G22.1170: Fundamental Algorithms I
Problem Set 2
(Due Tuesday, November, 21 2000)

The problems in this problem set are about various sorting algorithms. Please consult Chapters 7 & 8 from the book (CLR).

Problems from Cormen, Leiserson and Rivest: (pp. 150–151 & 167)
7.5-4 & 7.5-5 HeapIncreaseKey and Heapdelete
8.4-4 Improving the Running time of QuickSort

Problem 2.1 Let S be a set whose elements are drawn from a linearly-ordered universe. If $|S| = n$ then the $\lceil n/2 \rceil$th smallest element of S is the median of S. Design a data structure, called a Median Heap, that maintains the set S and supports the following operations:

- **Insert**(a, S): insert an element a into the set S.
- **DeleteMedian**(S): find the median of S and delete it from S.

Your implementation may spend $O(\log n)$ time per each of these operations.

Problem 2.2 Show that your implementation of the Median Heap is optimal in the following sense:

If $\sigma_1, \sigma_2, \ldots, \sigma_n$ is a sequence of Insert and DeleteMedian operations performed then the average complexity of these operations must be

$$T_{avg}(n) = \frac{\sum_{i=1}^{n} T(\sigma_i)}{n} = \Omega(\log n),$$

where $T(\sigma_i)$ is the time complexity of the operation σ_i.

Problem 2.3 Let S_1, S_2, \ldots, S_m be a set of sequences of elements, to be read in from m input tapes in the nondecreasing order. $S = \text{MERGEALL}(S_1, S_2, \ldots, S_m)$ is defined to be the sequence consisting of the elements of S_1, S_2, \ldots, S_m, to be printed on an output tape in the nondecreasing order.

Sketch an algorithm to perform MERGEALL in time

$$O\left(\left(\sum_{i=1}^{m} n_i\right) \log m\right),$$

where $|S_i| = n_i$. Your algorithm must use $O(m)$ space of the Random Access Memory.