
IEEE TRANSACTIONS ON COMPUTERS, VOL. C-35, NO. 12, DECEMBER 1986

Automatic Verification of Sequential Circuits Using

Temporal Logic
MICHAEL C. BROWNE, EDMUND M. CLARKE, DAVID L. DILL, AND BUD MISHRA

Abstract-Verifying the correctness of sequential circuits has
been an important problem for a long time. But lack of any
formal and efficient method of verification has prevented the
creation of practical design aids for this purpose. Since- all the
known techniques of simulation apd prototype testing are time
consuming and not very reliable, there is an acute need for such
tools. In this paper we describe an automatic verification system
for sequential circuits in which specifications are expressed in a
propositional temporal logic. In contrast to most other mechani-
cal verification systems, our system does not require any user
assistance and is quite;fast-experimental results show that state
machines with several hundred states can be checked for
correctness in a matter of seconds!
The verification system uses a simple and efficient algorithm,

called a model checker. The algorithm works in two steps: in the
first step, it builds a labeled state-transition graph; and in the
second step, it determines the truth of a temporal formula with.
respect to the state-transition graph. We discuss two different
techniques that we thave implemented for automatically generat-
ing the state-transition graphs: The first involves extracting the
state graph directly feom the circuit by exhaustive simulation.
The second obtains the state graph by compilation from an HDL
specification of the original circuit.

Index Terms-Asynchronous circuits, hardware verification,
sequential circuit verification, temporal logic, temporal logic
model checking.

I. INTRODUCTION
V ERIFYING the correctness of sequential circuits has been

an important problem for a long time. But lack of any
formal and efficient method of verification has prevented the
creation of practical design aids for this purpose. Since all the
known techniques of simulation and prototype testing are time
consuming and not very reliable, there is an acute need for
such tools. In this paper we describe an automatic verification
system for sequential circuits in which specifications are
expressed in a propositional temporal logic. In contrast to most
other mechanical verification systems, our system is fully
automatic and does not require user assistance in the construc-
tion of proofs. Also, it is quite fast; experimental results show
that state machines with several hundred states can be checked
for correctness in a matter of seconds!

Propositional logic has long been accepted as an appropriate

Manuscript received February 26, 1985; revised March 24, 1986. This
work was supported by the National Science Foundation under Grant MCS-
82-16706.
M. C. Browne, E. M. Clarke, and D. L. Dill are with the Department of

Computer Science, Carnegie-Mellon University, Pittsburgh, PA 15213.
B. Mishra was with the Department of Computer Science, Carneie-Mellon

University, Pittsburgh, PA 15213. He is now with the Department of
Computer Science, New York University, New York, NY 10012.
IEEE Log Number 8610931.

formalism for describing and reasoning about combinational
circuits. We believe that temporal logic may be equally useful
for sequential circuits. Bochmann [3] was probably the first to
use temporal logic to describe circuits. He verified an
implementation of a self-timed arbiter using linear temporal
logic and what he called "reachability analysis." Malachi and
Owicki [11] identified additional temporal operators required
to express interesting properties of circuits and also gave
specifications of a large class of modules used in self-timed
systems. Although these researchers contributed significantly
toward developing an adequate notation for expressing the
correctness of circuits, the problem of mechanically verifying
a circuit using efficient algorithms still remained unsolved.
We show how a simple and efficient algorithm, called a

model checker, can be used to verify various temporal
properties of a sequential circuit. Roughly speaking, our
method works by first building a labeled state-transition graph
for the circu'it. This graph can be viewed as a finite Kripke
structure or model. By using the model checker we can
determine the truth of a temporal formula relative to the state
graph. Our algorithm has time complexity linear in both the
size of the specification and the size of the state-transition
graph. Moreover, if the formula is not true, the model checker
will provide a counterexample if possible.

Thus, if we have correctly translated the circuit specifica-
tion into a state-transition graph, we will know that a formula
determined to be true by the model checker must also hold true
for the corresponding circuit. We discuss two different
techniques that we have implemented for automatically gener-
ating such graphs: The first involves extracting the state graph
directly from the circuit by simulation. The second obtains the
state graph by compilation from an HDL specification of the
original circuit.

In the first approach a mixed gate- and switch-level circuit
simulator is used to extract a state graph from a structural
description of the sequential circuit. Usually, circuits are
designed under the assumptions that some input sequences and
combinations will not occur. The program exploits this to
prevent a combinatorial explosion in the number of states that
are generated, by allowing the user to specify a set of
conditions under which the inputs can change. The simulator
uses a unit-delay timing model in which the switching delays
of all transistors and gates are assumed to be equal.
The second approach involves extracting the Kripke struc-

ture from a high-level state machine description language with
a Pascal-like syntax (called SML). Since programs in the SML
language must ultimately compile into circuits, the majQr data

0018-9340/86/1200-1035$01.00 © 1986 IEEE

1035

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-35, NO. 12, DECEMBER 1986

type is Boolean. Furthermore, Boolean variables may be
declared active high or active low, and use of mixed logic is
encouraged. Programs are composed using the standard
control structures if, while, and loop/exit. A cobegin is
provided for simultaneous execution of statements, and there
is a simple macro mechanism. The output of the SML
compiler can also be used to generate a PLA, PAL, or ROM-
thus, permitting state machines that have been verified by our
techniques to be implemented as circuits.

The paper is organized as follows: Section II briefly
describes the CTL specification language and how the model
checker works. Section III discusses the automatic procedure
that we have implemented for extracting a CTL model directly
from a circuit and Section IV illustrates its use in verifying an
asynchronous circuit from' Seitz's chapter in Mead and
Conway [12]. In Section V we outline the alternative approach
of extracting a CTL model from a program in a high-level state
machine description language with a Pascal-like syntax and
illustrate its use with examples. The paper concludes in
Section VI with a discussion of directions for future research
including the possibility of making our approach hierarchical.

