial extent of the kernel, size of the considered neighborhood.

• range $\sigma_{\rm r}$: "minimum" amplitude of an edge

Influence of Pixels

Only pixels close in space and in range are considered.



Bilateral filter

Noisy input

After bilateral filter

input

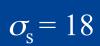
Exploring the Parameter Space

$$\sigma_{\rm r} = 0.1$$

 $\sigma_{\rm r} = 0.25$

 $\sigma_{\rm r} = \infty$ (Gaussian blur)

 $\sigma_{\rm s} = 2$



input

Varying the Range Parameter

$$\sigma_{\rm r} = 0.1$$

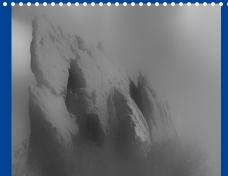
$$\sigma_{\rm r} = 0.25$$

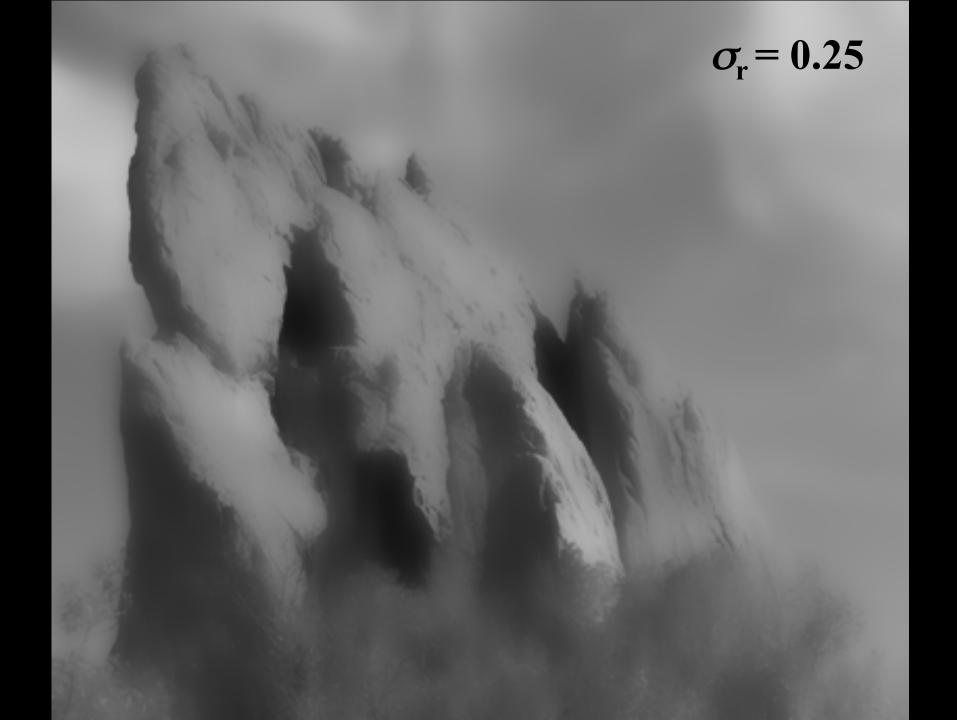
$$\sigma_{\rm r} = \infty$$
 (Gaussian blur)

$$\sigma_{\rm s} = 6$$

 $\sigma_{\rm s} = 2$

$$\sigma_{\rm s} = 18$$





$$\sigma_{\rm r} = \infty$$
 (Gaussian blur)

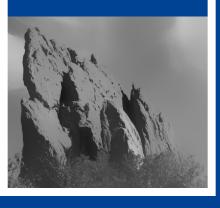
input

Varying the Space Parameter

$$\sigma_{\rm r} = 0.1$$

$$\sigma_{\rm r} = 0.25$$

$$\sigma_{\rm r} = \infty$$
 (Gaussian blur)





 $\sigma_{\rm s} = 2$

 $\sigma_{\rm S} = 6$

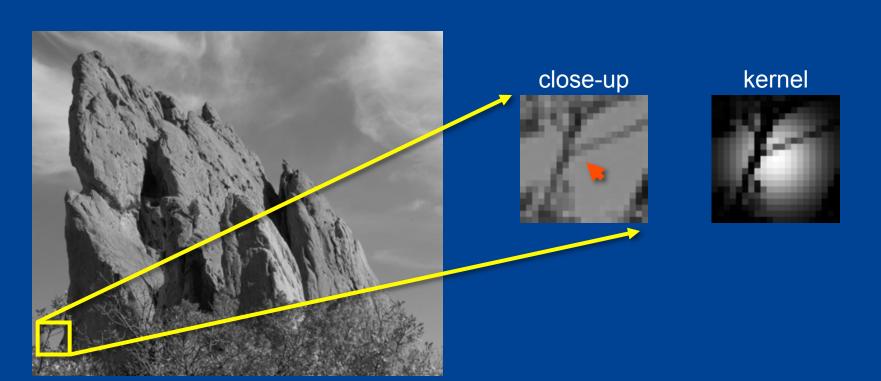
How to Set the Parameters

Depends on the application. For instance:

- space parameter: proportional to image size
 - e.g., 2% of image diagonal
- range parameter: proportional to edge amplitude
 - e.g., mean or median of image gradients
- independent of resolution and exposure

Bilateral Filter Crosses Thin Lines

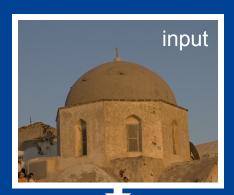
- Bilateral filter averages across features thinner than $\sim 2\sigma_{\rm s}$
- Desirable for smoothing: more pixels = more robust
- Different from diffusion that stops at thin lines



