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4 – Image Pyramids

Admin stuff

• Change of office hours on Wed 4th April 
– Mon 31st March 9.30‐10.30pm (right after class)

Ch f ti /d t f l t l• Change of time/date of last class
– Currently Mon 5th May

– What about Thursday 8th May? 

Projects

• Time to pick!

• Every group must come and see my in the 
l f k d i ffi h !next couple of weeks during office hours!

Spatial Domain

Basis functions:

Tells you where things are….

…
…
…
…
..

… but no concept of what it is

Fourier domain
Basis functions:

Tells you what is in the image….…

… but not where it is

…
…
…

…
…
…

Fourier as a change of basis

• Discrete Fourier Transform: just a big 
matrix

• But a smart matrix!

http://www.reindeergraphics.com
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Low pass filteringhttp://www.reindeergraphics.com High pass filteringhttp://www.reindeergraphics.com

Image Analysis

• Want representation that combines 
what and where.

idImage Pyramids

Why Pyramid? 

….equivalent to….

Keep filters same size

• Change image size
• Scale factor of 2

Total number of pixels in pyramid?
1 + ¼ + 1/16 + 1/32…….. = 4/3 

Over‐complete representation

Practical uses

• Compression
– Capture important structures with fewer bytes

• Denoising
d l i i f id b b d– Model statistics of pyramid sub‐bands

• Image blending
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Image pyramids

• Gaussian
• Laplacian
• Wavelet/QMF
• Steerable pyramid

http://www-bcs.mit.edu/people/adelson/pub_pdfs/pyramid83.pdf

The computational advantage of pyramids

http://www-bcs.mit.edu/people/adelson/pub_pdfs/pyramid83.pdf

http://www-bcs.mit.edu/people/adelson/pub_pdfs/pyramid83.pdf

Sampling without smoothing.  Top row shows the images,
sampled at every second pixel to get the next; bottom row 
shows the magnitude spectrum of these images.

Slide credit: W.T. Freeman 



2/26/2008

4

Sampling with smoothing.  Top row shows the images.  We
get the next image by smoothing the image with a Gaussian with sigma 1 pixel,
then sampling at every second pixel to get the next; bottom row 
shows the magnitude spectrum of these images.

Slide credit: W.T. Freeman 

Sampling with more smoothing.  Top row shows the images.  We
get the next image by smoothing the image with a Gaussian with sigma 1.4 pixels,
then sampling at every second pixel to get the next; bottom row 
shows the magnitude spectrum of these images.

Slide credit: W.T. Freeman 

1D Convolution as a matrix operation

x          f    =    Cf x

where f = (f_1 … f_N) 
and

C =  ( f_N f_(N-1) f_(N-2)  … f_1 0 …..    0
0   f_N f_(N-1)  … f_2 f_1 0 …0

………………………
0    0    0 …. 0 f_N f_(N-1) …. f_2 f_1)

Size of C is |x|-|f|+1 by |x|  

2D Convolution as a matrix operation

X          g    =    Cg X(:)

where g = (g_11 … g_1N
g_21 … g_2N

……
g_M1 …. g_MN) 

Size of X is I x J
Size Cg is IJ – MN +1 by IJ

(for ‘valid’ convolution)  

Convolution and subsampling as a matrix multiply
(1-d case)

U1 =

1     4     6     4     1     0     0     0     0     0     0     0     0     0     0     0

16 pixels 

Im_1 

For 16 pixel 1-D image

0     0     1     4     6     4     1     0     0     0     0     0     0     0     0     0     

0     0     0     0     1     4     6     4     1     0     0     0     0     0     0     0    

0     0     0     0     0     0     1     4     6     4     1     0     0     0     0     0     

0     0     0     0     0     0     0     0     1     4     6     4     1     0     0     0     

0     0     0     0     0     0     0     0     0     0     1     4     6     4     1     0

0     0     0     0     0     0     0     0     0     0     0     0     1     4     6     4

0     0     0     0     0     0     0     0     0     0     0     0     0     0     1     4

8 
pi

xe
ls

 

_
Im_2 
Im_3 
….