II. CTL AND EMC

The logic that we use to specify circuits is a propositional
temporal logic of branching time, called CTL (computation
tree logic).' This logic is essentially the same as that described
in [1], [6], and [9]. The syntax for CTL is as follows: Let (P be
the set of all the atomic propositions in the language i, then:

1) Every atomic proposition P in (P is a formula in CTL.
2) Iff1 andf2 are CTL formulae, then so are 'fl, fi A f2,

AXfl, EXfl, A [fi Uf2], and E[fi Uf2].
In this logic the propositional connectives - and A have

their usual meanings of negation and conjunction. The
temporal operator X is the next time operator. Hence, the
intuitive meaning of AXJf (EXfi) is that fi holds in every (in
some) immediate successor state of the current state. The
temporal operator U is the strong until operator. The intuitive
meaning of A [fi Uf2] (E[f1 Uf2]) is that for every computa-
tion path (for some computation path), there exists an initial
prefix of the path such thatf2 holds at the last state of the prefix
and fA holds at all other states along the prefix.
We also use the following syntactic abbreviations:
*fivf2=- '-('f, A '-if2), fi f2--fIVf2andfi+
f2 (fi -f2)A (f2 -fl).

* AFfi _ A [true Uf1] which means for every path, there
exists a state on the path at which fi holds.

* EFJi E[true Uf1] which means for some path, there
exists a state on the path at which fi holds.

* A Gf1 i EF--if, which means for every path, at every
node on the path f, holds.

* EGf1i- AF- ff which means for some path, at every
node on the path fi holds.

We also define the weak until operator u which is similar to
the strong uwntil except that it does not imply that the second
condition is inevitable. For example, A [fi uf2] is satisfied
when all paths have an initial sequence of states satisfying fi
immediately followed by a state satisfying f2 or consist of an
infinite sequence of states satisfying fi. The weak until can be

defined by a syntactic abbreviation A [fi uf2]
E['f2 U(ffi A -if2)] which means that for every computa-
tion path, fi is true in all states preceding the (first) state in
which f2 is true.
The semantics of a CTL formula is defined with respect to a

labeled state-transition graph. A CTL structure is a triple 91t
= (S, R, Il) where

1) S is a finite set of states.
2) R is a total binary relation on S(R C S x S) and denotes

the possible transitions between states.
3) 1l is an assignment of atomic proposition to states, i.e., II

:S - 2
A path is an infinite sequence of states (so, sl, s2, * such

that vi [(si, s,+ I) E R]. For any structure 91 = (S, R, 1I) and
state so E S, there is an infinite computation tree with root
labeled so such that s t is an arc in the tree iff (s, t) E R.
The truth in a structure is expressed by 91t, so = f, meaning

that the temporal formula f is satisfied in the structure X at
state so. The semantics of temporal formulae are defined
inductively as follows.

* sO PiffPR H(so).
* s -ififfs Wfs
* So= fi A f2 iffs0s fi and so f2.
* s0 =AXf1 iff for all states t such that (so, t) E R, t t fi-
* so EXf1 iff for some state t such that (s0, t) E R, t ¢

fi.
* so ¢ A[fi Uf2] iff for all paths (so, sj, s2,), 3j>0[si =
f2 A V0oj<ji [sj tfill

* so t E[f1 Uf2] iff for some path (S0, S1, 52, . . .), 3i20[si
= f2 A Vo0j<i[sj1 fi1],

There is a program called EMC (extended model checker)
that verifies the truth of a formula in a model using these
definitions. It uses efficient graph-traversal algorithms to
check a formula in time linear in tlhe size of the graph and in
the length of the formula. (See [6] for details.)

There are two additional features of the model checker that
turn out to be particularly useful in practice. The first
extension is the addition of fairness constraints. Occasion-
ally, we are only interested in the correctness of fair execution
sequences. For example, we may wish to consider only
execution sequences in which some process that is continu-
ously enabled will eventually fire. This type of property
cannot be expressed directly in CTL. In order to handle such
properties we must modify the semantics of CTL slightly.
Initially, the model checker will prompt the user for a series of
fairpess constraints. Each constraint can be an arbitrary
f,ormula of the logic. A path is said to be fair with respect to a
set of fairness constraints if each constraint holds infinitely
often along the path. The path quantifiers in CTL formulas are
now restricted to fair paths. Examples of fairness constraints
can be found in Sections IV and V. In [6] we show that
handling fairness in this manner does not change the linear
time complexity of the model checker.
The second feature is a couunterexample facility. When the

model checker determines that a formula is false, it will
attempt to find a path in the graph which demonstrates that the
negation of the formula is true. For instance, if the formula has
the form AGf, our system will produce a path to a state in

1036

BROWNE et al.: AUTOMATIC VERIFICATION OF SEQUENTIAL CIRCUITS

which -f holds. This feature is quite useful for debugging.
EMC is Written in C and runs on a VAX® 11780 under Unix.@