Bilateral Filtering Color Images

For gray-level images

For gray-level images intensity difference
$$BF[I]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in S} G_{\sigma_{\mathbf{s}}} (||\mathbf{p} - \mathbf{q}||) G_{\sigma_{\mathbf{r}}} (|I_{\mathbf{p}} - I_{\mathbf{q}}|) I_{\mathbf{q}}$$
 scalar



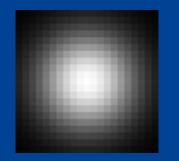
For color images

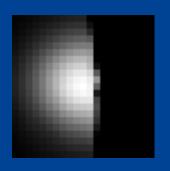
$$BF[I]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in S} G_{\sigma_{s}} (\| \mathbf{p} - \mathbf{q} \|) G_{\sigma_{r}} (\| \mathbf{C}_{\mathbf{p}} - \mathbf{C}_{\mathbf{q}} \|) \mathbf{C}_{\mathbf{q}}$$
3D vector (RGB, Lab)

Hard to Compute

• Nonlinear
$$BF[I]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in S} G_{\sigma_{s}} (\|\mathbf{p} - \mathbf{q}\|) \frac{G_{\sigma_{r}} (|I_{\mathbf{p}} - I_{\mathbf{q}}|)}{G_{\sigma_{r}} (|I_{\mathbf{p}} - I_{\mathbf{q}}|)} I_{\mathbf{q}}$$

- Complex, spatially varying kernels
 - Cannot be precomputed, no FFT....

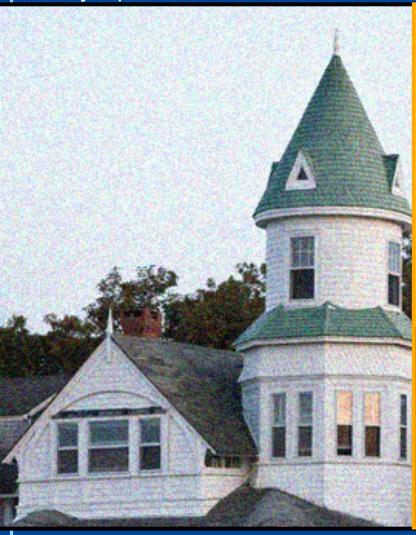




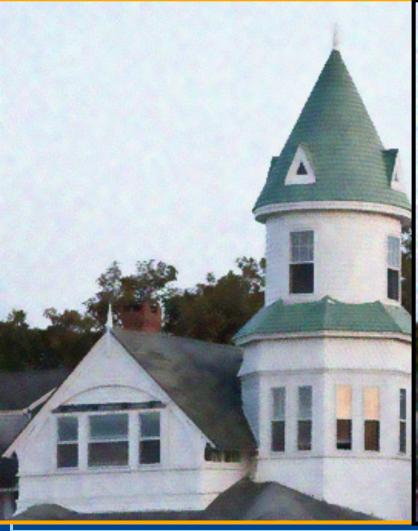
Brute-force implementation is slow > 10min

Noisy input

Bilateral filter 7x7 window



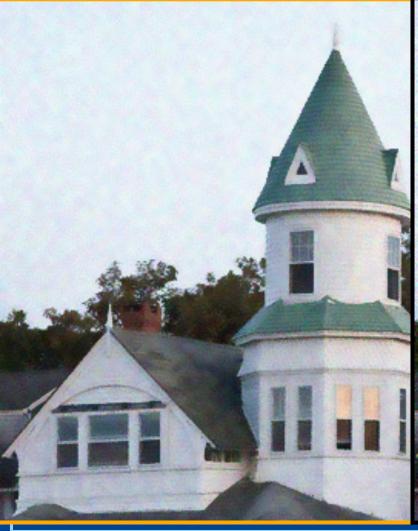
Bilateral filter Median 3x3



Bilateral filter Median 5x5

Bilateral filter

Bilateral filter – lower sigma



Bilateral filter

Bilateral filter – higher sigma

Denoising

- Small spatial sigma (e.g. 7x7 window)
- Adapt range sigma to noise level
- Maybe not best denoising method, but best simplicity/quality tradeoff
 - No need for acceleration (small kernel)
 - But the denoising feature in e.g. Photoshop is better

Ordinary Bilateral Filter

Bilateral → *two kinds* of weights, one image A :

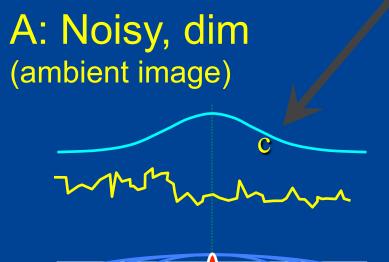
$$BF[A]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in S} G_{\sigma_{s}} (\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{r}} (\|A_{\mathbf{p}} - A_{\mathbf{q}}\|) A_{\mathbf{q}}$$
Range
$$\mathbf{Range}$$

Domain

'Joint' or 'Cross' Bilateral Filter

NEW: <u>two kinds</u> of weights, <u>two</u> images

$$BF[A]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in S} G_{\sigma_{s}}(\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{r}}(|B_{\mathbf{p}} - B_{\mathbf{q}}|) A_{\mathbf{q}}$$



B: Clean,strong (Flash image)

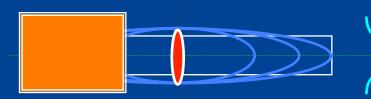


Image A: Warm, shadows, but too Noisy (too dim for a good quick photo)

