
Processes and Continuous Change in a

SAT-based Planner 1

Ji-Ae Shin

Courant Institute, New York University, New York, NY 10012, USA

Ernest Davis 2

Courant Institute, New York University, New York, NY 10012, USA

Abstract

The TM-LPSAT planner can construct plans in domains containing atomic actions
and durative actions; events and processes; discrete, real-valued, and interval-valued
fluents; reusable resources, both numeric and interval-valued; and continuous linear
change to quantities. It works in three stages. In the first stage, a representation
of the domain and problem in an extended version of PDDL+ is compiled into a
system of Boolean combinations of propositional atoms and linear constraints over
numeric variables. In the second stage, a SAT-based arithmetic constraint solver,
such as LPSAT or MathSAT, is used to find a solution to the system of constraints.
In the third stage, a correct plan is extracted from this solution. We discuss the
structure of the planner and show how planning with time and metric quantities is
compiled into a system of constraints. The proofs of soundness and completeness
over a substantial subset of our extended version of PDDL+.

Key words: SAT-based planning, LPSAT, continuous time, metric quantities,
processes.

Email addresses: jiae@cs.nyu.edu (Ji-Ae Shin), davise@cs.nyu.edu (Ernest
Davis).
1 Our special thanks go to Steven Wolfman and Daniel Weld for making their
LPSAT program available for our research. The MathSAT group kindly allowed us
access to the versions of MathSAT. We also would like to thank the anonymous
reviewers for valuable suggestions and comments.
2 The research reported in this paper was supported by NSF grant IIS-0097537.

Preprint submitted to Artificial Intelligence 14 February 2005

1 Introduction

Numeric and geometric entities that change continuously in time are central
features of many domain, especially physical domains: the position of an object
in space, the amount of gasoline in a tank, the temperature of water in a
pot, and so on. Early generations of domain-independent planners did not
deal with numeric quantities at all, and even now few planners deal with
continuous change. The TM-LPSAT system described in this paper is the
first planner that uses the SAT-based planning methodology to deal with
continuous change, as well as many other aspects of numeric quantities.

Over the past decade, dozens of new powerful engines for propositional satis-
fiability have become available [59] and are now being used in a broad range
of applications. One very successful application has been the development of
SAT-based propositional planning, in which a planning problem is compiled
into a set of propositional constraints in such a way that a solution to the con-
straints demarcates a valid plan [33,35,36]. Recently, a new class of inference
engines 3 based on propositional satisfiability solvers has been developed for
systems of Boolean combinations of propositional atoms and linear constraints
over real-valued quantities [57,3,6].

In this paper, we show how the SAT-based planning framework can be ex-
tended, using SAT-based arithmetic constraint solvers, to deal with domains
that involve continuous time, resources, and real-valued quantities.

The TM-LPSAT planner constructs plans in domains with the following fea-
tures:

• The effects and preconditions of actions can involve discrete, real-valued,
and interval-valued fluents.

• An action can change the value of a real-valued fluent either continuously,
as a linear function of time, or discretely.

• An action may be either atomic or durative (taking place over an extended
time interval).

• An action may take real- or interval-valued parameters.
• Actions may be concurrent.
• Exogenous events may occur.
• Autonomous processes can be defined in the language.
• Processes that make a continuous change on the same fluent may be con-

current.

3 We will call these “SAT-based Arithmetic Constraint Solver” in this paper. They
are also called “SAT-based Decision Procedure” or “Theorem Prover” in the liter-
ature.

2

Fig. 1. Architecture of TM-LPSAT

• Reusable resources, both numeric and interval-valued, can be defined in the
language.

Fig. 1 shows the architecture of TM-LPSAT. The input to TM-LPSAT consists
of a domain description and a problem specification represented in PDDL+
[24,25] (more precisely, in a version of PDDL+ with certain restrictions and
extensions as described in Section 3.) The compiler compiles the planning
problem into a set of constraints, each of which is a disjunction of propositional
atoms and linear (in)equalities over numeric variables. The set of constraints
is passed to the SAT-based arithmetic constraint solver which finds a solution
if one exists. From the solution, the decoder extracts a valid plan. The overall
system is thus a powerful and elegant planner for a wide range of problems.

Our main contribution in TM-LPSAT has been the development of the com-
piler. From our point of view, the constraint solver can be viewed a black
box, that takes as input a set of constraints of the form described above and
outputs a solution if one exists and a flag if no solution exists. A number
of different architectures for such a constraint solver are possible, at least in
principle; it could be complete or heuristic, deterministic or probabilistic. In
developing and testing TM-LPSAT, we have used two pre-existing SAT-based
constraint solvers, LPSAT [57] and the MathSAT family [3,10]. In Section 2.2
we discuss their architecture. In Section 8 we will sketch a branch-and-bound
architecture that would enable the solver to solve optimization problems.

Two sample problems will illustrate the power of the TM-LPSAT planner,
and will help introduce the sample domains that we will discuss in Section 5:

Problem 1.1: An agent must deliver 5 gallons of water to a location LD.
Currently the agent is at a location LS 100 feet away, with two four-gallon
buckets. At LS there is also a tap that pours water at the rate of 0.1 gallons
per second. The agent can move at 5 feet per second.

The following plan will enable the agent to achieve his goal in a total of 70
seconds: He turns on the tap and let it pours into bucket 1 for 10 seconds.

3

Bucket 1 now holds 1 gallon. The agent turns off the tap, puts bucket 2 under
the tap, and turns on the tap. Then, he carries bucket 1 to LD, empties bucket
1 at LD, and returns to LS. The round trip takes him 40 seconds, so bucket 2
now holds 4 gallons. He picks up bucket 2, carries it to LD, and empties it.

