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Networks in which the formation of connections is governed by a random process often undergo a
percolation transition, wherein around some critical point, the addition of a small number of
connections causes a sizable fraction of the network to suddenly become linked together. Typically
such transitions are continuous, so that the percentage of the network linked together tends to zero
right above the transition point. Whether percolation transitions could be discontinuous has been
an open question. Here, we show that incorporating a limited amount of choice in the classic
Erdös-Rényi network formation model causes its percolation transition to become discontinuous.

Alarge system is said to undergo a phase
transition when one or more of its prop-
erties change abruptly after a slight

change in a controlling variable. Besides water
turning into ice or steam, other prototypical phase
transitions are the spontaneous emergence of mag-
netization and superconductivity in metals, the
epidemic spread of disease, and the dramatic
change in connectivity of networks and lattices
known as percolation. Perhaps the most funda-
mental characteristic of a phase transition is its
order, i.e., whether the macroscopic quantity it af-
fects changes continuously or discontinuously at
the transition. Continuous (smooth) transitions are
known as second-order and include many mag-
netization phenomena, whereas discontinuous (ab-
rupt) transitions are known as first-order, a familiar
example being the discontinuous drop in entropy
when liquid water turns into solid ice at 0°C.

We consider percolation phase transitions in
models of random network formation. In the clas-

sic Erdös-Rényi (ER) model (1), we start with n
isolated vertices (points) and add edges (con-
nections) one by one, each edge formed by picking
two vertices uniformly at random and connect-
ing them (Fig. 1A). At any given moment, the
(connected) component of a vertex v is the set
of vertices that can be reached from v by tra-
versing edges. Components merge under ER as
if attracted by gravitation. This is because every
time an edge is added, the probability two given
components will be merged is proportional to
the number of possible edges between them which,
in turn, is equal to the product of their respective
sizes (number of vertices).

One of the most studied phenomena in prob-
ability theory is the percolation transition of ER
random networks, also known as the emergence
of a giant component. When rn edges have been
added, if r < ½, the largest component remains
miniscule, its number of vertices C scaling as
log n; in contrast, if r > ½, there is a component
of size linear in n. Specifically, C ≈ (4r − 2)n for
r slightly greater than ½ and, thus, the fraction
of vertices in the largest component undergoes a
continuous phase transition at r = ½ (Fig. 1C).
Such continuity has been considered a basic char-
acteristic of percolation transitions, occurring in

models ranging from classic percolation in the
two-dimensional grid to random graph models
of social networks (2).

Here, we show that percolation transitions in
random networks can be discontinuous. We dem-
onstrate this result for models similar to ER,
thus also establishing that altering a network-
formation process slightly can affect it dra-
matically, changing the order of its percolation
transition. Concretely, we consider models that,
like ER, start with n isolated vertices and add
edges one by one. The difference, as illustrated
in Fig. 1B, is that to add a single edge we now
pick two random edges {e1,e2}, rather than one,
each edge picked exactly as in ER and indepen-
dently of the other. Of these, with no knowledge
of future edge-pairs, we are to select one and in-
sert it in the graph and discard the other. Clearly,
if we always resort to randomness for selecting
among the two edges, we recover the ER model.
Whether nonrandom selection rules can delay (or
accelerate) percolation in such models has re-
ceived much attention in recent years (3–6).

A selection rule is classified as “bounded-
size” if its decision depends only on the sizes of
the components containing the four end points
of {e1,e2} and, moreover, it treats all sizes greater
than some (rule-specific) constant K identically.
For example, a bounded-size rule with K = 1 due
to Bohman and Frieze (BF) (3), the first selection
rule to be analyzed, proceeds as follows: If e1
connects two components of size 1, it is selected;
otherwise, e2 is selected. So, in Fig. 1B, e2 would
be selected. Bounded-size rules, in general, are
amenable to rigorous mathematical analysis, and
in (3, 4) it was proven that such rules are capable
both of delaying and of accelerating percolation.
In contrast, unbounded-size rules seem beyond
the reach of current mathematical techniques.
A crucial point is that the percolation transition
is strongly conjectured to be continuous for all
bounded-size rules (4). This conjecture is sup-
ported both by numerical evidence and mathe-
matical considerations, though a fully rigorous
argument has remained elusive.
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Fig. 1. Network evolu-
tion. (A) Under the Erdös-
Rényi (ER) model, in each
step two vertices are cho-
sen at random and con-
nected by an edge (shown
as the dashed line). In
this example, two com-
ponents of size 7 and 2
get merged. (B) In mod-
els with choice, two ran-
dom edges {e1,e2} are
picked in each step yet
only one is added to the
network based on some selection rule, whereas the other is discarded.
Under the product rule (PR), the edge selected is the one minimizing the
product of the sizes of the components it merges. In this example, e1 (with
product 2 × 7 = 14) would be chosen and e2 discarded (because 4 × 4 =