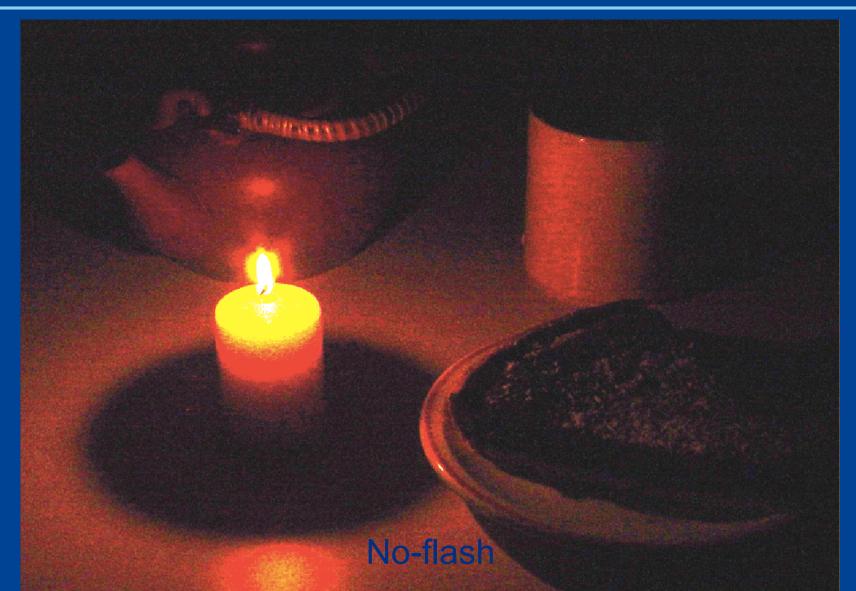
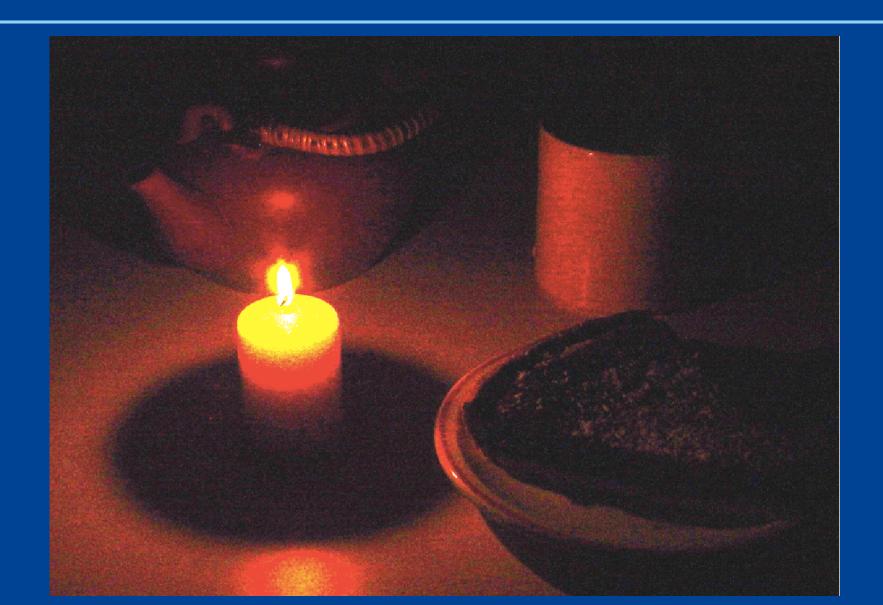


Image B: Cold, Shadow-free, Clean (flash: simple light, ALMOST no shadows)

MERGE BEST OF BOTH: apply 'Cross Bilateral' or 'Joint Bilateral'

(it really is much better!)



Dark Flash Photography

Dilip Krishnan Rob Fergus

Dept. of Computer Science, Courant Institute, New York University

Our Camera & Dark Flash

Dark Flash

Emits Ultraviolet (UV) and Infrared (IR) light just outside visible wavelength range

Dark Flash Photography

• Dark flash is ~200 times dimmer than conventional

1. Dark Flash image

Key Challenges

1. How to add light to the scene without it being perceived by people.

2. How to obtain an image with correct colors.

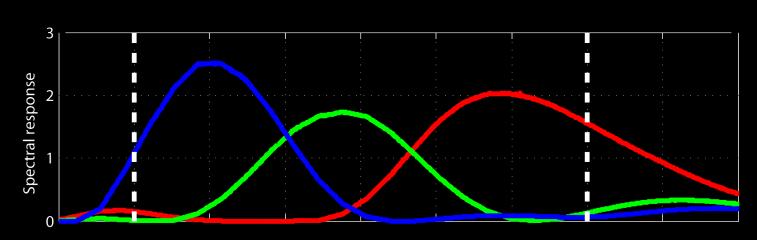
Key Challenges

1. How to add light to the scene without it being perceived by people.

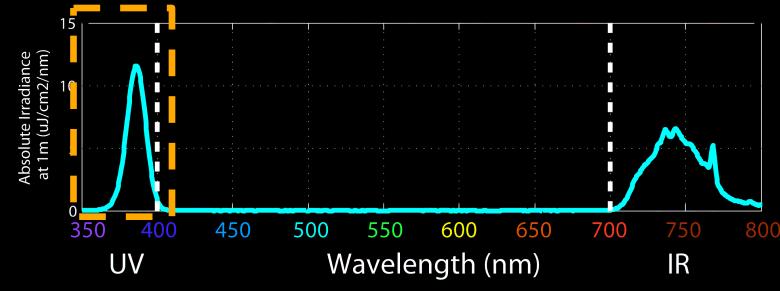
2. How to obtain an image with correct colors.