If the agent can carry two buckets at once, then a simpler solution is possible:
He pours 3 gallons into bucket 1, 2 gallons into bucket 2, carries them both
to LD, and empties them, again completing the task in 70 seconds.

Problem 1.2: A computer architecture uses variable-length partitions as its
memory model; that is, each job occupies a consecutive segment of RAM,
which is fixed throughout the lifetime of the job. The machine has 128M
of RAM. The operating system needs to schedule jobs with the following
characteristics:

Job Time Space

A 100 80M

B 50 15M

C 120 20M

D 40 65M

E 100 20M

F 40 40M

Assume that the jobs are I/O bound, so that the time requirement is inde-
pendent of how many jobs are currently active.

The following plan completes all the jobs by time 160:

Job Start End Segment

A 0 100 0-80

C 0 120 80-100

B 0 50 100-115

E 50 150 108-128

F 100 140 0-40

D 120 160 40-105

This paper is organized as follows. Section 2 reviews previous and related work,
including the work on SAT-based planning, SAT-based arithmetic constraint
solvers, and PDDL+, which we draw on in the construction of TM-LPSAT.
Section 3 discusses the extensions and restrictions we have made to PDDL+.
Section 4 discusses the temporal ontology. Section 5 presents a few sample
domains and planning problems that TM-LPSAT can handle. Section 6, the
core of our research, enumerates the rules for translating a problem in PDDL+
into a system of constraints. (Table 1 on page 20 contains a summary of the

4

constraints.) Section 7 discusses the soundness and completeness of our sys-
tem. Section 8 presents our conclusions and discusses future work. Appendix
A gives a complete listing of the PDDL+ definition of the “Bucket” domain
and the problem described in Problem 1.1. Appendix B gives the proof that
TM-LPSAT is sound and complete over a substantial subset of our extended
version of PDDL+ Level 5.

2 Previous and Related Work

The TM-LPSAT planner builds on three foundations:

• SAT-based planning: In this planning paradigm, a planning problem repre-
sented in a high-level planning language is compiled into a corresponding set
of propositional formulas. Solving the planning problem thus corresponds to
solving the propositional satisfiability problem (SAT) over these formulas.

• SAT-based arithmetic constraint solvers, constraint satisfaction engines that
find solutions to Boolean combinations of propositional atoms and linear
(in)equalities.

• The PDDL+ specification language for planning domains and problems.

Also related, though not directly used in TM-LPSAT, are

• Other planning paradigms for dealing with metric time and numeric quan-
tities.

• Other automated reasoning applications that deal with continuous change.

We will discuss in turn each of these categories of previous work and their
relation to TM-LPSAT.

2.1 Planning as Propositional Satisfiability

The architecture of a SAT-based propositional planner is shown in Fig. 2. The
idea of SAT-based propositional planning [33,35,36] is to convert a planning
problem in a domain with discrete actions and fluents 4 with discrete values
into a set of propositional constraints. This is done as follows:

4 Throughout this paper, we will use the word “fluent” in the temporal logic sense
of “entity that takes on different values at different times” rather than meaning
the particular PDDL+ construct of that name. Temporal logic “fluents” include
PDDL+ “predicates”.

5

Fig. 2. Architecture of a SAT-based Propositional Planner

• An upper bound N is guessed 5 for the number of steps needed in the plan.
Time points are labeled 0 . . . N.

• The following propositional atoms are defined at each time point I:
A. For each fluent F, for each possible value V of F, the statement that the
value of F at time I is V.
B. For each action A, the statement that A is executed at time I.

• The laws governing the domain are imposed by asserting every instance of
every law at every moment of time. In classical planning domains the major
categories of laws are: causal laws, domain constraints, and frame axioms.

The paradigm, indeed, will support essentially any computable constraint;
e.g. that the number of times action A is executed must be a prime number;
a fluent will change five time units after some particular action, etc. The
main limiting factor on incorporating such constraints is finding system-
atic ways to express them in a general domain definition language such as
PDDL+.

• The problem instance is asserted by stating that the starting conditions
hold at time 0 and that the goal conditions hold at time N.

• The constraints are then fed to a propositional satisfiability solver. If a
solution of the constraints can be found, then the set of actions that are
marked as occurring in the solution constitutes a valid plan.

SAT-based propositional planners can be implemented easily and, with the
current generation of satisfiability solvers [59], quite effectively. The planners
also have no additional difficulty in dealing with ADL features such as condi-

5 Rather than “guess” here, one can systematically search for the smallest possible
value of N in either of two ways: (1) Begin with a random guess on the length of
plan. If a plan is found, do binary search over the length of the plan. If no plan is
found, then guess a plan length higher than the current one, and iterate. (2) Use a
Graphplan-like search [8] to find a lower bound on the length of the shortest possible
plan; initialize N to that value; and then iteratively increase N until a solution is
found. Rintanen [49] proposes other approaches to evaluating plans in parallel or
interleaved ways, sacrificing optimality in terms of plan length.

6

tional effects or quantifications. The major drawback of SAT-based planning
is that large domains can lead to enormously large systems of constraints.
Particularly dangerous are functions with many arguments; a fluent function
or action function with k arguments generates a collection of atoms of size
exponential in k.

Since the introduction of SATPLAN [33,35], a number of other SAT-based
planners have been developed, including BLACKBOX [36] and MEDIC [21].
Building a SAT-based planner involves two main types of choices. The first is
the representational issue of choosing an encoding: What propositional atoms
should be used, and how domain constraints should be encoded as axioms. The
effectiveness of different encoding schemes has been studied extensively [34,21].
The second choice is the technique used to solve the satisfiability problem;
both probabilistic methods like GSAT [33] and deterministic methods like
extensions [59] of DPLL algorithm [15] have been studied.