III. EXTRACTING STATE GRAPHS FROM CIRCUITS

Perhaps the most common way to understand a circuit is to
trace its operation, propagating sample values through one
level of gates completely before proceeding with the next
layer. This is an application of a unit delay timing model: one
assumes that the delay between input signals and the corres-
ponding output is exactly the same for all of the gates in the
circuit. The unit delay assumption is frequently used for
simulation at the gate and switch level.
We use the unit-delay assumption when verifying sequential

circuits. In essence, we have automated the informal process
of checking the circuit operation for all possible inputs. The
unit-delay assumption may not catch all errors in asynchron-
ous circuits. A circuit may malfunction only in the presence of
unequal gate delays, in which case some other method must be
used to detect the possible error. However, we believe that
verification under the unit-delay assumption is a good way to
debug many types of asynchronous circuits-perhaps as an
initial step in a more thorough (and expensive) verification
process.
We describe below a program that converts a mixed gate-

and switch-level description of a circuit into a state graph
(called the circuit processor from now on). The resulting state
graph and verification conditions (written in CTL) can then be
fed to the model checker to do the actual checking.
The input to the circuit processor is a structural circuit

description. It consists of a set of node and component
declarations. A node can be declared to be an input node in
which case it is assumed to be driven by an off-chip signal;
otherwise, it is assumed to be an internal node serving as a
connection point. Internal nodes also have the ability to store
signals capacitively if they are not connected (directly or
indirectly) to a power source. A component can be regarded as
a box with a set of "formal nodes," similar to formal
parameters in procedures in conventional programming lan-
guages. A component declaration consists of a component type
and an association of its formal nodes with the actual nodes in
the circuit. Components can be resistors, transistors, or
Boolean gates.
Once the circuit description has been read, the circuit

processor builds a state graph. The heart of the program is a
mixed gate- and switch-level simulator. The states of the
output state graph are characterized by the signals at the circuit
nodes: There is at most one state corresponding to any set of
node values and each state is labeled with the signals that have
the value 1 in that state.
The construction of the state graph starts with a user-

specified initial state and uses the simulator to find the
successors to every new state it generates. The circuit
processor also decides what values to use for the input nodes
when finding the successors. A state can have mnore than one
successor if there are several possible input values.

® Vax is a registered trademark of Digital Equipment Corporation.
® Unix is a registered trademark of AT&T Bell Laboratories.

The simulation algorithm is the same as the one used in
MOSSIM II, a widely used switch-level simulator. The
algorithm and MOSSIM II are thoroughly explained else-
where, so we summarize it only briefly here. (See [5].) The
algorithm uses three "logical" values: 0, 1, and X (meaning
"unknown").1

Basically, the simulation performs a set of steps, each step
simulating one unit delay. There are logical values assigned to
the circuit nodes on entry to each step, either from the results
of the previous step or from user-specified initial conditions. A
step consists of two phases. First, the logical node values are
used to determine whether the transistors are on, off, or
unknown. The transistors are frozen in this state, giving a
resistor circuit. In the second phase the node values and the
resistor circuit are used to find new node values using an
approximate model. This gives the logical node values for the
next step.
We have augmented the algorithm to allow simulation of

arbitrary Boolean gates. During the first phase of a unit step a
Boolean result is computed from the logical values of the
gate's input nodes. If the gate has a Boolean output of 1, the
simulator adds a pullup resistor to the gate output node in the
resistor circuit used in phase 2. If the Boolean result is 0, the
simulator adds both a pullup and an appropriate pulldown
resistor to the output node, Another approach could be to treat
the output of the gate as a "weak" signal source; however,
this would require reformulating the switch-level model,
which assumes that sources provide very strong signals
because they correspond to input pins driven from off-chip.

Since circuits are only expected to work when they are
properly used, the program need not consider all inputs at all
states. Instead, the user specifies a set of conditions under
which the inputs can change. (These are assumptions about
the operation of the circuit which are included in the circuit
description, not properties to be proved.) The conditions are
propositional formulas on the node values. The circuit
processor determines whether a state satisfies the change
condition for each input signal, and uses this information to
decide whether that signal can change during the computation
of the successor states. Each signal that can change h'as two
possible values: the current value and its logical complement.
Any combination of these values is a possible input. It is
possible for the inputs to remain unchanged in every state.

It is sometimes useful for an input condition to be able to test
whether a state is "stable." (In the unit delay model, a stable
state is a state that is a successor of itself. The circuit can stay
in such a state for an arbitrarily long time.) Usually, for
example, a clock signal in a synchronous circuit should not
change until the circuit is stable. We allow the atomic
proposition stable to be used in input change conditions. The
preprocessor labels a state with stable if that state is a

This presents no problem for the model checker. We have extended it to
accept a state graph in which the states have two sets of labels: olie of nodes
with 1 values and one of nodes with 0 values. A node with anX value appears
in neither set. A state graph of this form represents a family of state graphs of
the previous type; each member of the family is the result of substituting 0 or 1
for a node that has the valueX in the original graph. A formula is satisfied by
a state iff it is satisfied by the corresponding state in every element of this
family of graphs.

1037

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-35, NO. 12, DECEMBER 1986

* The procedure below uses a hash table that maps node value assignments
to states.

* To construct the state machine, call this procedure on a node value
assignment for the initial state.

procedure BuildGraph(Node value assignment) return a state
begin

if there is state for the node values in the table
then

return the state;
else

Create a new state;
Label the state with nodes that have 1 values;
Store the state and node values together in the hash table;
for each possible input assignment do

Combine current values for internal nodes and input assignment into
a new node value assignment;
Simulate one step to find a new node assignment;
Call BuildGraph recursively on new node assignment;
Add value returned by the previous line to the successors of the
current state;

end;
end;

end.

Fig. 1. State machine construction algorithm.

successor of itself. This occurs when the circuit has settled; it
will stay in a stable state until the inputs change.

For example, the queue element we describe and verify
below has an input signal named Init to initialize it. The circuit
should be verified under conditions in which Init is raised,
stays high until the circuit has stabilized (no other inputs may
change during this time), then goes low and stays low. We
give Init the value 1 at the beginning of the state graph
construction (the program asks for this information). In the
circuit description, the input change condition for Init is given
by Init A stable. This requires Init to stay high until the circuit
stabilizes. It can then continue to be high, or go low. Once it
goes low, it cannot go high again because the change condition
says that it can only change when it is high.
A more detailed description of the program appears in Fig.

1.