Dark Flash Emission Spectrum

Camera Spectral Sensitivity

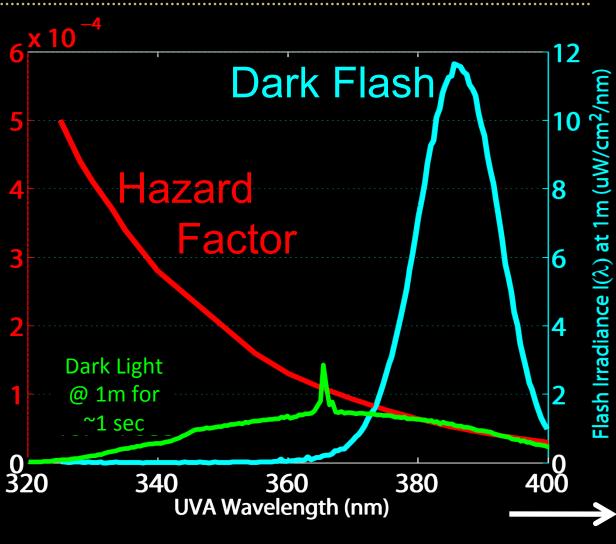


Dark Flash Emission



Flash Safety

• Government tables specify safe limits of exposure to UV (< 400nm)