Temporal planning over integer time, involving constraints such as, “Action A
requires 3 units of time to complete,” can easily be handed in this framework,
as long as the integers involved are small. One defines a time point at each
integer, and then encodes such constraints in the formulas “If A starts at T0

then it ends at T3,” “If A starts at T1 then it ends at T4,” and so on [41].

The LPSAT planner [57,58] developed the LPSAT engine to extend the ap-
proach further to solve problems in metric planning; that is, planning with
real-valued quantities, such as the quantity of gasoline in a tank. However,
the LPSAT planner could not handle problems involving durative actions or
continuous change.

Indeed, the claims were made that the SAT-based planning paradigm could not
be extended to deal with continuous time, because there would be an infinite
number of ground actions, corresponding to the infinite set of choices as to
when to execute an action and how long to continue it [53,38]. The construction
of TM-LPSAT has disproved the claims. The way this issue is resolved in TM-
LPSAT is to encode a history in terms of a finite set of interesting time points
at which something changes, rather than trying to encode all time points on
the time line. The clock time of an interesting time point is a numeric variable
that is assigned a value by the constraint solver.

Many of the rules in TM-LPSAT for generating constraints come directly out
of these previous systems. The rules that deal with effects and preconditions
connecting atomic actions with discrete fluents are the same as in the SAT-
based propositional planners. The rules that deal with discrete (discontinuous)
effects of actions on a numerical fluent, and with numerical preconditions of
actions, are the same as in the LPSAT planner.

7

2.2 SAT-based Arithmetic Constraint Solver

As shown in Fig. 1, a SAT-based arithmetic constraint solver consists primarily
of two coupled modules [1]: A DPLL-based systematic SAT solver [59], such
as RelSAT [7] and Chaff [45], and an incremental linear programming (LP)
solver, such as Cassowary [9].

Given a Boolean formula in Conjunctive Normal Form (CNF), a DPLL-based
SAT solver does a depth-first search with backtracking through the space of
partial truth assignments. At its deduction phase, unit resolution and prop-
agation are applied. Modern, high-powered SAT solvers enhance the basic
backtracking search using such techniques as conflict-driven learning, random
restarts, chronological backtracking, and branching heuristics.

The two modules are combined as follows: The input to the constraint solver
is a set of generalized clauses. Each clause is a disjunction; each disjunct is
either a propositional literal or a linear equality or inequality over numeric
variables. The SAT solver first looks for a propositional (partial) solution,
treating each linear equation as a propositional atom (called a trigger), then
the LP solver tries to solve the set of inequalities that have been marked
as true in the (partial) solution. If that set is inconsistent, then the SAT
solver utilizes information on inconsistency detected through back-jumping
or learning (adding a clause stating that these linear inequalities are not all
true), and it looks for a new propositional solution. It continues going back and
forth between propositional and numeric mode until either finding a solution,
establishing that no solution exists, or reaching the given time limit.

Since the introduction of the LPSAT architecture by Wolfman and Weld [57],
MathSAT [3] and more general theorem provers such as CVC Lite [6] have
been developed in verification community. These solvers vary in the SAT solv-
ing techniques that they incorporate; in their search heuristics; and in the
special cases of “easy” LP categories that they identify.

2.3 PDDL+

PDDL (Planning Domain Definition Language) is a declarative language for
the definition of causal domains and planning problems. The basis of our work
is PDDL+, which was the most recent extension 6 to PDDL when we began

6 Since then, PDDL2.2 [20], extended for IPC4, was released. The features in
PDDL+ remain intact; additional features included in PDDL2.2 are derived pred-

icates and timed initial literals (sort of deterministic events). These features could
be easily incorporated in TM-LPSAT.

8

work on TM-LPSAT. PDDL+ comprises five levels. Level 1 contains discrete
actions and fluents. Level 2 adds features for numeric quantities. Level 3 al-
lows durative actions that cause discrete changes occurring at the beginning
and at the end of the action. Level 4 allows durative actions that cause con-
tinuous changes throughout the occurrence of the action. (Levels 1 through 4
collectively comprise PDDL2.1 [25].) Level 5 [24], proposed but not approved
by the IPC (International Planning Committee), is a deterministic real-time
temporal model of exogenous events and autonomous processes. (McDermott
[43] proposes an alternative for incorporating processes and events.)

Thus in PDDL+ continuous time can be modeled in three ways: durative ac-
tions with discrete effects, durative actions with discrete/continuous effects
along with atomic actions, or processes and events along with atomic actions.
These, however, cannot be mixed together.

2.4 Planners dealing with Time and Metric Quantities

The state-of-the-art domain independent planners that competed at IPC3
[40] and IPC4 7 , which are mostly heuristic-based, display impressive per-
formance in handling numeric and/or temporal domains. However, they are
quite limited in the range of temporal and metric constraints they can deal
with; typically, they require that actions have a fixed, constant duration and
use a fixed quantity of resources. By contrast, dealing with more expressive
temporal metric constraints, such as unknown durations and uncertain us-
ages of resource, imposes no additional difficulties on the compilation phase
of TM-LPSAT, though presumably the solving phase takes longer to solve the
numeric constraints. None of those planners can deal with a real-time tempo-
ral model involving autonomous processes, although LPG [27] and SAPA [18]
claim to handle durative actions with continuous change.

The Sekitei program [37] is a metric planner that uses a modified Graph-
plan search with numeric resources to solve the problem of placing software
components on a network. In principle, the planning technique accommodates
non-linear constraints; the current implementation, however, deals only with
linear constraints. It does not deal with continuous change.