IV. EXAMPLE: A SELF-TIMED QUEUE ELEMENT

We apply this technique to a self-timed queue element. The
circuit originally appeared in an article by Seitz on self-timed
systems [14]. This circuit has practical importance because it
can be used to connect pipelined computational units with
variable processing time, maximizing the utilization of the
connected units. The use of asynchronous design results in a
very fast and small implementation of the queue. A diagram of
the circuit is shown in Fig. 2. The queue consists of a control
part and a data part. The data part is simply a shift register
which has as many bits of parallel data as necessary. The
control part has three major components: an input cell, an
output cell, and any number of inner cells. The input and
output cells convert two-cycle signals from the external world
into four-cycle signals for the inner cells. The inner cells keep
track of which cells of the shift register have data in them and
handle the control signals to shift data through the register.

There is one unconventional component in the circuit that
should be explained: the "negative resistor" (labeled "-
in the diagram). This circuit is a chain of two inverters with a
(relatively) high-value resistor feeding back from the output of

Init

Input Cell Inner Cell Output Cell

Fig. 2. Queue (FIFO) element.

the second inverter to the input of the first. This circuit stores
its most recent input signal, and after two gate delays supplies
the same signal on the output.
The queue is a speed-independent element: It assumes no

real-time restrictions on the behavior of the circuits it is
connected to. However, the internal design of the queue is not
speed-independent. It uses a more liberal assumption that no
series of 3 gates is faster than any other series of 2 gates. This
is called the "3/2 rule."
We have applied our verification technique to the circuit in

the case where there is a single inner cell. The unit-delay
assumption is a refinetnent of the 3/2 rule. Any circuit
satisfying the unit-delay rule certainly satisfies the 3/2 rule,
but not the converse. If our verification finds a problem, then
it is definitely a violation of the circuit design rules. On the
other hand, a successful verification increases confidence in
the circuit design but does not guarantee that the circuit is
correct.

A. Temporal Logic Specification of the Queue Element
In this subsection we give a variety of correctness condi-

tions in CTL for the queue element. This is not a complete
specification-just a sample of some interesting properties
which we would like to check against the state graph
constructed as in the previous section. We categorize the
conditions as requiring safety or liveness properties. Infor-
mally, safety properties say that the circuit does not do
anything bad, while liveness properties say that it does do
something good.

First, we specify the correct behavior of the two-cycle
interfaces with the external world. The following formulae
apply to both the input and output cells. ReqIn, ReqOut,
AckIn, and AckOut must be substituted for req and ack, as
appropriate.

AG(- req--AA[-_ requ- ack]) AG(req--A[requack])

AG(-i ack-A 1-i ackureq]) AG(ack-+A[acku req]).

The first condition requires that if the req signal is low it
must stay low until ack goes low; if ack is high because a
previous request has not been acknowledged req is not allowed
to change. The second formula gives the corresponding
requirement when req is high. The third and fourth formulae
require that ack not change unless req has the opposite value.

1038

BROWNE et al.: AUTOMATIC VERIFICATION OF SEQUENTIAL CIRCUITS

These previous four formulae are safety properties. For
example, in the first formula it is not required that ack goes
low-only that req cannot go high before ack goes low. It is
also reasonable to give some liveness conditions for the two-
cycle interfaces:

AG(reqA m ack--*AFack) AG(-i reqAack-+AF-- ack).

These formulae state that every request must inevitably be
acknowledged. We do not require req to change after ack
takes on the same value.

There is a problem in verifying these last two formulae. In a
correct implementation of the queue element, if the register
cell is already full and another input request arrives, the
acknowledge signal for the new input must wait for the cell to
become empty. This will only happen when the external circuit
on the output side raises AckOut to indicate that it has read the
contents of the register cell. We must assume that this external
circuit responds to an output request in finite time.
The solution to this problem is to use the fairness constraint

facility of the model checker. We can require a pending output
request to be acknowledged inevitably by the fairness con-
straint

ReqOut + AckOut.

This condition says that the last request has been acknowl-
edged. Any fair path must have infinitely many states
satisfying this, so for any state in which there is a pending
request (ReqOut * AckOut), there is another state further
along the path in which the request has been satisfied. We
remind the reader that this is an assumption about the
behavior of the circuit environment, not a condition to be
verified. Given this constraint, the model checker checks the
two liveness conditions above only over the paths in which the
external circuit always responds to output requests.

There are also correctness conditions relating the input and
output cells. We give a few sample formulae. First, an obvious
safety condition is that if there is nothing in the inner cell
(-i Full 1) there will not be an output request until there is an
input request,

AG(-iFull1
--A [(ReqOut + AckOut)u (ReqIn + AckIn)]).

There are also a number of interesting liveness conditions.
For example, if there is an unacknowledged input request and
if the inner cell is empty, then the signal to load the shift
register cell, A, will inevitably be raised,

AG(-n(ReqIn AckIn)A -iFull -AFA).

If the inner cell is full, there should always be an output
request to make the data available,

AG(- Full 1 --AX(Full 1 -AF -' (ReqOut AckOut))).

This formula is somewhat subtle. Essentially, the nexttime
operator is used to check the first state after a rising edge of
Full 1. After this edge there must inevitably be an output
request.

If the queue element is full and an output request is made
and then acknowledged, the element should eventually become
empty. This is specified by

AG(Full 1 A '(ReqOut ++ AckOut)

-AX((ReqOut +- AckOut)-AF Full 1)).

B. Verifying the Circuit
When our program is used to build a state graph from the

circuit description, the resulting state graph has 152 states.
The input signal Init is set to 1 and the signals ReqIn and
AckOut are set to 0 for the starting conditions (all internal
signals are automatically initialized to a value that means
"unknown"). We specify input change conditions requiring
that the Init signal stay high until the circuit stabilizes, and that
none of the other inputs change until Init goes low. Thus, the
resulting state graph has a sequence of states at the beginning
representing the initialization of the circuit, after which the
Init signal stays low and the other signals are free to change.
There are also input change conditions to require Reqln and
AckOut to conform to the two-cycle signaling protocol.