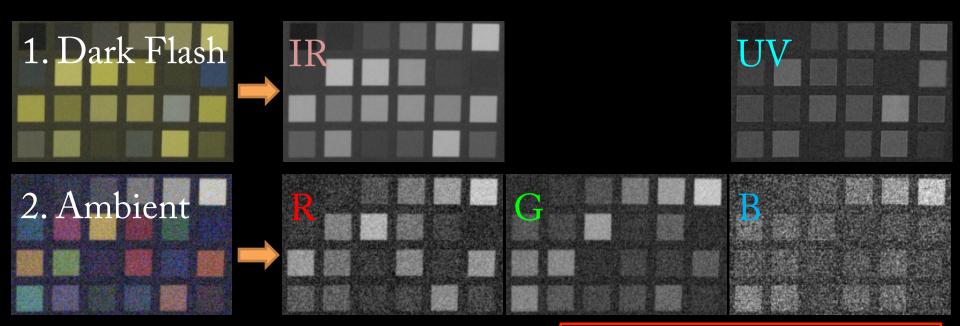
Visible

Key Challenges

1. How to add light to the scene without it being perceived by people.

2. How to obtain an image with correct colors.

Two Images: Five Spectral Bands

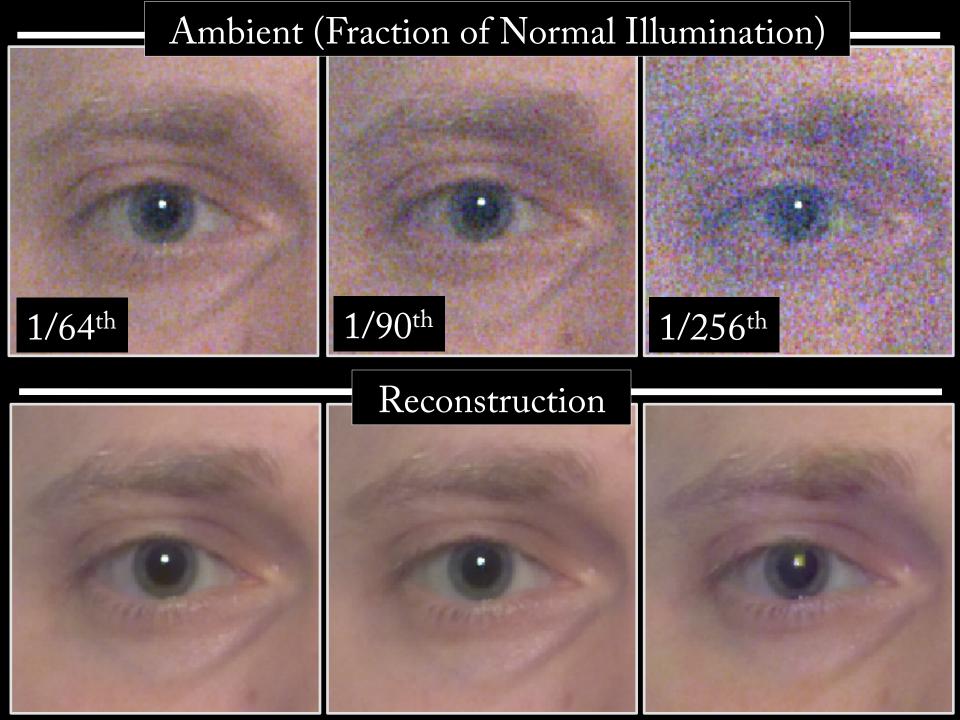


- In Dark Flash image:
 - "Blue" channel records UV
 - "Red" channel records IR

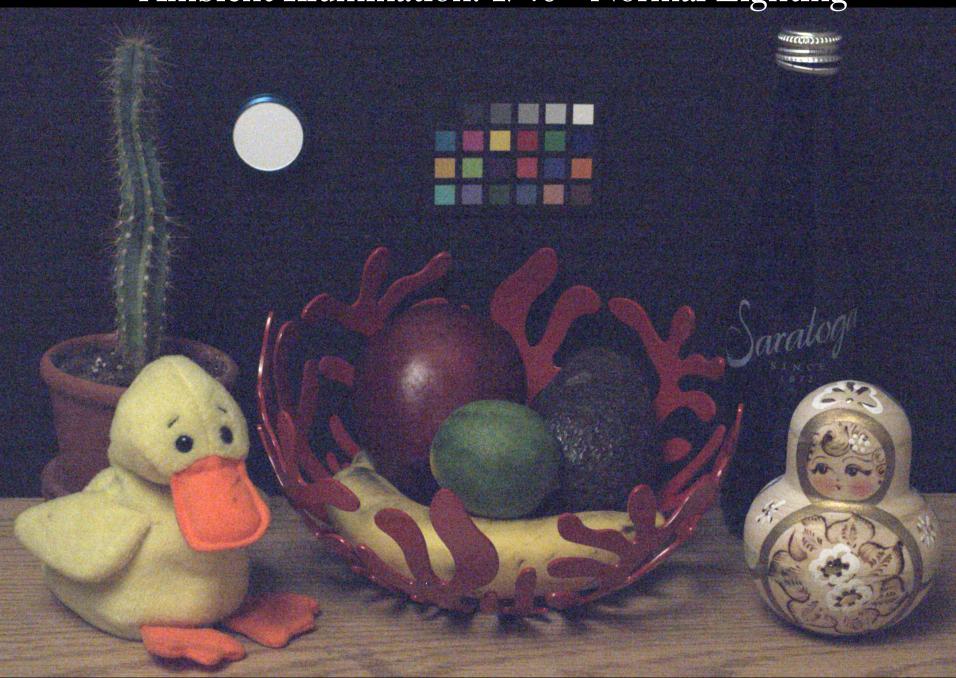
Assumptions

- Little ambient UV and IR light
- 2. UV/IR flash dominates ambient visible light

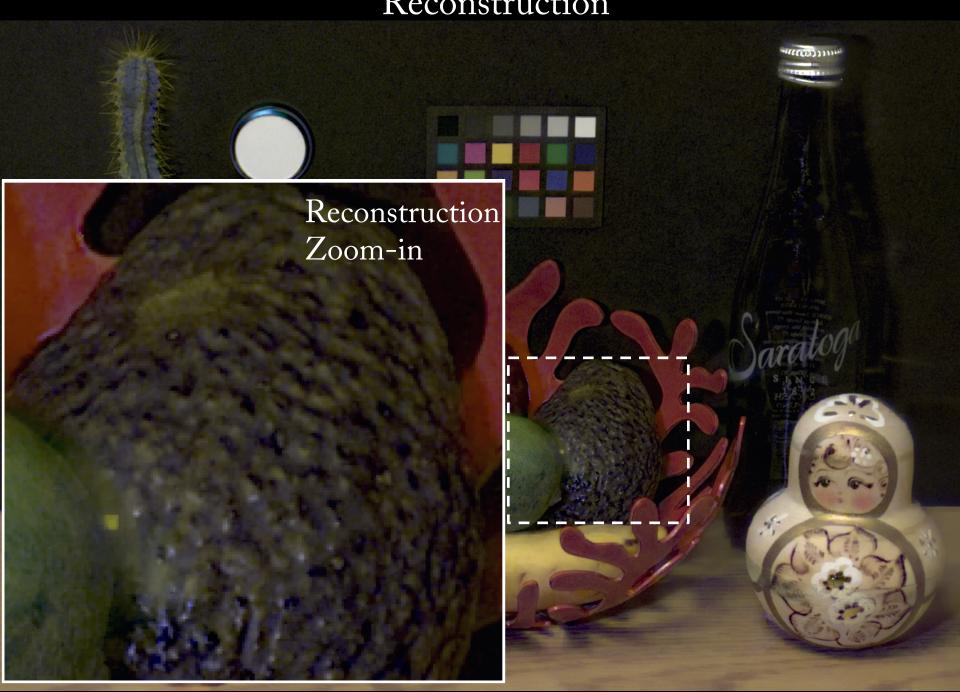
Ambient: 1/20th sec Reconstruction Long exposure: 4 sec