The plan graph generated in Graphplan [8] is a representation of essentially
the same plan space as that used in SAT-based planners. It is therefore possi-
ble to use plan graphs as the basis for the compilation phase of a SAT-based
planner; this is done in BLACKBOX [36]. Graphplan-based temporal plan-
ners include TGP [54], MILP [17] and LPGP [39]. LPGP models and handles
temporal constraints over durative actions in a way similar to TM-LPSAT:

7 http://ls5-www.cs.uni-dortmund.de/∼edelkamp/ipc4

9

rather than projecting time on the plan graph as done in TGP, temporal con-
straints imposed among actions in a (partial) plan are checked for consistency
by a LP solver while extracting a plan. The difference is that in LPGP a plan
is searched backward, while in TM-LPSAT search for a satisfying solution is
non-directional. Consequently TM-LPSAT does not suffer from the difficulty
caused by backward search, such as dealing with a durative action whose end-
ing action is not included in the plan, but whose starting action needs to
be included in the plan. MILP builds a plan graph for logical constraints in
the same way as in LPGP, and converts the graph, together with temporal
constraints among actions, into an integer linear programming problem.

A number of partial-order planners have dealt, to greater or lesser extent, with
problems involving continuous change, including Processes [29], DEVISER
[55], SPIE [56], GORDIUS [52], FORBIN [16], Excalibur [19], and ZENO
[46,47]. Most of these addressed continuous change only in a substantially
more restricted setting than TM-LPSAT. ZENO, by contrast, permitted a
very general plan specification language, though its models of concurrency
and of processes were less general than TM-LPSAT – ZENO could not han-
dle concurrent continuous change of quantities. Like TM-LPSAT, ZENO was
restricted to the piecewise linear function and called a LP solver within plan
refinement loop. It was extremely slow; Wolfman and Weld [58] report that
ZENO was unable to solve even the simplest of the logistic problems that were
used to test LPSAT.

McDermott [43,44] has extended his estimated-regression planner to deal with
processes and continuous change. Unlike TM-LPSAT, his planner is not com-
plete (arguably an advantage, of course). It finds zero crossings using binary
search, so presumably it could easily be extended to non-linear functions; how-
ever, the current implementation has the same restriction as TM-LPSAT to
linear functions with constant coefficients.

2.5 Formalisms for Modeling Continuous Change

The best known study of processes in the AI literature is QP theory [22], which
initiated a large body of research on physical reasoning with processes. This
is at the extreme opposite end in terms of the language of quantities used;
effects of processes are characterized purely in qualitative terms. A number of
important ideas developed in this line of research have yet to be incorporated
into the planning literature, such as indirect influences. Davis [14] gives a
logical analysis of QP theory.

Another formalism closely related to our work is a theory of hybrid system
[30]. A hybrid automaton combines a finite state machine undergoing a series

10

of discrete change with real-valued variables undergoing continuous change.
A hybrid system is a collection of interacting hybrid automata. Fox and Long
[24] have defined a semantics for PDDL+ in terms of hybrid systems. The
planning problem corresponds to the “reachability” problem in a theory of
hybrid system. A bounded reachability problem of a linear hybrid system was
formulated as a satisfiability problem in [4]. Their encoding is based on state
transitions with absolute time and clocks; on the other hand, our encoding
was based on the constraints imposed by the operators happening at the time
points.

3 Extensions and Restrictions to PDDL+

The input specification language for TM-LPSAT extends PDDL+ in four
ways:

The first extension is that actions in TM-LPSAT may have numeric param-
eters. For instance, there can be actions “pour(N, BS, BD)” of pouring N
gallons from bucket BS to bucket BD; “set-oven(T)” of setting the thermo-
stat in an oven to temperature T ; or “play key(K, V)” of playing piano key K
at volume V . PDDL2.1 [25] excludes this feature that existed in the original
version [42], but their arguments do not strike us as cogent. Numeric param-
eters obviously greatly increase the expressive power of the language, and, in
the TM-LPSAT approach, impose no additional computational burden.

One restriction, however, does have to be imposed on actions with numeric and
interval parameters: There cannot be two or more concurrent actions 8 with
the identical non-numeric parameters. For instance, the actions “pour(5,b1,b2)”
and “pour(2,b1,b2)” cannot be executed concurrently, though “pour(5,b1,b2)”
and “pour(2,b3,b4)” can be concurrent. The restriction is necessary because
the entire SAT-based methodology rests on the assumption that, once you
have guessed the number of significant time points, the number of possible en-
tities, propositions, and numeric parameters can be bounded; if an unbounded
collection of simultaneous actions of the form “pour(N ,c1,b1)” can be gener-
ated, that would be a problem. The restriction is reasonable because such
numeric parameters are typically used in one of two ways. If the value of the
parameter is assigned to a fluent – e.g. “set-dial(N, D)” results in dial D being
set to value N – then two actions with different numeric parameters would
be mutually exclusive. If the value of the parameter is used to increment a
fluent – e.g. “pour(N, BS, BD)” increases the quantity of liquid in BD by N
and increases the quantity in BS by N – concurrent actions pour(5,b1,b2)

8 The axioms in [50] allow two such durative actions to continue concurrently,
though not to start simultaneously. This requires a more complex representation,
which identifies durative actions by their starting time.

11

and pour(2,b1,b2) can be combined into a single action pour(7,b1,b2). There
are a few exceptions; for instance, the action “sound(F,V)”, sounding a tone
with frequency F and volume V, executed by a robot with electronic speakers.
It is possible for such a robot to execute “sound(F1,V1)”, “sound(F2,V2)”
. . . concurrently with different frequencies. Our representation cannot handle
this case.