In actuality, the above verification conditions are modified
to account for the Init signal: Every condition originally of the
form ACG(x) is transformed to AG(Init - x), so uninitial-
ized states are not considered in checking the formulae.

All the conditions check, except for the safety condition

AG(-iFull1

-A [(ReqOut +- AckOut)u n (ReqIn 4- AckIn)]).

The model checker provides a counterexample path in which
there are two output requests in response to a single input
request. This occurs because of a timing error in the circuit.
The transistor in the output cell connected to ReqOut is on
(because D = 1) when AckOut goes high in response to
ReqOut. The data path that eventually causes D to go low is
four gates long, so D is still high when the change in AckOut
propagates through the three inverters to E. This causes
ReqOut to go low, creating a spurious request on the output.

It is not clear whether this phenomenon would cause a real
circuit to fail that depends on now accurately the 3/2 design
rules model real circuits. However, the circuit definitely has a
bug under those rules. This bug can be fixed by adding two
more inverters between AckOut and E. All of the above
conditions check out for the corrected circuit; however, we
still cannot be sure that the resulting circuit is bug-free because
the specification is incomplete and because we have not
checked it under the less forgiving 3/2 timing model.

V. VERIFYING HIGH-LEVEL DESCRIPTIONS OF CIRCUITS

In practice, many circuits are designed as finite state
machines before they are implemented in hardware. For
circuits designed in this manner, exhaustive simulation that
constructs a finite state machine, as in the previous section, is
unnecessary since the original finite state machine is already
available. Therefore, we can verify the design before it is
implemented in hardware. If a VLSI design tool that correctly
implements finite state machines is used to layout the verified

1039

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-35, NO. 12, DECEMBER 1986

design, we can be sure that the resulting circuit is correct.
In order to assist with the design and verification of finite

state machines, we have designed a language named SML
(state machine language). In addition to being useful for
verification, SML also provides a succinct notation for
describing complicated finite state machines. A program
written in SML is compiled into a finite state machine, which
can then be verified using the model checker or implemented
in hardware. At Carnegie-Mellon University, we have imple-
mented an SML compiler that runs on a VAX 11/780. We also
have access to design tools that can implement a finite state
machine produced by the compiler as either a ROM, an PLA,
or a PAL.

A. The Description Language and Its Semantics
An SML program represents a synchronous circuit that

implements a Moore machine. At a clock transition, the
program examines its input signals and changes its internal
state and output signals accordingly. Since we are dealing with
digital circuits where wires are either high or low, the major
data type is Boolean. Each Boolean variable may be declared
to be either an input changed only by the external world but
visible to the program, an output changed only by the
program but visible to the external world, or an internal
changed and seen only by the program. The hardware
implementation of Boolean variables may also be declared to
be either active high or active low. The use of mixed logic in
SML is permitted. Internal integer variables are also provided.
SML programs are similar in appearance to many impera-

tive programming languages. SML statements include if,
while, and loop/exit. A cobegin is provided to allow several
statements to execute concurrently in lockstep. There is also a
simple macro facility.
The semantics of SML programs are different from most

programming languages, since we are not only interested in
what a statement does, but how much time it takes to do it. In
this respect, SML was influenced by the semantics of
ESTEREL [2]. The complete semantics for SML will not be
given here, but they will appear in a forthcoming paper [4]. A
program state is an ordered pair (S, s) consisting of a
statement S and a function s that gives values to all of the
identifiers. The semantics consist of a set of rewrite rules that
describe how a program state can be transformed into new
program state. Each rewrite rule also specifies whether it takes
a clock cycle to make the transformation or not. For example,
two typical rewrite rules are

(raise(I); S, s) 1 S, s')
where s' =s[I true] (1)

E= false

(if E then Si endif; S2, s) £4 (S2, s) (2)

The first rule states that a raise statement followed by an
arbitrary statement S can be rewritten in one clock cycle to
statement S while simultaneously changing s so that s' (I)
true. The second rule states that an if statement followed by an
arbitrary statement S2 can be rewritten in no time to statement
S2 if the condition is false.

Given any program state, we can repeatedly apply the
rewrite rules to find a new state that can be reached in one
clock cycle. This new state is a successor of the original state
in the finite state machine. So starting from the initial program
state (which consists of the entire program and a function
which assigns 0 to all integers and false to all Booleans), we
can repeatedly find successor states until we have built the
entire finite state machine.

B. Example: A Traffic Controller
The best way to illustrate the use of SML is by an example.

We will use SML to design a traffic controller that is stationed
at the intersection of a two-way highway going north and south
and a one-way road going east. For the sake of simplicity, no
turns are permitted. At the north, south, and east of this
intersection, there is a sensor that goes high for at least one
clock cycle when a car arrives. When the intersection is clear
of cross traffic, the controller should raise a signal indicating
that the car is permitted to cross the intersection. Once the car
has crossed, the sensor that indicated the arrival of the car will
go low.

Let the names of the sensors be N (north), S (south), and E
(east). Furthermore, let N-Go, S-Go, and E-Go be the names
of the output signals for each end of the intersection.
Now that the problem is defined, we can express the

correctness conditions of the controller in CTL.

AG (E-Go A (N-Go V S-Go)).

This formula is a safety property that is true if the controller
does not permit collisions to occur. There are also several
interesting liveness properties

AG(-- N-Go A N-+AFN-Go)

AG(-' S-Go A S-+AFS-Go)

AG(-i E-Go A E-+AFE-Go).