Ambient Illumination: 1/40th Normal Lighting



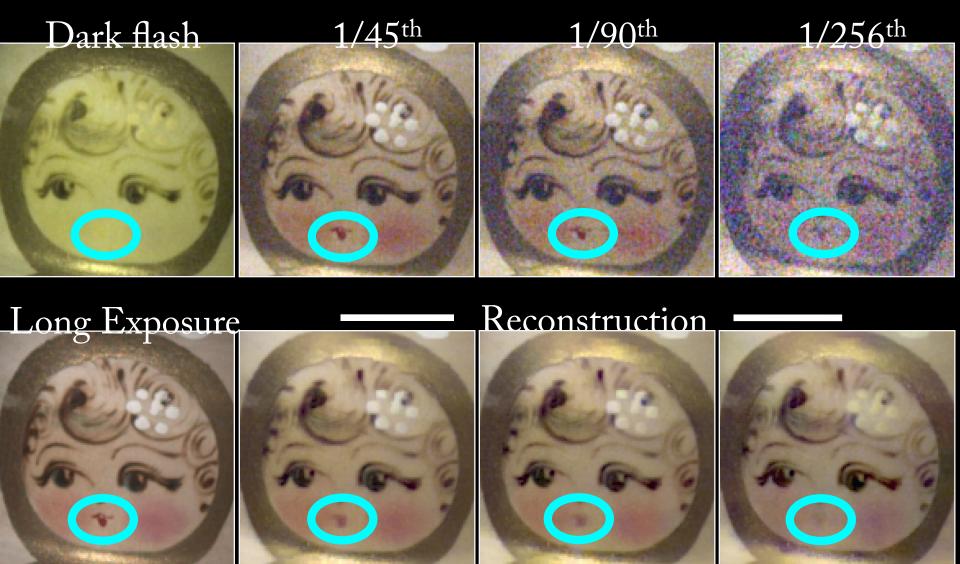
Reconstruction



Reconstruction

Limitations – Lack of edges in UV/IR

Ambient - Fraction of normal illumination



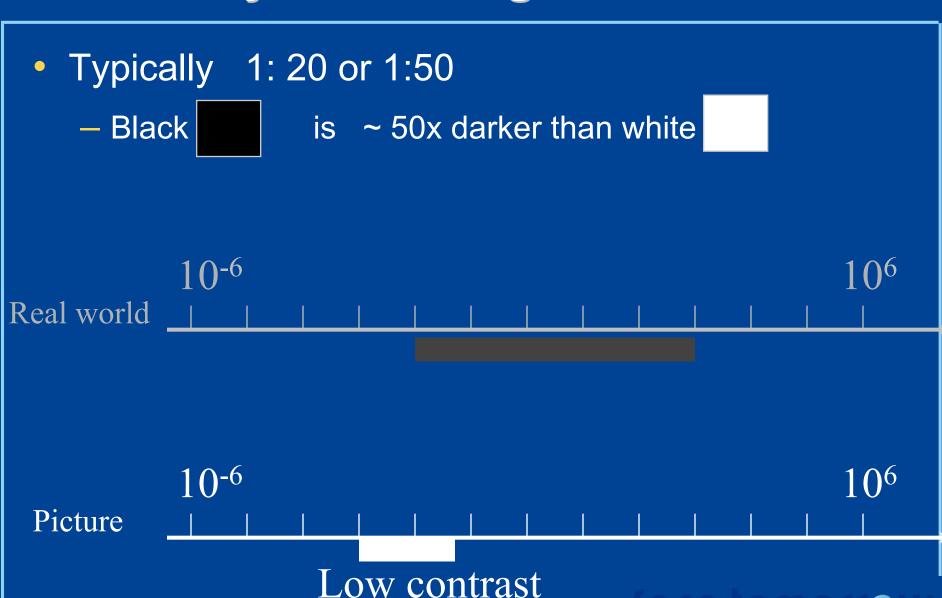
High Dynamic Range Imaging

Real world dynamic range

- Eye can adapt from ~ 10⁻⁶ to 10⁶ cd/m²
- Often 1 : 10,000 in a scene

High dynamic range

Picture dynamic range



Multiple exposure photography

• Merge multiple exposure to cover full range 10^{-6} High dynamic range 10^{6} Real world



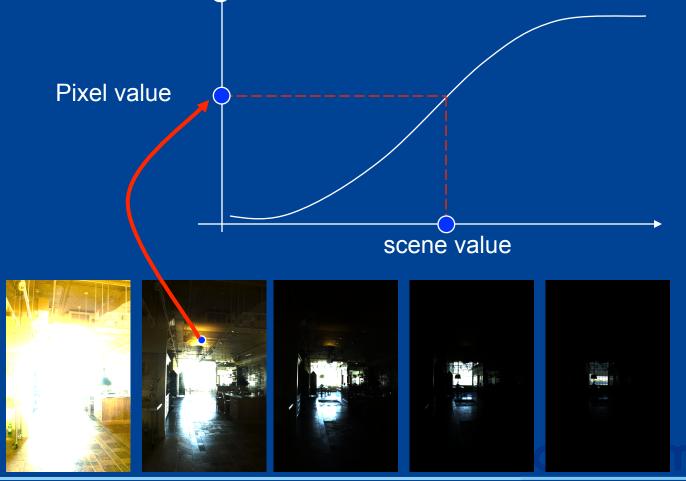
- We obtain one single image with floats per pixel
 - But we still can't display it

HDR image using multiple exposure

- Given N photos at different exposure
- Recover a HDR color for each pixel

If we know the response curve

- Just look up the inverse of the response curve
- But how do we get the curve?



Calibrating the response curve

- Two basic solutions
 - Vary scene luminance and see pixel values
 - Assumes we control and know scene luminance
 - Vary exposure and see pixel value for one scene luminance
 - But note that we can usually not vary exposure more finely than by 1/3 stop
- Best of both:
 - Vary exposure
 - Exploit the large number of pixels

The Algorithm

Image series

∆t = 10 sec

Δt = 1 sec

1/10 sec

 $\Delta t = 1/100 \text{ sec}$

1/1000 sec

Pixel Value Z = f(Exposure)

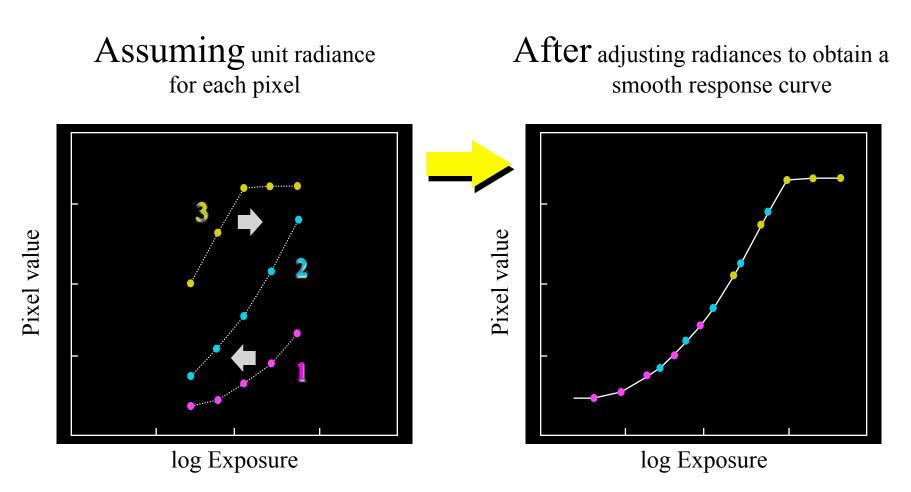
Exposure = Radiance $\times \Delta t$

log Exposure = log Radiance + log

Slide adapted from Alyosha Efros who borrowed it from Paul Debe \(\Delta \) t don't really correspond to pictures. Oh well.