By virtue of this restriction, an action type is identified by the name of the
functor and the non-numeric parameters. For example, we may speak of the
action type “pour(·,b1,b2)” (pouring some amount from b1 into b2) and be
sure that at most one of these occurs at one time.

The second extension of PDDL+ is that our specification language supports
reusable metric resources, including numeric and interval-valued; that is, re-
sources that are held by an action while the action lasts and released when
the action is complete. We denote it by a “use” statement of the form “(use
?resource ?amount)”.

The motivation behind this extension is as follows: PDDL+ has no explicit
provision for resources. It treats numeric resources like any other numeric
quantities. Thus concurrent (shared) uses of reusable resource among atomic
actions cannot be modeled in PDDL+. For example, suppose that an agent
has K identical effectors, and that there is a collection of atomic actions,
such as flipping a switch, each of which requires the use of one effector. Then,
clearly, it should be possible for the agent to execute K such actions con-
currently. However, this can only be represented in PDDL+ by representing
each effector separately. The result would be that each different assignment of
actions to individual effectors would be considered separately, thus multiply-
ing the branching factor by K factorial. The use of interval resources among
actions, atomic or durative, cannot be expressed in PDDL+, because there
are infinitely many choices for the lower and upper bounds of the interval to
be allocated to the action.

RAM memory in Problem 1.2 can be represented as a reusable interval re-
source, and its concurrent uses are disjoint subintervals of the resource. Other
kinds of domains where interval resources are useful include the placing of
books on a shelf; the assignment of frequency ranges to broadcasters; and so
on.

The third extension of PDDL+ is that our language supports interval-valued

fluents and quantities. We have incorporated in our language and includes
Allen’s 13 binary interval relations [2] and several other basic useful functions
on intervals.

The fourth extension is that we distinguish between numeric functions whose
values are constant over time and given in the problem statement and numeric

12

functions whose values vary over time. The former are marked as being of
type float; the latter are of type fluent. For example, in the Bucket domain,
“(capacity ?b - bucket)” is of sort float whereas “(level ?b - bucket)” is of sort
fluent. This distinction was made in the original PDDL [42], but was removed
in PDDL2.1. This feature is particularly important in TM-LPSAT for two
reasons. First, when an entity changes its value over time, it is necessary to
create a separate variable for the value of the entity at each time point. Thus,
if there are N time points, then each fluent F generates N numeric variables,
whereas a float F generates no numeric variables. Second, if X and Y are
variables then the equation X = AY is a linear equation if the value of A is
known at compilation time, but it is a non-linear equation if the value of A is
not known. Since TM-LPSAT can only deal with linear equations, quantities
like the flow-rate of a tap must be floats, so that equations like “change-in-
quantity = flow-rate * duration-of-flow” are linear equation in the variables
“change-in-quantity” and “duration-of-flow”.

A few features of PDDL+ cannot be handled in the current version of TM-
LPSAT. First, TM-LPSAT cannot optimize a specified plan metric, a limi-
tation inherited from the architecture of the arithmetic constraint solvers we
use. Second, the language must be restricted so that, in any multiplication,
all but one of the terms can be statically evaluated; and, in any division,
the denominator can be statically evaluated. Otherwise, the result will be a
non-linear equation, which existing SAT-based arithmetic constraint solvers
cannot deal with, and which will certainly be much more difficult for any
possible constraint solver. All other features of PDDL+ are included.

4 Temporal Ontology

We use a linear, real-valued time line. The representation used in the constraint
language output by TM-LPSAT characterizes the time line in terms of the
states of the world at a collection of significant time points . A significant time
point is one where “something changes”; roughly speaking, some action, event,
or process occurs, starts, or ends. In the intervals between significant time
points, fluents are either constant, or, if they are numeric, they may undergo
continuous change as a linear function of time. Every discontinuous change, or
change in the derivative of a numeric fluent, occurs at a significant time point.
Thus, there are two states associated with each time point T. The “state before
T” consists of the values of fluents and activity levels immediately before the
changes that take place at T; the “state after T” consists of their values after

the changes that take place at T.

Each time point has a clock time, which is a non-negative real value. These
clock times become numeric variables in the system of constraints set up by

13

the compiler.

One tricky point arises in any theory that includes both real-valued time and
atomic events and actions: How should one deal with atomic events/actions
that, intuitively, should occur one immediately after another? Suppose for
instance, that action A has precondition P and effect Q and that event E has
triggering condition Q and effects (not P) and (not Q). It should be possible
for A to be executed, and then E will be triggered. The problem is, when do
these occur? If there is a gap between A and E, then why doesn’t E occur
sooner? If A and E occur at the same time, then how can you be sure that A
is occurring before E (which is possible) and not the other way around (which
is impossible)?

The semantics defined by Fox and Long [24] for PDDL+ Level 5 involves an
unusual model of the time line. 9 An event that is triggered by an action or
another event occurs “immediately after”, with no time gap between. To deal
with this, there need to be two distinct time points with equal clock times.
Thus, we represent the situation by saying that A occurs at time point T5, say,
and that E occurs at time point T6 and that these are different time points

even though clock(T5) = clock(T6) = 17.28 sec. We impose an order on these
two time points but there is no time gap between them.