These formulas state that every request to enter the intersec-
tion is eventually answered, so the controller is starvation-
free. If all three of these formulas are true, the controller is
deadlock-free as well.

EF(N-Go A S-Go).

This formula insures that simultaneous north and south traffic
is possible. Since we want to maximize the amount of traffic,
any good implementation should satisfy this formula.

In addition to specifying the desired behavior of the
controller, we must also specify the behavior of the cars. In
particular, we don't want a car to enter the intersection and
stay there forever. Since the model checker allows the
specification of fairness constraints that must be true infinitely
often, we must rephrase this condition to be that the cars must
be out of the intersection infinitely often. Since a car from the
north is in the intersection if N-Go is true, and it stays there
while N is true, the fairness constraint for cars from the north
is (N-Go A N). There are similar constraints for traffic
from the south and east.

1040

BROWNE et al.: AUTOMATIC VERIFICATION OF SEQUENTIAL CIRCUITS

2

4
5

6
7
8
9
io
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
40
50
51
52
53
54

program intersect;

input N, S, E;
output N-Go, S-Go, E-Go;
internal NS-Lock, EW-Lock, N-Req, S-Req, E-Req;

procedure wait (expr)
while !(expr) do nop endwhile

endproc

cobegin
loop if !N-Req & N then raise (N-Req) endif endloop

loop if S-Req & S then raise (S-Req) endif endloop

loop if !E-Req & E then raise (E-Req) endif endloop

loop
if N-Req then

wait (!EW-Lock);
cobegin raise (NS-Lock) 11 raise (N-Go) end;
wait (!N);
cobegin

if !S-Go then lower (NS-Lock) endif

lower (N-Go) lower (N-Req)
end

endif
endloop

loop

if S-Req then
wait (!EW-Lock);
cobegin raise (NS-Lock) 11 raise (S-Go) end;
wait (!S);
cobegin

if !N-Go then lower (NS-Lock) endif

11

end
endprog

11
lower (S-Go) || lower (S-Req)

end
endif

endloop

loop
if E-Req then

raise (E1-Lock);
wait (!NS-Lock);
raise (E-Go);
wait (!E);
cobegin lower (EW-Lock) lower (E-Go) lower (E-Req) end

endif
endloop

Fig. 3. A first attempt at writing a traffic controller in SML.

C. An Implementation of the Traffic Controller in SML

One approach to this problem is to provide two locks: NS-
Lock, which is true when north-south traffic is in the
intersection, and EW-Lock, which is, true when east-west
traffic is in the intersection. Traffic from one direction is

forbidden to enter the intersection if the lock in the other
direction is true. Fig. 3 shows a program that uses this idea.
The numbers at the beginning of each line were added for easy

reference and are not part of the language.
A few conmients are necessary to explain the operation of

this program.
Line 5: In addition to declaring the two locks, N-Req,- S-

Req, and E-Req are also declared to be internal. N-Req will go
high wheni a car arrives at the intersection from the north and
go low when the car has crossed the intersection. S-Req and E-
Req are similar.
Lines 7-9: Wait is a macro definition that delays until its

parameter becomes true.
Line 12: If a car is not at the north end of the intersection

(!N-Req), and the sensor at the north goes high (N), there is
now a car at the north end of the intersection, so assert N-Req.
Lines 14 and 16: These statements do the same as Line 12

for cars from the south and east.

Lines 18-29: This statement controls traffic from the north.
Once there is no traffic from the east (Line 20), the
intersection is locked and the car is allowed to go (Line 21).
After the car leaves the intersection (Line 22), the intersection
is released if there is no traffic from the south in the
intersection (!S-Go) (Line 24).
Lines 31-42: This statement controls traffic from the south.

The algorithm is the same as for north traffic. If a car from the
north enters the intersection (and raises NS-Lock) at the same
time as a car from the south exits the intersection (and lowers

NS-Lock), the conflict is resolved by leaving NS-Lock
unchanged. Since NS-Lock is already high, it will remain

high, so the intersection will remain locked.
Lines i4-52. This statement controls traffic from the east.

Once a request is received, the intersection is iocked (Line 46)
and the car waits for the cross traffic to release the ihtersection
(Line 47). When the intersection is clear, the car is permitted
to cross (Line 48). After the car has crossed, the intersection is
released (Line 50).

This program was compiled into a 43 state machine in
approximately 10 s of CPU time on a VAX. However, the
transitions of this state machine are dependert on the state of
the itnput. In order to remove this dependence, each state had
to be replaced with eight states, one fdr each possible

1041

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-35, NO. 12, DECEMBER 1986

% /bin/time emc -c interl.emc
CTL MODEL CHECKER (C version 2.5)

Taking input from interl.emc...
Fairness constraint: -(N-Go & N).
Fairness constraint: -(S-Go & S).
Fairness constraint: (E-Go & E).
Fairness constraint:

time: (798 232)

= EF(N-Go & S-Go).
The equation is TRUE.

time: (812 236)

= AG (E-Go & (N-Go S-Go)).
The equation is TRUE.

time: (825 241)

AG(N& -N-Go AFN-Go).
The equation is FALSE.

EF -(N& -N-Go - AFN-Go)

is true in state I because of the path:
State 1: XCMPI ESN
State 16: E-Req S-Req N-Req XCMP2
State 312: E-Req S-Req N-Req EW-Lock S-Go NS-Lock N-Go XCMP39
State 313: ESN E-Req EW-Lock NS-Lock XCMP40

N & N-Go - AFN-Go
is false in state 313 if:
I) -(N& - N-Go)

is false in state 313, AND
2) AF N-Go

is false in state 313.

(N & N-Go)
is false in state 313 because the following propositions are true:

N N-Go

AFN-Go
is false in state 313 because

EG -N-Go
is true in state 313.