16). In contrast, the rule selecting the edge minimizing the sum of the com-
ponent sizes instead of the product would select e2 rather than e1. (C) Typical
evolution of C/n for ER, BF (a bounded size rule with K = 1), and PR, shown for
n = 512,000.
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Here, we provide conclusive numerical evi-
dence that, in contrast, unbounded-size rules can
give rise to discontinuous percolation transitions.
For concreteness, we present evidence for the so-
called product-rule (PR): Always retain the edge
that minimizes the product of the sizes of the
components it joins, breaking ties arbitrarily
(Fig. 1B). Thus, the PR selection criterion at-
tempts to reduce the aforementioned gravitation-
al attraction between components. We note that
other unbounded-size rules also yield first-order
transitions. For example, results similar to those
for PR hold when “product” is replaced by “sum.”
It is also worth noting that the criterion employed
by PR can also be used to accelerate percolation
by always selecting the edge that maximizes rather
than minimizes the product of the size of the com-
ponents it merges (and similarly for sum). Nev-
ertheless, in that case, the percolation transition
remains continuous, reflecting the completely dif-
ferent evolution of the component-size distribution
in the maximizing versus the minimizing case.

Let C denote the size of the largest compo-
nent, t0 denote the last step for which C < n1/2,
and t1 the first step for which C > 0.5n. In con-
tinuous transitions, the interval D = t1 − t0 is
always extensive, i.e., linear in n. For example,
D > 0.193n in ER. In contrast, as we show in
Fig. 2B, D is not extensive for the product rule;
indeed, D < 2n2/3 and it appears that D/n2/3 → 1,
so that the fraction of vertices in the largest com-
ponent jumps from being a vanishing fraction of

all vertices to a majority of them “instantaneous-
ly.” Although t0/n and t1/n converge to rc =
0.888… (Fig. 2C), the variance in the value of t0
and t1 is enough to prevent the direct observation
of a first-order transition. That is, measuring the
size of the largest component as a function of
the number of steps and averaging it over differ-
ent realizations smears out the transition point,
motivating our introduction of D and its mea-
surement along different realizations. Specifical-
ly, each data point in Fig. 2, A to C, represents
an average over an ensemble of 50 independent
identically distributed realizations, and the dashed
lines are the statistical best fits to the data (for
details, see the supporting online material). Our
computer implementation makes use of efficient
procedures (7) for tracking how components
merge as edges are added.

Our choice of n1/2 and 0.5n above for defin-
ing D was simply illustrative. To demonstrate the
discontinuity of PR’s percolation transition, it
suffices to find constants A > 0 and b,g < 1 such
that the number of steps between C < ng and C >
An is smaller than nb. Indeed, we have dis-
covered a general scaling law associated with
PR’s percolation. For a range of values for A, we
find that the same simple linear scaling relation
governs the boundary of valid parameter choices,
namely g + lb = m, where to the best of our
numerical estimates, l ≈ 1.2 and m ≈ 1.3. Con-
vergence to this behavior for A = 0.5 is shown in
Fig. 2D. Here, each data point depicts an indi-

vidual realization, and color is used to show the
relative error between the empirical value and
that predicted by the scaling relation (see sup-
porting online material for details).

We have demonstrated that small changes in
edge formation have the ability to fundamental-
ly alter the nature of percolation transitions. Our
findings call for the comprehensive study of this
phenomenon, and of its potential use in bringing
phase transitions under control.
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Fig. 2. (A) The ratio D/n for ER
and BF for increasing system
sizes. (B) The ratio D/n2/3 for PR
for increasing system sizes. (C)
Convergence to rc = 0.888…
from above and below (the two
curves fitted independently).
(D) A linear scaling relation is
obeyed in the range g ∈ [0.2,0.6],
shown here for A = 0.5. Color
shows convergence with increas-
ing system size n to the relation
g + 1.2b = 1.3. Our numerical
experiments establish this scal-
ing relation for A ∈ [0.1,0.6]
and we expect that in larger sys-
tem sizes this range of A would
broaden, particularly the lower
end.
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