Fox and Long’s semantics both for Level 4 and for Level 5 requires that a
time point when an action occurs be separated from the previous time point
by a fixed positive constant ǫ, corresponding to the reaction time of the agent
or the precision of the agent’s clock. This dependence of the theory on the
arbitrary quantity ǫ is ugly, and in our implementation of TM-LPSAT we have
eliminated it in Level 5. If we can idealize events as occurring in immediate
succession, why not actions as well? We have maintained the ǫ gap in our
implementation of Level 4, where it applies to all time points (there are no
atomic events in Level 4). 10

Note that an event E must disable its own triggering condition; else there
would have to be additional occurrences of E at Ti+2, at Ti+3, etc.; the result

9 Actually, this paper by Fox and Long is not at all clear on this point. Our inter-
pretation here is our best guess as to what is intended. If this isn’t right, then it
is easily changed; one of the advantages of the SAT-based planner is that making
that kind of change generally affects a only few specific axioms.
10 One problematic situation is if the invariant conditions of a durative action be-
come false at a time that is less than ǫ after the previous time point. TM-LPSAT
considers such a case to be impossible; the epsilon gap axiom (6.1) in Section 6
requires that any two significant time points be separated by at least ǫ, whereas the
zero-crossing axiom (10.11) requires that there be a significant time point exactly
when the invariant condition ceases to hold. Hence, any plan that gives rise to such
a situation is considered invalid.

14

would be that the system of constraints would have no solution with finitely
many time points.

An atomic action occurs instantaneously. An action is characterized by pre-
conditions that must hold before the action and effects that hold after the
action. For example, the action “turn on the faucet” has the precondition
that the faucet is off and has the effect that the faucet is on.

In PDDL+, a durative action is conceptualized as consisting of three epochs:
initialization, continuation, and termination. The initialization and termina-
tion resemble atomic actions; they are instantaneous and are characterized by
preconditions and discrete effects. The continuation may take any length of
time greater than ǫ. Its invariants must be satisfied as long as it continues.
Its effects may either take effect continuously for its entire duration, like the
effects of a process, or discretely at its end.

A durative action is feasible only if it can be carried through to termination;
it cannot be begun and then abandoned.

For example, one can define “filling bucket B from tap T” as a durative action
with the following properties. The initialization has the preconditions that tap
T is off; that the bucket and the agent are at the same location as the tap;
and that the bucket is not full; and it has the effect that tap T is on. The
continuation has the precondition that the tap is turned on, and that the tap
and the bucket are at the same location. It has the continuous effect that the
level in the bucket rises at flow-rate(T). The termination has the precondition
that the tap is on it has the effect that the tap is off.

An event is like an atomic action, except that, whereas an atomic action may

occur if its preconditions hold (if the actor so chooses), an atomic event must

occur if its precondition hold. For example, suppose that some of the buckets
are fragile, with a weight limit that is less than their volumetric capacity. If
the quantity of liquid inside exceeds the weight limit, the bottom falls out.
This can be characterized in terms of an atomic event “breakBucket(B)”. The
preconditions are that B is unbroken and that level(B) ≥ weightLimit(B). The
effects are that B is broken and that level(B) = 0.

A process is active over an extended interval. It is characterized by precon-
ditions and effects. The preconditions must hold through the interval; if the
preconditions cease to hold, the process stops. The effects of a process are, in
the language of Forbus [22], direct influences on numeric fluents. Specifically,
each process has a fixed influence on some collection of real-valued fluents;
the derivative of the fluent at a given time is the sum of its influences over all
active processes and actions that influence it.

For example, the process “fillingBucket(B - bucket T - tap L - location)” has

15

the precondition that tap T is currently pouring into B and and that the
bucket is not yet full. (Of course, the tap will continue to pour even when the
bucket is full, but it will cease to fill the bucket.) The process has the effect of
increasing level(B) at the rate flow(T). (We allow only taps that are fully on
or off.) There can be several co-located taps pouring simultaneously into the
same bucket; if so, the rate of increase of the level in the bucket is the sum of
the flow-rates of the individual taps.

PDDL+ permits concurrent actions under fairly restrictive conditions, de-
signed to ensure (a) that the result of concurrent actions is meaningful; (b)
that the actions do not interact, either destructively or synergistically. How-
ever, two actions whose effect is to increase or decrease a given numeric fluent
can be executed concurrently, since the net effect is well-defined as the sum
of the separate effects. For example, one can pour into bucket b1 both from
bucket b2 and from bucket b3 simultaneously. Essentially, these conditions
amount to requiring that the actions be commutative; that is, that they can
be executed in any order and that the result of executing them is the same in
all orderings. The actual condition imposed is sufficient, though not necessary,
to ensure commutativity; this is in order that the conditions for concurrency
can be computed easily and statically.

5 Sample Domains

Let us illustrate some of the PDDL+ constructs that TM-LPSAT can deal
with:

Example 5.1: The atomic action of pouring quantity Q of water from one
bucket to another can be encoded as follows:

(:action pour
:parameters (?a - agent ?bs - bucket ?bd - bucket ?q - real ?l - location)
:precondition (and (at ?a ?l) (carrying ?a ?bs) (at ?bd ?l)

(> ?q 0)
(<= ?q (level ?bs))
(<= ?q (− (capacity ?bd) (level ?bd))))

:effect (and (increase (level ?bd) ?q)
(decrease (level ?bs) ?q))

)

Note the real-valued parameter ?q; the planner can choose to pour any positive
amount ?q as long as ?q is not more than the amount of water in the source,
and not more than the amount of room in the destination.