….
Im_16

Next pyramid level

U2 =

1     4     6     4     1     0     0     0

8 pixels 

0     0     1     4     6     4     1     0

0     0     0     0     1     4     6     4

0     0     0     0     0     0     1     4

4 
pi

xe
ls
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b * a, the combined effect of the two 
pyramid levels

>> U2 * U1

ans = Im_1 

1     4    10    20    31    40    44    40    31    20    10     4     1     0     0     0     

0     0     0     0     1     4    10    20    31    40    44    40    31    20    10     4     

0     0     0     0     0     0     0     0     1     4    10    20    31    40    44    40    

0     0     0     0     0     0     0     0     0     0     0     0     1     4    10    20    

_
Im_2 
Im_3 
….

….
Im_16

Image pyramids

• Gaussian
• Laplacian
• Wavelet/QMF
• Steerable pyramid

Image pyramids

• Gaussian
• Laplacian
• Wavelet/QMF
• Steerable pyramid

The Laplacian Pyramid

• Synthesis
– preserve difference between upsampled 

Gaussian pyramid level and Gaussian 
pyramid level

– band pass filter - each level represents spatial 
frequencies (largely) unrepresented at other 
levels

• Analysis
– reconstruct Gaussian pyramid, take top layer

Laplacian pyramid algorithm

-
-

-

http://www-bcs.mit.edu/people/adelson/pub_pdfs/pyramid83.pdf
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Why use these representations?

• Handle real-world size variations with a 
constant-size vision algorithm.

• Remove noise
A l t t• Analyze texture

• Recognize objects
• Label image features

http://web.mit.edu/persci/people/adelson/pub_pdfs/RCA84.pdf

Efficient search

http://web.mit.edu/persci/people/adelson/pub_pdfs/RCA84.pdf

Image Blending
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Feathering

+

0
1

0
1

=
Encoding transparency

I(x,y) = (αR, αG, αB, α) 

Iblend = Ileft + Iright

Affect of Window Size

0

1 left

right
0

1

Affect of Window Size

0

1

0

1

Good Window Size

0

1

“Optimal” Window:  smooth but not ghosted

What is the Optimal Window?
• To avoid seams

– window >= size of largest prominent feature

• To avoid ghosting
– window <= 2*size of smallest prominent feature

Natural to cast this in the Fourier domain
l t f 2* i f ll t f• largest frequency <= 2*size of smallest frequency

• image frequency content should occupy one “octave” (power of two)

FFT

What if the Frequency Spread is Wide

FFT

Idea (Burt and Adelson)
• Compute Fleft = FFT(Ileft), Fright = FFT(Iright)
• Decompose Fourier image into octaves (bands)

– Fleft = Fleft
1 + Fleft

2 + …
• Feather corresponding octaves Fleft

i with Fright
i

– Can compute inverse FFT and feather in spatial domain
• Sum feathered octave images in frequency domain

Better implemented in spatial domain
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http://cs.haifa.ac.il/~dkeren/ip/lecture8.pdf

Pyramid Blending

0

1

1

0

0

1

Left pyramid Right pyramidblend

Pyramid Blending laplacian
level

4

laplacian
levellevel

2

laplacian
level

0

left pyramid right pyramid blended pyramid

Laplacian Pyramid: Region Blending
General Approach:

1. Build Laplacian pyramids LA and LB from images A and B
2. Build a Gaussian pyramid GR from selected region R
3. Form a combined pyramid LS from LA and LB using nodes 

of GR as weights:
• LS(i,j) = GR(I,j,)*LA(I,j) + (1-GR(I,j))*LB(I,j)

4. Collapse the LS pyramid to get the final blended imageCo apse t e S py a d to get t e a b e ded age

Blending Regions
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Horror Photo

© david dmartin (Boston College)

Simplification: Two-band Blending

• Brown & Lowe, 2003
– Only use two bands: high freq. and low freq.
– Blends low freq. smoothly

Blend high freq with no smoothing: use– Blend high freq. with no smoothing: use 
binary mask

2-band Blending

Low frequency (λ > 2 pixels)

High frequency (λ < 2 pixels)

Linear Blending

2-band Blending

Gaussian
pyramid

Spatial

Fourier

http://cs.haifa.ac.il/~dkeren/ip/lecture8.pdf

Laplacian
pyramid

Spatial

Fourier
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Image pyramids

• Gaussian
• Laplacian
• Wavelet/Quadrature Mirror Filters (QMF)
• Steerable pyramid