Response curve

Exposure is unknown, fit to find a smooth curve

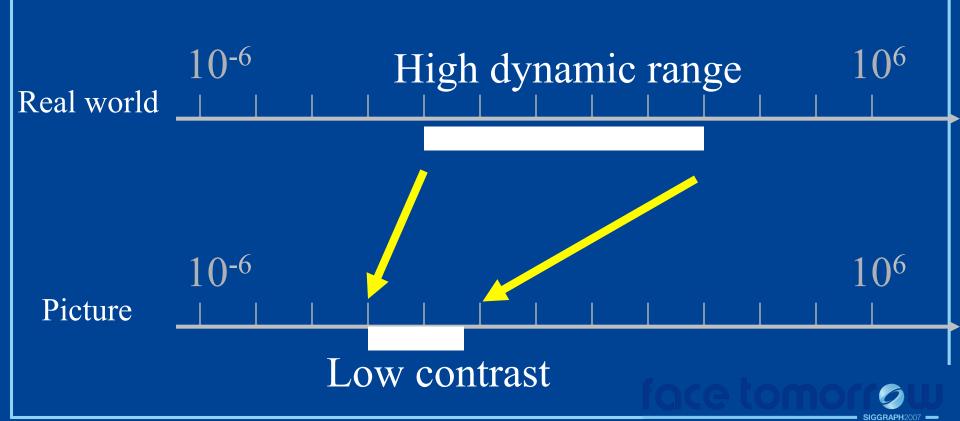


Reconstructed radiance map

Slide stolen from Fredo Durand who stole it from Alyosha Efros who stole it from Paul Debevec

Problem: Contrast reduction

- Match limited contrast of the medium
- Preserve details



Tone mapping

- Input: high-dynamic-range image
 - (floating point per pixel)

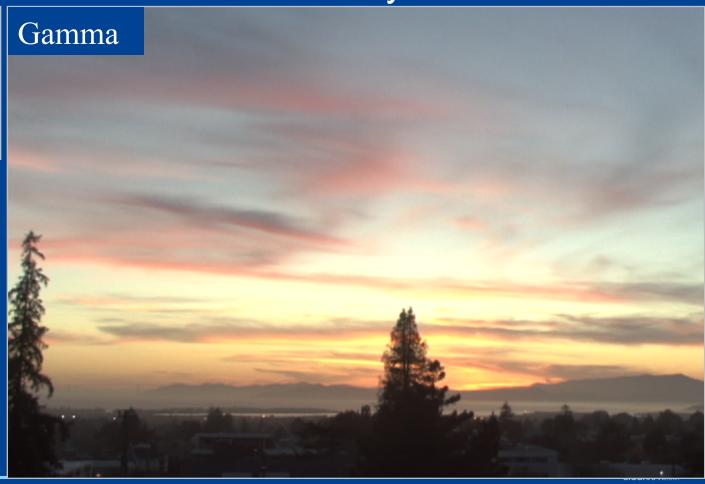
Naïve technique

- Scene has 1:10,000 contrast, display has 1:100
- Simplest contrast reduction?



Naïve: Gamma compression

- $X \rightarrow X^{\gamma}$ (where $\gamma = 0.5$ in our case)
- But... colors are washed-out. Why?



Gamma compression on intensity

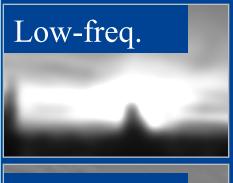
Colors are OK,
 but details (intensity high-frequency) are blurred