16

Example 5.2: (PDDL+ Level 3) The action of filling a bucket can be char-
acterized as a durative action with a discrete effect as follows:

(:durative-action fillBucket1
:parameters (?a - agent ?b - bucket ?t - tap ?l - location)
:duration (at end (<= ?duration (/ (- (capacity ?b) (level ?b)) (flow-rate ?t))))
:condition (and (at start (not (on ?t)))

(at start (at ?a ?l)) (at start (at ?b ?l)) (at start (at ?t ?l))
(over all (on ?t)) (over all (at ?b ?l))
(at end (on ?t)))

:effect (and (at start (on ?t))
(at end (not (on ?t)))
(at end (increase (level ?b) (* ?duration (flow-rate ?t)))))

)

The value of the duration will be set by the planner; this determines the
amount of water to fill the bucket with. It is critical, here and in Examples 5.3
and 5.4, that the quantity “(flow-rate ?t)” can be evaluated statically. If this
quantity is a variable, then the equation becomes non-linear, and the existing
SAT-based arithmetic constraint solvers cannot deal with it.

The PDDL+ semantics allow a fluent whose value changes as an effect of a
durative action to be referrable and updatable by other actions during the
course of the action. Thus it is possible for one bucket to be filled by two
different taps concurrently. For instance, “fillBucket1(a1,b1,t1,sl1)” and “fill-
Bucket1(a2,b1,t3,sl1)” can be concurrent. However, due to the mutex rule
called no moving target on “(level ?b)”, the two actions cannot finish at the
same time.

In this model, when a durative action makes a change to a numeric fluent,
the change occurs instantaneously at the end points of the action. However, in
most cases, the actual change to a fluent occurs gradually during the course of
the action. Therefore, in the middle of the occurrence of the durative action,
the value given by this model is not correct. The model of durative actions
given in Example 5.3 overcomes this limitations.

Example 5.3: (PDDL+ Level 4) The action of filling a bucket can be char-
acterized as a durative action causing continuous change as follows:

(:durative-action fillBucket2
:parameters (?a - agent ?b - bucket ?t - tap ?l - location)
:duration ()
:condition (and (at start (not (on ?t)))

(at start (at ?a ?l)) (at start (at ?b ?l)) (at start (at ?t ?l))
(over all (at ?b ?l)) (over all (on ?t))
(over all (<= (level ?b) (capacity ?b)))
(at end (on ?t))

17

:effect (and (at start (on ?t))
(at end (not (on ?t)))
(increase (level ?b) (* #t (flow-rate ?t))))

)

In the last line above, “#t” is a special variable which, at each instant during
the execution of the durative action, denotes the length of time that has
elapsed since the action started.

Unlike the model in Example 5.2, this representation allows other actions to
access the correct value of a continuously changing fluent at any time point
over the period of the action.

Example 5.4: (PDDL+ Level 5) The action of filling a bucket can be char-
acterized yet again as an atomic action of turning on the tap, followed by a
process of flow from the tap into the bucket, followed by an atomic action of
turning off the tap.

(:action turnOnTap
:parameters (?a - agent ?t - tap ?b - bucket ?l - location)
:precondition (and (at ?a ?l) (at ?b ?l) (at ?t ?l) (not (on ?t)))
:effect (and (on ?t) (filling ?t ?b))

)
(:process fillingBucket
:parameters (?b - bucket ?t - tap ?l - location)
:precondition (and (filling ?t ?b)

(<= (level ?b) (capacity ?b))
(at ?b ?l))

:effect (increase (level ?b) (* #t (flow-rate ?t)))
)
(:action turnOffTap
:parameters (?a - agent ?t - tap ?b - bucket ?l - location)
:precondition (and (at ?a ?l) (at ?t ?l) (on ?t) (filling ?t ?b))
:effect (and (not (on ?t)) (not (filling ?t ?b)))

)

Example 5.5: Reusable metric resources

We can model the domain of filling a bucket in a different way: Assume that
the taps are classified as of small capacity or of big capacity. A number of
taps, either of the same capacity or not, may be at each location. Let “(flow-
rate ?tot)” be the flow-rate of a tap of type ?tot; let “(no-of-taps ?tot ?l)” be
the number of taps of type ?tot in location ?l. Then “fillBucket2” shown in
Example 5.3 can be represented as follows:

(:durative-action Modified-fillBucket2
:parameters (?a - agent ?b - bucket ?tot - TypeOfTap ?l - location)

18

:duration ()
:condition (and (at start (at ?a ?l)) (at start (at ?b ?l))

(over all (at ?b ?l))
(over all (<= (level ?b) (capacity ?b))))

:effect (and (increase (level ?b) (* #t (flow-rate ?tot)))
(use (no-of-taps ?tot ?l) 1))

)

If there are a large number of taps of each type at a given location, then
using this representation very much reduces symmetry in the search space
over the previous representation in which taps are represented individually: In
an individualistic representation, the search space may include every possible
set of taps; here, by representing the collection of a type of taps as a multiple-

capacity resource, each such set is summarized by two numeric fluents.

Also representing a resource as a numeric fluent suggests a way to deal with
dynamically creating and destroying objects.

Example 5.6: Partitioned Interval Resource

As described in Problem 1.2, in an operating system that uses variable-length
partitions as a memory model, each job occupies a consecutive segment of
RAM which is fixed until it finishes. “(RAM-space)” can be defined as a
resource of type interval in our extended PDDL+. The consecutive segments
allocated to jobs running concurrently are disjoint subintervals of the RAM
space.

