
5/13/2008

1

Deblurring & Deconvolution

Lecture 10

Admin

• Assignment 3 due

• Last lecture
– Move to Friday?

• Projects
– Come and see me

Different types of blur

• Camera shake
– User moving hands

• Scene motion
– Objects in the scene moving

• Defocus blur [NEXT WEEK]
– Depth of field effects

5/13/2008

2

Overview

• Removing Camera Shake
– Non-blind

– Blind

• Removing Motion Blur
– Non-blind

– Blind

• Focus on software approaches

Let’s take a photo

Blurry result

Slow-motion replay Slow-motion replay

Motion of camera

Image formation model: Convolution

= ⊗

Blurry image Sharp image

Blur
kernel

Input to algorithm Desired output
Convolution

operator
Model is approximation
Assume static scene

Blind vs Non-blind

• Non-blind ⊗

• Blind ⊗

5/13/2008

3

8 different people, handholding camera, using 1 second exposure

Camera Shake – is it a convolution?

Top
left

Bot.

Top
right

Bot.

Person 1 Person 2

Dots from each corner

Bot.
left right

Person 3 Person 4

What if scene not static?

• Partition the image into regions

Overview

• Removing Camera Shake
– Non-blind

– Blind

• Removing Motion Blur
– Non-blind

– Blind

?

yxf =⊗

=

Deconvolution is ill posed

⊗

Slide from Anat Levin

Deconvolution is ill posed

? =
Solution 1:

yxf =⊗

⊗ ?

=?
Solution 2:

⊗

Slide from Anat Levin

5/13/2008

4

Convolution- frequency domain representation

=
0

Sharp Image

0 Frequency

sp
ec

tr
um

0 Frequency

sp
ec

tr
um

0 Frequency

sp
ec

tr
um

Blur kernel

1st observed image

Spatial convolution frequency multiplication⇔

Output spectrum has zeros
where filter spectrum has zeros

1-D Example

Slide from Anat Levin

Idea 1: Natural images prior

Image

Natural Unnatural

What makes images special?

gradient

put a penalty on gradients

Natural images have sparse gradients

Slide from Anat Levin

Deconvolution with prior

2|| minarg yxfx −⊗=

⊗ _

∑ ∇+
i ix)(ρλ

2

+?

Convolution error Derivatives prior

⊗

⊗ _ +
2

?

?

High

Low
Equal convolution error

Comparing deconvolution algorithms

Input

(Non blind) deconvolution code available online:
http://groups.csail.mit.edu/graphics/CodedAperture/

2 80

Slide from Anat Levin

Richardson-Lucy Gaussian prior

2)(xx ∇=∇ρ
“spread” gradients

Sparse prior

“localizes” gradients

8.0)(xx ∇=∇ρ

Comparing deconvolution algorithms

Input

(Non blind) deconvolution code available online:
http://groups.csail.mit.edu/graphics/CodedAperture/

2 80

Slide from Anat Levin

Richardson-Lucy Gaussian prior

“spread” gradients

Sparse prior

“localizes” gradients

2)(xx ∇=∇ρ 8.0)(xx ∇=∇ρ

5/13/2008

5

Application: Hubble Space Telescope

• Launched with flawed mirror

• Initially used deconvolution to correct
images before corrective optics installed

Image of star

Non-Blind Deconvolution
Matlab Demo

• http://groups.csail.mit.edu/graphics/Code
dAperture/DeconvolutionCode.html

Overview

• Removing Camera Shake
– Non-blind

– Blind

• Removing Motion Blur
– Non-blind

– Blind

Removing Camera Shake from
a Single Photograph

Rob Fergus, Barun Singh, Aaron Hertzmann,
Sam T. Roweis and William T. Freeman

Massachusetts Institute of Technology
and

University of Toronto

Overview

Original Our algorithm

Joint work with B. Singh, A. Hertzmann, S.T. Roweis & W.T. Freeman

5/13/2008

6

Close-up

Original Naïve sharpening Our algorithm

Image formation process

= ⊗

Blurry image Sharp image

Blur
kernel

Input to algorithm Desired output
Convolution

operator
Model is approximation
Assume static scene

Existing work on image deblurring

Old problem:
– Trott, T., “The Effect of Motion of Resolution”,

Photogrammetric Engineering, Vol. 26, pp. 819-827, 1960.