Wavelets/QMF’s

transformed image

Fourier transform, or
Wavelet transform, or

Steerable pyramid transform

fUF
rr

= Vectorized image

transformed image

Orthogonal wavelets (e.g. QMF’s)

fUF
rr

=Forward / Analysis 

FVf T
rr

=

IUV T =

Inverse / Synthesis

The simplest orthogonal wavelet transform:  
the Haar transform

U =

1     1

1    -1

Haar basis is special case of Quadrature Mirror 
Filter family

The inverse transform for the Haar wavelet

>> inv(U)

ans =

0.5000    0.5000

0.5000   -0.5000

Apply this over multiple spatial positions

U =

1     1     0     0     0     0     0     0

1    -1     0     0     0     0     0     0

0     0     1     1     0     0     0     0

0     0     1    -1     0     0     0     0

0     0     0     0     1     1     0     0

0     0     0     0     1    -1     0     0

0     0     0     0     0     0     1     1

0     0     0     0     0     0     1    -1



2/26/2008

11

The high frequencies

U =

1     1     0     0     0     0     0     0

1    -1     0     0     0     0     0     0

0     0     1     1     0     0     0     0

0     0     1    -1     0     0     0     0

0     0     0     0     1     1     0     0

0     0     0     0     1    -1     0     0

0     0     0     0     0     0     1     1

0     0     0     0     0     0     1    -1

The low frequencies

U =

1     1     0     0     0     0     0     0

1    -1     0     0     0     0     0     0

0     0     1     1     0     0     0     0

0     0     1    -1     0     0     0     0

0     0     0     0     1     1     0     0

0     0     0     0     1    -1     0     0

0     0     0     0     0     0     1     1

0     0     0     0     0     0     1    -1

The inverse transform

>> inv(U)

ans =

0 5000 0 5000 0 0 0 0 0 00.5000    0.5000         0         0         0         0         0         0

0.5000   -0.5000         0         0         0         0         0         0

0         0    0.5000    0.5000         0         0         0         0

0         0    0.5000   -0.5000         0         0         0         0

0         0         0         0    0.5000    0.5000         0         0

0         0         0         0    0.5000   -0.5000         0         0

0         0         0         0         0         0    0.5000    0.5000

0         0         0         0         0         0    0.5000   -0.5000

Simoncelli and Adelson, in “Subband coding”, Kluwer, 1990.

Simoncelli and Adelson, in “Subband coding”, Kluwer, 1990.

Now, in 2 dimensions…

Frequency domain

Horizontal high pass

Horizontal low pass
Slide credit: 
W. Freeman
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Apply the wavelet transform separable in both dimensions

Horizontal high pass, 
vertical high pass

Both diagonals

Horizontal high pass, 
vertical low passvertical high pass vertical low-pass

Horizontal low pass, 
vertical high-pass

Horizontal low pass,
Vertical low-pass

Slide credit: W. 
Freeman

Simoncelli and Adelson, in “Subband coding”, Kluwer, 1990.

To create 2-d filters, apply 
the 1-d filters separably in 
the two spatial dimensions

Basis

Simoncelli and Adelson, in “Subband coding”, Kluwer, 1990.

Wavelet/QMF representation

Simoncelli and Adelson, in “Subband coding”, Kluwer, 1990.

Some other QMF’s

• 9-tap QMF:

• Better
l li d ilocalized in
frequency

http://web.mit.edu/persci/people/adelson/pub_pdfs/orthogonal87.pdf

Good and bad features of wavelet/QMF 
filters

• Bad: 
– Aliased subbands
– Non-oriented diagonal subband

G d• Good:
– Not overcomplete (so same number of 

coefficients as image pixels).
– Good for image compression (JPEG 2000)
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Compression: JPEG 2000

http://www.gvsu.edu/math/wavelets/student_work/EF/comparison.html

http://www.rii.ricoh.com/%7Egormish/pdf/dcc2000_jpeg2000_joint_charts.pdf

Compression: JPEG 2000

http://en.wikipedia.org/wiki/Image:Jpeg2000_2-level_wavelet_transform-lichtenstein.png

Image pyramids

• Gaussian
• Laplacian
• Wavelet/QMF
• Steerable pyramid

Steerable filters

• Analyze image with oriented filters
• Avoid preferred orientation
• Said differently: 

– We want to be able to compute the response 
to an arbitrary orientation from the response 
to a few basis filters 

– By linear combination
– Notion of steerability

Steerable basis filters

• Filters can measure local orientation 
direction and strength and phase at any 
orientation.