Color

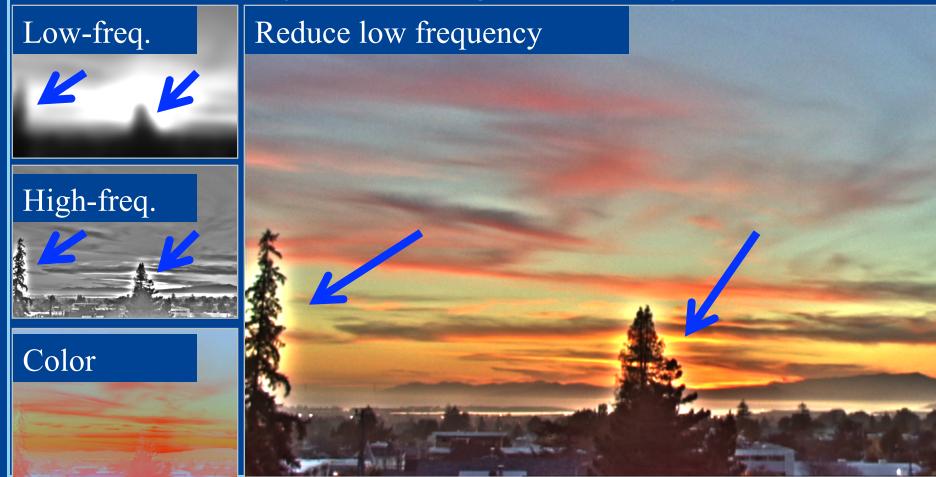
Oppenheim 1968, Chiu et al. 1993

- Reduce contrast of low-frequencies (log domain)
- Keep high frequencies



The halo nightmare

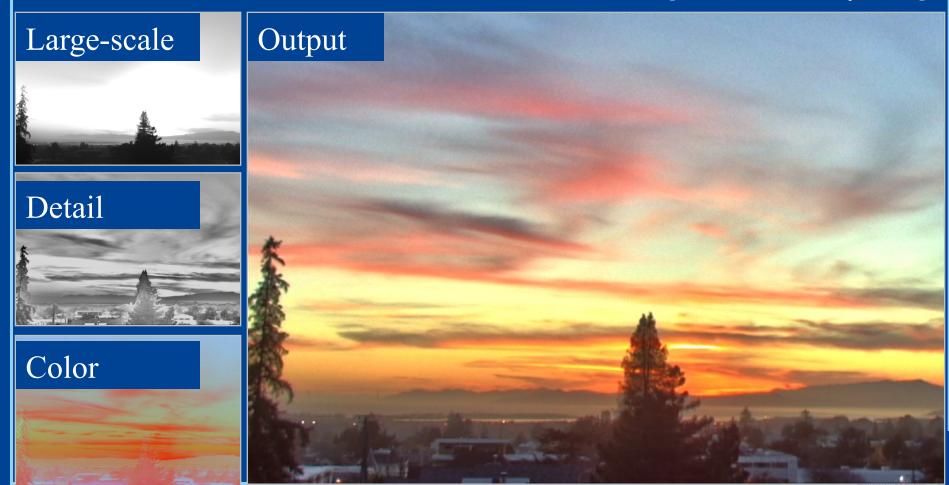
- For strong edges
- Because they contain high frequency



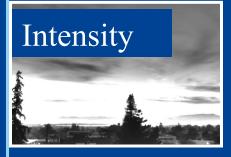
Bilateral filtering to the rescue

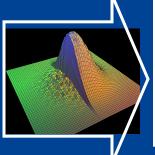
- Large scale = bilateral (log intensity)
- Detail = residual

[Durand & Dorsey 2002]



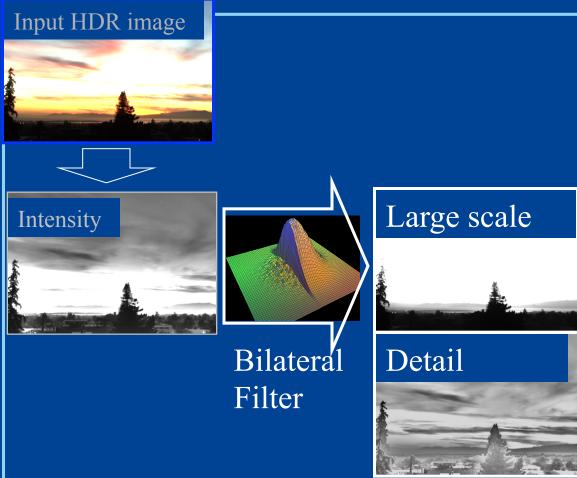
Contrast too high!



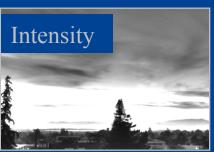


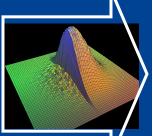
Bilateral
Filter
(in log domain!)

Spatial sigma: 2% image size Range sigma: 0.4 (in log 10)



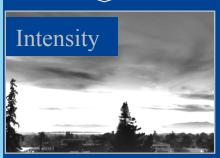
Detail = log intensity –large scale (residual)

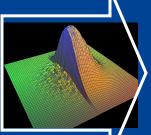




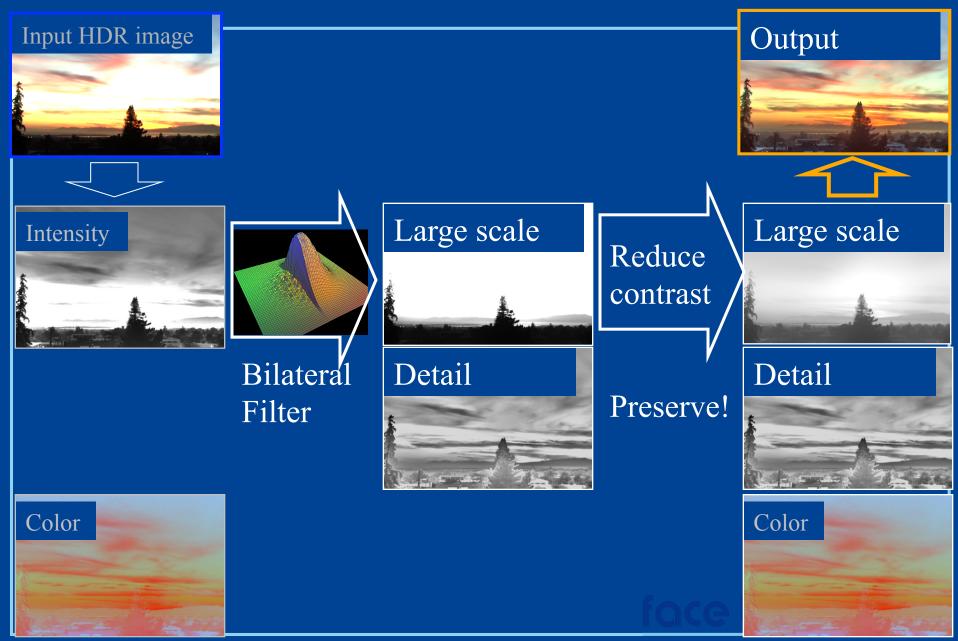
Bilateral Filter

Reduce contrast





Bilateral Filter



Contrast reduction in log domain

- Set target large-scale contrast (e.g. log₁₀ 10)
 - In linear output, we want 1:10 contrast for large scale
- Compute range of input large scale layer:
 - largeRange = max(inLogLarge) min (inLogLarge)
- Scale factor k = log₁₀ (10) / largeRange
- Normalize so that the biggest value is 0 in log

```
outLog= inLogDetail + inLogLarge * k - max(inLogLarge)
```