– Slepian, D., “Restoration of Photographs Blurred by Image
i ” ll S h l 6 0 23 3 2362 96Motion”, Bell System Tech., Vol. 46, No. 10, pp. 2353-2362, 1967.

Existing work on image deblurring

Software algorithms for natural images
– Many require multiple images

– Mainly Fourier and/or Wavelet based

Strong assumptions about blur – Strong assumptions about blur
not true for camera shake

– Image constraints are frequency-domain power-laws

Assumed forms of blur kernels

Hardware approaches

Existing work on image deblurring

Dual cameras Coded shutterImage stabilizers

Our approach can be combined with these hardware methods

Ben-Ezra & Nayar
CVPR 2004

Raskar et al.
SIGGRAPH 2006

Why is this hard?

Simple analogy:
11 is the product of two numbers.
What are they?

No unique solution: No unique solution:
11 = 1 x 11
11 = 2 x 5.5
11 = 3 x 3.667
etc…..

Need more information !!!!

5/13/2008

7

Multiple possible solutions
Sharp image Blur kernel

= ⊗

= ⊗

Blurry image

= ⊗

Natural image statistics

Histogram of image gradients

Characteristic distribution with heavy tails

Lo
g

p
ixe

ls

Blurry images have different statistics

Histogram of image gradients

Lo
g

p
ixe

ls

Parametric distribution

Histogram of image gradients

Use parametric model of sharp image statistics

Lo
g

p
ixe

ls

Uses of natural image statistics

• Denoising [Portilla et al. 2003, Roth and Black, CVPR 2005]

• Superresolution [Tappen et al., ICCV 2003]

• Intrinsic images [Weiss, ICCV 2001]

I i i [L i l ICCV 2003]• Inpainting [Levin et al., ICCV 2003]

• Reflections [Levin and Weiss, ECCV 2004]

• Video matting [Apostoloff & Fitzgibbon, CVPR 2005]

Corruption process assumed known

Three sources of information
1. Reconstruction constraint:

=⊗

Input blurry imageEstimated sharp image
Estimated
blur kernel

2. Image prior: 3. Blur prior:

Positive
&

Sparse
Distribution
of gradients

5/13/2008

8

Three sources of information

y = observed image b = blur kernel x = sharp image

Three sources of information

y = observed image b = blur kernel x = sharp image

Posterior
p(b; xjy)

Three sources of information

y = observed image b = blur kernel x = sharp image

Posterior 1. Likelihood
(Reconstruction

constraint)

2. Image
prior

3. Blur
prior

p(b; xjy) = k p(yjb; x) p(x) p(b)

y = observed image b = blur x = sharp image

1. Likelihood

Reconstruction constraint:

p(yjb; x)

i - pixel index

/
Q

i e¡ (xi - b¡ yi)
2

2¾2

p(yjb; x) =
Q

i N (yi jx i - b; ¾2)

y = observed image b = blur x = sharp image

2. Image prior p(x)

p(x) =
Q

i
P C

c= 1 ¼c N (f (x i) j0; s2
c)

i - pixel index

c - mixture component index

f - derivative filter

Mixture of Gaussians fit to
empirical distribution of

image gradients

Lo
g

p
ixe

ls

y = observed image b = blur x = sharp image

3. Blur prior p(b)

70

p(b) =
Q

j
P D

d= 1 ¼d E(bj j¸ d)

j - blur kernel element

d - mixture component index

Mixture of Exponentials
– Positive & sparse

– No connectivity constraint

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

10

20

30

40

50

60

b

p(
b)

Most elements near zero

A few can be large

5/13/2008

9

The obvious thing to do

Posterior 1. Likelihood
(Reconstruction

constraint)

2. Image
prior

3. Blur
prior

p(b; xjy) = k p(yjb; x) p(x) p(b)

– Combine 3 terms into an objective function

– Run conjugate gradient descent

– This is Maximum a-Posteriori (MAP)

No success!