G2 H2

http://people.csail.mit.edu/billf/papers/steerpaper91FreemanAdelson.pdf

Steerability examples
http://people.csail.mit.edu/billf/papers/steerpaper91FreemanAdelson.pdf
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Reprinted from “Shiftable MultiScale Transforms,” by Simoncelli et al., IEEE Transactions
on Information Theory, 1992, copyright 1992, IEEE

Fourier construction

• Slice Fourier domain
– Concentric rings for 

different scales
– Slices for orientationSlices for orientation
– Feather cutoff to 

make steerable
– Tradeoff 

steerable/orthogonal

But we need to get rid 
of the corner regions 
before starting the 
recursive circular 

http://www.cns.nyu.edu/ftp/eero/simoncelli95b.pdf Simoncelli and Freeman, ICIP 1995

filtering

Non-oriented steerable pyramid

http://www.merl.com/reports/docs/TR95-15.pdf

3-orientation steerable pyramid

http://www.merl.com/reports/docs/TR95-15.pdf
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Steerable pyramids

• Good:
– Oriented subbands
– Non-aliased subbands
– Steerable filters

• Bad:
– Overcomplete
– Have one high frequency residual subband, required 

in order to form a circular region of analysis in 
frequency from a square region of support in 
frequency.

http://www.cns.nyu.edu/ftp/eero/simoncelli95b.pdf Simoncelli and Freeman, ICIP 1995

Application: Denoising

How to characterize the difference between the images?

How do we use the differences to clean up the image?

http://www.cns.nyu.edu/pub/lcv/simoncelli96c.pdf

Application: Denoising

Usually zero, sometimes big Usually close to zero, very rarely big

http://www.cns.nyu.edu/pub/lcv/simoncelli96c.pdf

Application: Denoising

Coring function:

http://www.cns.nyu.edu/pub/lcv/simoncelli96c.pdf

Application: Denoising

Original Noise-corrupted

Wiener filter Steerable 
pyramid
coring

http://www.cns.nyu.edu/pub/lcv/simoncelli96c.pdf
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• Summary of pyramid representations

Image pyramids

Shows the information added in 
Gaussian pyramid at each 
spatial scale.  Useful for noise 

Progressively blurred and 
subsampled versions of the 
image.  Adds scale invariance 
to fixed-size algorithms.• Gaussian

• Laplacian p
reduction & coding.

Shows components at each 
scale and orientation 
separately.  Non-aliased 
subbands.  Good for texture 
and feature analysis.

Bandpassed representation, complete, but with 
aliasing and some non-oriented subbands.

p

• Wavelet/QMF

• Steerable pyramid

http://cs.haifa.ac.il/~dkeren/ip/lecture8.pdf

Fourier transform

= *

pixel domain 
image

Fourier bases 
are global:  
each transform 
coefficient 
depends on all 
pixel locations.

Fourier 
transform

Slide credit: W. Freeman

Gaussian pyramid

= *
pixel image

Overcomplete representation.  
Low-pass filters, sampled 
appropriately for their blur.

Gaussian 
pyramid

Slide credit: W. Freeman

Laplacian pyramid

= *
pixel image

Overcomplete representation.  
Transformed pixels represent 
bandpassed image information.

Laplacian 
pyramid

Slide credit: W. Freeman
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Wavelet (QMF) transform

= *
Wavelet 
pyramid

pixel imageOrtho-normal 
transform (like 
Fourier transform), 
but with localized 
basis functions.  

py

Slide credit: W. Freeman

= *
Multiple 

orientations at 
one scale  

Steerable pyramid

pixel image

Over-complete 
representation, 
but non-aliased 
subbands. 

Steerable 
pyramid

Multiple 
orientations at 
the next scale  

the next scale…  

Slide credit: W. Freeman

Matlab resources for pyramids (with tutorial)
http://www.cns.nyu.edu/~eero/software.html

Ted Adelson (MIT)  Bill Freeman (MIT)

Matlab resources for pyramids (with tutorial)
http://www.cns.nyu.edu/~eero/software.html


