

- Change of office hours on Wed 4th April
 Mon 31st March 9.30-10.30pm (right after class)
- Change of time/date of last class
 Currently Mon 5th May
 - What about Thursday 8th May?

Image pyramids

- Gaussian
- Laplacian
- Wavelet/QMF
- Steerable pyramid

- Wavelet/QMF
- Steerable pyramid

The Laplacian Pyramid

- Synthesis
 - preserve difference between upsampled Gaussian pyramid level and Gaussian pyramid level
 - band pass filter each level represents spatial frequencies (largely) unrepresented at other levels
- Analysis
 - reconstruct Gaussian pyramid, take top layer

Why use these representations?

- Handle real-world size variations with a constant-size vision algorithm.
- Remove noise
- Analyze texture
- Recognize objects
- Label image features

Laplacian Pyramid: Region Blending

General Approach:

- 1. Build Laplacian pyramids LA and LB from images A and B
- 2. Build a Gaussian pyramid *GR* from selected region *R*
- 3. Form a combined pyramid *LS* from *LA* and *LB* using nodes of *GR* as weights:
 - LS(i,j) = GR(I,j,)*LA(I,j) + (1-GR(I,j))*LB(I,j)
- 4. Collapse the LS pyramid to get the final blended image

PETER J. BURT and EDWARD H. ADELSON RCA David Samoff Research Center

Image pyramids

- Gaussian
- Laplacian
- Wavelet/Quadrature Mirror Filters (QMF)
- Steerable pyramid

The inverse transform for the Haar wavelet
>> inv(U)
ans =
0.5000 0.5000
0.5000 -0.5000

Apply this	ove	er i	mu	ltip	ole	sp	oati	al positions
U =								
1	1	0	0	0	0	0	0	
1	-1	0	0	0	0	0	0	
0	0	1	1	0	0	0	0	
0	0	1	-1	0	0	0	0	
0	0	0	0	1	1	0	0	
0	0	0	0	1	-1	0	0	
0	0	0	0	0	0	1	1	
0	0	0	0	0	0	1	-1	

			The	in	vers	se	tran	S	form	
>	>> inv(U)									
a	ins =									
	0.5000	0.5	000	0	0	0	0	0	0	
	0.5000	-0.5	000	0	0	0	0	0	0	
	0	0	0.5000	0.5	000	0	0	0	0	
	0	0	0.5000	-0.5	000	0	0	0	0	
	0	0	0	0	0.5000	0.5	000	0	0	
	0	0	0	0	0.5000	-0.5	000	0	0	
	0	0	0	0	0	0	0.5000	(.5000	
	0	0	0	0	0	0	0.5000	-(0.5000	

Good and bad features of wavelet/QMF filters

- Bad:
 - Aliased subbands
 - Non-oriented diagonal subband
- Good:
 - Not overcomplete (so same number of coefficients as image pixels).
 - Good for image compression (JPEG 2000)

Steerable pyramids

- · Good:
 - Oriented subbands
 - Non-aliased subbands
 - Steerable filters
- Bad:
 - Overcomplete
 - Have one high frequency residual subband, required in order to form a circular region of analysis in frequency from a square region of support in frequency.

	Laplacian Pyramid	Dyadic QMF/Wavelet	Steerable Pyramic
elf-inverting (tight frame)	no	yes	yes
overcompleteness	4/3	1	4k/3
liasing in subbands	perhaps	yes	no
otated orientation bands	no	only on hex lattice [9]	yes
Table 1: Properties of the Ste	erable Pyramid relative	to two other well-known mi	alti-scale representatio