Variational Bayesian approach

Keeps track of uncertainty in estimates of image and blur by
using a distribution instead of a single estimate

f f

Variational
Bayes

Optimization surface for a
single variable

Maximum
a-Posteriori (MAP)

Pixel intensity

Sc
or

e
Variational Independent Component Analysis

• Binary images

• Priors on intensities

• Small, synthetic blurs

Miskin and Mackay, 2000

, y

• Not applicable to
natural images

Overview of algorithm

Input image

1. Pre-processing

2. Kernel estimation
- Multi-scale approach

3. Image reconstruction
- Standard non-blind deconvolution routine

Gamma
correction

RAW
values

Digital image formation process

Blur process applied here

Remapped
values

P. Debevec & J. Malik, Recovering High Dynamic Range Radiance Maps from Photographs”, SIGGRAPH 97

Preprocessing

Convert to
grayscale

Input image

Remove gamma
correction

User selects patch
from image

Bayesian inference
too slow to run on
whole image

Infer kernel
from this patch

5/13/2008

10

Initialization
Input image

Convert to
grayscale

Remove gamma
correction

User selects patch
from image

Initialize 3x3
blur kernel

Initial blur kernelBlurry patch Initial image estimate

Inferring the kernel: multiscale method
Input image

L l

Convert to
grayscale

Remove gamma
correction

User selects patch
from image

Loop over scales

Variational
Bayes

Upsample
estimates

Use multi-scale approach to avoid local minima:

Initialize 3x3
blur kernel

Image Reconstruction
Input image

L l

Convert to
grayscale

Remove gamma
correction

User selects patch
from image

Full resolution
blur estimate

Non-blind deconvolution
(Richardson-Lucy) Deblurred

image

Loop over scales

Variational
Bayes

Upsample
estimates

Initialize 3x3
blur kernel

Synthetic
i texperiments

Synthetic example

Sharp image
Artificial

blur trajectory

Synthetic blurry image

5/13/2008

11

Inference – initial scale
Image before Image after

Kernel before Kernel after

Inference – scale 2
Image before Image after

Kernel before Kernel after

Inference – scale 3
Image before Image after

Kernel before Kernel after

Inference – scale 4
Image before Image after

Kernel before Kernel after

Inference – scale 5
Image before Image after

Kernel before Kernel after

Inference – scale 6
Image before Image after

Kernel before Kernel after

5/13/2008

12

Inference – Final scale
Image before Image after

Kernel before Kernel after

True kernel Estimated kernel

Comparison of kernels

Blurry image Matlab’s deconvblind

Blurry image Our output

5/13/2008

13

True sharp image What we do and don’t model

DO
• Gamma correction
• Tone response curve (if known)

DON’T
• Saturation
• Jpeg artifacts
• Scene motion
• Color channel correlations

Real
i texperiments

Results on real images

Submitted by people from their own photo collections

Type of camera unknown

O d i ifOutput does contain artifacts
– Increased noise

– Ringing

Compare with existing methods

5/13/2008

14

Close-up

• Original

• Output

Original photograph

Blur kernelOur output Matlab’s deconvblind

Original Our output

Close-up

Matlab’s
deconvblind

Original photograph

5/13/2008

15

Our output Blur kernel Photoshop sharpen more

Original image
Close-up

Blur kernel Close-up of our outputClose-up of image

Original photograph

Our output

Blur kernel

Original image

5/13/2008

16

Our output

Blur kernel

Blur kernelOur outputOriginal image

Close-up

What about a sharp image?