An example of such a path is:
State 313: ESNE-Req EW-Lock NS-Lock XCMP40
State 321: ESNE-Req S-Req N-Req EW-Lock NS-Lock XCMP41
State 321: ESNE-Req S-Req N-Req EW-Lock NS-Lock XCMP41

time: (886 275)

1=
End of Session.

1:56.0 real 14.7 user 4.8 sys

Fig. 4. Verifying the first traffic controller program.

combination of inputs. An additional 30 s of CPU time was

required to convert this state machine into a 344 state machine
that the model checker can handle. We have already developed
a new model chec'ker algorithm that circumvents this problem
and we hope to implement it in the near future.

D. Verifying the Traffic Controller with the Model
Checker

Fig. 4 shows a transcript of the model checker running on

the program in Fig. 3. The numbers in parentheses are the
total user cpu time and "system time," in 1/60ths of a second.
As the transcript shows, the program allows simultaneous
north and south traffic and is collision-free, but it is

deadlock-free. The model checker provides a counterexample
that can be used to diagnose the problem. In state 312, cars

from the north and the south are in the intersection, and there
is a car from the east waiting to enter. Furthernore, both of
the cars that are in the intersection are leaving (N and S are

both false). But since N-Go is high, the car from the south
doesn't release the intersection, anrd since S-Go is high, the car

from the north does not release it either! As a result, NS-Lock
is still high in state 313, so the car from the east cannot enter

the intersection. When the next car from the north arrives (in
state 321), it cannot enter the intersection because EW-Lock is

high. But since the car from the east cannot enter the

I program inters
2

NS. E;3 inpu
4 outp
5 intei
6
7
8
9
10
I1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54 endi

at N, S, E;
put N-Go,,
rnal NS-Lc

sect;

S-Go, E-Go;
ock, EW-Lock, N-Req, S-Req, E-Req;

procedure wait (expr)
while !(expr) do nop endwhile

endproc

cobegin
loop if !N-Req & N then raise (N-Req) endif endloop

loop if S-Req & S then raise (S-Req) endif endloop

loop if !E-Req & then raise (E-Req) endif endloop

loop

if N-Req then
wait (!EW-Lock);
cobegin raise (NS-Lock) 11 raise (N-Go) end;
wait (!N);
cobegin

if IS-Go IS then lower (NS-Lock) endif

lower (N-Go) 11 lower (N-Req)
end

endif
endloop

end
Iprog

11
1001

end
11

100r

if S-Req then
wait (!EW-Lock);
cobegin raise (NS-Lock) 11 raise (S-Go) end;
wait (!S);
cobegin

if !N-Go EN then lower (NS-Lock) endif

lower (S-Go) || lower (S-Req)
end

endif
[loop

if E-Req then
raise (EW-Lock);
wait (!NS-Lock);
raise (E-Go);
wait (SE);
cobegin lower (EW-Lock) 11 lower (E-Go) 11 lower (E-Req) end

endif
endloop

Fig. 5. The corrected traffic controller program.

intersection, EW-Lock will remain high, so we have a

deadlock.
As the counterexample illust-rates, the problem with the

program in Fig. 3 is NS-Lock will not be lowered if cars from
the north and the south exit the intersection simultaneously. A
simple solution is to modify Line 24 so that NS-Lock is

lowered if the car from the south is not in the intersection (!S-
Go) or if the car from the south is exiting the intersection (!S).
Line 37 can be changed in a similar' manner. The resulting
program is shown in Fig. 5. This program compiles into 31

states (248 states for the model checker). The correctness of

this program is shown by the transcript in Fig. 6.

VI. CONCLUSION

The approaches presented here are practical for small- and
medium-size sequential circuits. Verification is usually viewed
as a way to guarantee correctness, and these techniques are no

exception. However, we believe that these methods hold even
more promise as debugging aids. Tools like those described in
this paper could expedite the design process by localizing bugs
quickly. They could also allow designers to improve designs
more aggressively, freeing them from the natural reluctance to
modify a design that is already known to work.

1042

BROWNE et al.: AUTOMATIC VERIFICATION OF SEQUENTIAL CIRCUITS

% /bin/time emc -c inter2.emc
CTL MODEL CHECKER (C version 2.5)

Taking input from inter2.emc...
Fairness constraint: - (N-Go & N).
Fairness constraint: - (S-Go & S).
Fairness constraint: -(E-Go & E).
Fairness constraint:

time: (524 38)

= EF(N-Go & S-Go).
The equation is TRUE.

time: (535 41)

AG - (E-Go & (N-Go S-Go)).
The equation is TRUE.

time: (546 45)

|= AG (N& -N-Go AY N-Go).
The equation is TRUE.

time: (573 47)

= AG (S & -S-Go - AF S-Go).
The equation is TRUE.

time: (600 48)

= AG (E & -E-Go - AF E-Go).
The equation is TRUE.

time: (632 51)

I=
End of Session.

1:49.0 real 10.5 user 1.0 sys

Fig. 6. Verifying the corrected traffic controller program.

Further research is needed in a number of areas. Timing is
an important issue when verifying asynchronous sequential
circuits. The unit-delay model used in Sections III and IV is
easy to implement, but unrealistic. A more commonly used
model in asynchronous circuit design assumes arbitrary delays
in wires and/or gates. We have a technique for verifying
circuits under an arbitrary gate delay model, which we have
successfully applied to an asynchronous arbiter [8]. There are
a variety of timing assumptions that are less conservative than
arbitrary delay models, but more realistic than the unit-delay
assumption. Obviously, the 3/2 model used in the design of
the queue element example is one of these. Another assumes
minimum and maximum delays for the circuit components. It
would be useful to be able to verify circuits under these
assumptions.