Original photograph Our outputBlur kernel

Original photograph

Blur kernel

Our output

5/13/2008

17

Blur kernel
Our outputOriginal image

Close-up

Original photograph

Blurry image patch

Our output

Blur kernel

Original photograph

Our output

Blur kernel

Close-up of bird

Original Unsharp mask Our output

5/13/2008

18

Original photograph Our output

Blur kernel

Image artifacts & estimated kernels

Blur kernels

Image patterns
Note: blur kernels were inferred from large image patches,

NOT the image patterns shown

Code available online

http://cs.nyu.edu/~fergus/research/deblur.html

Summary

Method for removing camera shake
from real photographs

First method that can handle
complicated blur kernels

Uses natural image statistics

Non-blind deconvolution
currently simplistic

Things we have yet to model:
– Correlations in colors, scales, kernel continuity

– JPEG noise, saturation, object motion

Overview

• Removing Camera Shake
– Non-blind

– Blind

• Removing Motion Blur
– Non-blind

– Blind

5/13/2008

19

Deblurred ResultInput Photo

Traditional Camera

Shutter is OPEN

Our Camera

Flutter Shutter

5/13/2008

20

Shutter is OPEN and
CLOSED

Comparison of Blurred Images

Implementation

Completely Portable

Lab Setup

Blurring S F ti g

==

Convolution

Traditional Camera: Box Filter

Sync Function

Flutter Shutter: Coded Filter

Preserves High
Frequencies!!!

5/13/2008

21

Comparison

Inverse Filter Unstable

Inverse Filter stable

Short Exposure Long Exposure Coded Exposure

Our result

Ground TruthMatlab Lucy

Overview

• Removing Camera Shake
– Non-blind

– Blind

• Removing Motion Blur
– Non-blind

– Blind

Use statistics to determine blur size

• Assumes direction of blur known

5/13/2008

22

Input image Deblur whole image at once

Local Evidence Proposed boundary

Result image Input image (for comparison)

5/13/2008

23

Let y = 2
σ2 = 0.1

2

p(b; xjy) = k p(yjb; x) p(x) p(b)

N (yjbx; ¾2)

Gaussian distribution:

N (j0 2)

p(b; xjy) = k p(yjb; x) p(x) p(b)

N (xj0; 2)

p(b; xjy) = k p(yjb; x) p(x) p(b)

Marginal distribution p(b|y)Marginal distribution p(b|y)
p(bjy) =

R
p(b; xjy) dx = k

R
p(yjb; x) p(x) dx

0.12

0.14

0.16

0 1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

b

B
ay

es
 p

(b
|y

)

0.12

0.14

0.16

MAP solution

Highest point on surface: ar gmaxb;x p(x; bjy)

0 1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

b

B
ay

es
 p

(b
|y

)

5/13/2008

24

MAP solution

Highest point on surface: ar gmaxb;x p(x; bjy)
Variational BayesVariational Bayes

• True Bayesian
approach not
tractable

• Approximate
posterior
with simple
distribution

Fitting posterior with a
Gaussian
Fitting posterior with a
Gaussian• Approximating distribution is Gaussian

• Minimize K L (q(x; b) jj p(x; bjy))

q(x; b)

KL-Distance vs Gaussian
width
KL-Distance vs Gaussian
width

8

9

10

11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
4

5

6

7

8

Gaussian width

K
L(

q|
|p

)

Fitting posterior with a
Gaussian
Fitting posterior with a
Gaussian• Approximating distribution is Gaussian

• Minimize K L (q(x; b) jj p(x; bjy))

q(x; b)

Variational Approximation of MarginalVariational Approximation of Marginal

1.5

2

2.5

Variational

True
i l

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

b

 p
(b

|y
)

marginal

MAP

5/13/2008

25

Try sampling from the modelTry sampling from the model
Let true b = 2

Repeat:
0.4

0.5

0.6

0.7

0.8

0.9

1

p(
b|

y)

• Sample x ~ N(0,2)

• Sample n ~ N(0,σ2)

• y = xb + n

• Compute pMAP(b|y), pBayes(b|y) & pVariational(b|y)

• Multiply with existing density estimates (assume iid)

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

b

Setup of Variational ApproachSetup of Variational Approach

Work in gradient domain:

! r x - b = r yx - b = y

Approximate posterior
with

p(r x; bjr y)
q(r x; b)with

is Gaussian on each pixel

is rectified Gaussian on each blur kernel element

q(r x; b)

q(r x; b) = q(r x) q(b)
q(r x)
q(b)

K L (q(r x) q(b) jj p(r x; bjr y))

Assume

Cost function