It is probably not practical to use these methods on large
circuits, because of the corresponding size of the state graphs.
Circuit designers cope with the complexity of large circuits by
designing them hierarchically. It seems reasonable that the
same circuits could be verified hierarchically by verifying
small subcircuits in detail, then using simplified models of
them as components in larger circuits. This process can be
automated to some extent. If one uses a subset of CTL, small
circuits can be simplified by "hiding" some of their internal
nodes (more precisely, making it illegal to use them in CTL
formulae) and merging groups of states that become indistin-
guishable into single states (this is called restriction) [7].
We verified the self-timed queue element in the specific case

in which there was only one inner cell. In fact, there is a
family of queues, each member having a different number of
repeated inner cells. There are many families of circuits
designed in this way, for example, systolic arrays in which the
number of cells is a parameter. It would be useful to be able to
verify entire families of circuits at one time, using a more

general technique than the ones in this paper. We conjecture
that inductive techniques could be applied to this problem.

REFERENCES

[1] M. Ben-Ari, Z. Manna, and A. Pnueli, "The temporal logic of
branching time," in Proc. 8th ACM Symp. Principles Prog. Lang.,
Williamsburg, VA, Jan. 1981.

[2] G. Berry and L. Cosserat, "The ESTEREL synchronous programming
language and its mathematical semantics," Ecole Nationale Superieune
des Mines de Paris (ENSMP), Cetnre de Mathematiques Appliquees,
Valbonne, France, 1984.

[3] G. V. Bochmann, "Hardware specification with temporal logic: An
example," IEEE Trans. Comput., vol. C-31, Mar. 1982.

[4] M. C. Browne and E. M. Clarke, unpublished manuscript, Dec. 1984.
[5] R. E. Bryant, "A switch-level model and simulator for MOS digital

systems," IEEE Trans. Comput., Vol. C-33, Feb. 1984.
[6] E. M. Clarke, E. A. Emerson, and A. P. Sistla, "Automatic

verification of finite-state concurrent systems using temporal logic
specifications: A practical approach," in Proc. 10th ACM Symp.
Principles Prog. Lang., Austin, TX, Jan. 1983.

[7] E. M. Clarke and B. Mishra, "Automatic verificatipn of asynchronous
circuits," in Proc. C-M. U. Workshop Logics of Programs, Pitts-
burgh, PA, 1983, (Springer lecture notes in computer science).

[8] D. L. Dill and E. M. Clarke, "Automatic verification of asynchronous
circuits using temporal logic," in Proc. 1985 Chapel Hill Conf.
VLSI, E. Fuchs, Ed. Rockville, MD: Computer Science.

[9] E. A. Emerson and E. M. Clarke, "Characterizing properties of
parallel programs as fixpoints," in Proc. 7th Int. Colloq. Automata,
Lang. and Prog., Springer lecture notes in computer science, no. 85,
1981.

[10] J. Halpern, Z. Manna, and B. Moszkowski, "A hardware semantics
based on temporal intervals," Dep. Comput. Sci., Stanford Univ.,
Stanford, CA, Rep. STAN-CS-83-963, Mar. 1983.

[11] Y. Malachi and S. S. Owicki, "Temporal specifications of self-timed
systems," in VLSI Systems and Computations, H. T. Kung, B.
Sproull, and G. Steele, Eds. Rockville, MD- Computer Science,
1981.

[12] C. A. Mead and L. A. Conway, Eds. Introduction to VLSI
Systems. Reading, MA: Addison-Wesley, 1980.

[13] R. Milner, A Calculus of Communicating Systems. Edinburgh,
Scotland: Edinburgh Press, 1980.

[14] C. Seitz, "System timing," in Introduction to VLSI Systems, C.
Mead and L. Conway, Eds. Reading, MA: Addison-Wesley, 1980.

1043

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-35, NO. 12, DECEMBER 1986

Michael C. Browne received the B.S. degree in
IA_!_ ! computer engineering from Lehigh University,

Bethlehem, PA, in 1982.
He is currently working on his doctoral disserta-

tion at Carnegie-Mellon University, Pittsburgh,
K~PA.

His interests include logics of programs and
"| programming language semantics.

Edmund M. Clarke received the B.A. degree in
mathematics from the University of Virgipia,
Charlottesville, in 1967, the M.A. degree in mathe-
matics from Duke University, Durham, NC, in

- g 1968, and the Ph.D. degree in computer science
from Cornell University, Ithaca, NY, in 1976.

After leaving Cornell, he taught in the Depart-
ment of Computer Science, Duke University, Dur-
ham, NC, for two years. In 1979 he moved to
Harvard University, Cambridge, MA where he was
an Assistant Professor of Computer Science in the

Division of Applied Sciences. He has been an Associate Professor of
Computer Science at Carnegie-Mellon University, Pittsburgh, PA, since
1983. His interests include distributed systems, programming language
semantics, theory of computation, and VLSI.

Dr. Clarke is a member of the Association for Computing Machinery,
Sigma Xi, and Phi Beta Kappa.

11l511 David L. Dill received the Sc.B. degree in electri-
g cal engineering (computer science option) from the

Massachusetts Institute of Technology, Cambridge,
MA, in 1979, and the M.A. degree in computer
science from Carnegie-Mellon University, Pitts-
burgh, PA, in 1982.

A z He is currently working on his doctoral disserta-
tion at Carnegie-Mellon on the topic of verifying
asynchronous circuits. His interests include pro-
gramming languages, compilers, and applying con-
cepts of software systems to hardware.

Mr. Dill is a member of the Association for Computing Machinery.

_ gg} Bud Mishra received the B.Tech. degree from the
_M gIndian Institute of Technology, the M.S. and Ph.D.

degrees, both from Carnegie-Mellon University,
_ Pittsburgh, PA.

He joined the faculty of New York University,
New York, in the Fall of 1985.

1044