(:durative-action executeJob
:parameters (?j - job)
:duration (= ?duration (time-for ?j))
:condition (and (at start (not (active ?j)))

(over all (active ?j))
(at end (active ?j)))

:effect (and (at start (active ?j))
(at end (not (active ?j)))
(use (RAM-space) (memory-for ?j)))

)

6 Compilation to Constraints

In this section, we describe how domain definition and problem specifica-
tion given in PDDL+ is translated into a collection of constraints, where
each constraint is the Boolean combination of propositional atoms and linear

19

Category Constraints Section Page

Atomic Action Effects 6.1.1 22

Preconditions 6.1.2 24

Mutual Exclusion 6.1.3 24

Event Effects 6.2.1 24

Preconditions 6.2.2 24

Immediate Triggering by Discrete Change 6.2.3 25

Mutual Exclusion 6.2.4 25

Process Effects 6.3.1 26

Preconditions 6.3.2 27

Zero Crossings Triggering/Terminating by Continuous Change 6.10.1 32

of Events and Processes

Durative Action Precondition and Effects 6.4.1 27

Constraint on Duration 6.4.2 27

Coherence 6.4.3 28

Invariant Conditions 6.4.4 29

Continuous Effects 6.4.5 29

Frame Axiom Propositional or Interval Fluents 6.5.1 29

Numeric Fluents 6.5.2 29

Time Points Gap between Time Points 6.6 30

Reusable Metric Resources Allocation and deallocation 6.7.1 30

Propagation 6.7.2 30

Constraint on Capacity 6.7.3 31

Reusable Interval Resources Segment Allocation 6.9.1 31

Frame Axiom 6.9.2 31

Non-overlap 6.9.3 31

Intervals Interval Fluents 6.8 31

Table 1: Summary of Constraints

(in)equalities over numeric variables.

The constraints 11 presented in this section are summarized in Table 1. The
examples to be seen in this section are from the “Bucket” domain defined in
Appendix A, unless otherwise specified.

We define the following propositional atoms and numeric variables.

Definition: Propositional Atoms

• For each time Ti, for each Boolean fluent F , the assertion that F holds at
Ti. We notate this “F [Ti].”

• For each time Ti, for each non-Boolean discrete fluent F , for each value V ,

11 The corresponding axioms are numbered based on the subsection number, as a
prefix, where these constraints are dealt with.

20

the assertion that F has value V at Ti. We notate this “F [Ti] = V ”.
• For each time Ti, for each atomic action/event E, the assertion that E

occurs at Ti. We denote it “active(E)[Ti]”.
• For each time Ti, for each process P , the assertion “active(P)[Ti]” assert

that P is active over the open interval (Ti, Ti+1).
• For each time Ti, for each durative action A, the assertions that A starts

at Ti; that A is continuing at Ti; and that A ends at Ti. We denote these
“starts(A)[Ti]”, “continues(A)[Ti]” and “ends(A)[Ti]”, respectively.

Definition: Numeric Variables

• The clock time of every significant time point Ti, denoted “c(Ti)”.
• For every time Ti, for every numeric fluent Q, the value of Q before and

after Ti. We notate these “Q[T−
i]” and “Q[T+

i]”, respectively. These are not
equal if some atomic action or event discretely changes the value of Q at
time Ti. (Note that, in domains where all change is discrete, Q[T−

i] is always
equal to Q[T+

i−1] whereas in theories where all change is continuous, Q[T+
i]

is always equal to Q[T−
i]. The need for two values at a time point therefore

only arises in theories that combine discrete and continuous change, as in
PDDL+ Levels 4 and 5.)

• For every time Ti, for every interval fluent Z, the lower and upper bound
of Z at Ti, denoted “left(Z, Ti)” and “right(Z, Ti)”. Note that we do not
have continuously changing intervals.

• For each numeric fluent Q, for each action or event A that changes Q in-
crementally (i.e. executes a discrete “increase” or “decrease”), the amount
of increase or decrease that an occurrence of A makes to Q at time Ti. This
is denoted “∆(A, Q, Ti)”. This enables us to add these up over concurrent
actions/events.

• For each numeric fluent Q, for each durative action or process A that changes
Q continuously, for each time Ti, the net change in Q due to A between Ti

and Ti+1. This is denoted “Γ(A, Q, Ti, Ti+1)”.
• For any durative action A, “Duration(A, Ti)” is a numeric variable for the

duration of the instance of A that starts in Ti.
• Let A(P1 . . . Pk, Q1 . . . Qm, Z1 . . . Zp) be an action where P1 . . . Pk are dis-

crete parameters; Q1 . . . Qm are numeric parameters; and Z1 . . . Zp are in-
terval parameters. Then, by the restriction mentioned in Section 3.2.3, at
any particular time Ti, for any particular values V1 . . . Vk of the discrete pa-
rameters, there is at most one valuation on the Qi and the Zi for which an
action of the form A(P1 . . . Pk, Q1 . . . Qm, Z1 . . . Zp) begins at time Ti. The
value of each such Qj and the values of the lower and upper bound of Zj

are numeric variables; it may appear in a term on the right hand side of an
assignment statement or in a condition.

For example: “pour(?a,?bs,?bd,?q,?l)” is an action with the real-valued
parameter ?q. There is therefore a numeric variable “pour?q(a1,b3,b4,l3)[T5]”
meaning the amount that a1 should pour from b3 to b4 at l3 at time T5.

21

• For each resource R, durative action A, and time Ti, the amount of R that
A uses at time Ti. This is denoted “U(R, A, Ti)”.

• For any durative action A that uses interval resource R, for any time Ti, nu-
meric variables representing the lower and upper bounds of the segment of R
allocated to A at Ti. We denote these “lower(A,R,Ti)” and “upper(A,R,Ti)”.

Notational convention: We will use the following convention for labeling
time-dependent terms:

• If a complex term α over fluents is evaluated using the values before a
discrete change is made at time Ti, we will denote this evaluation as α[T−

i].
That is, it is evaluated with the values of propositional fluents at Ti−1 and
the values of numeric fluents before Ti, Q[T−

i].
• If a complex term α over fluents is evaluated after a discrete change is made

at time Ti, we will denote this evaluation as α[T+
i]. That is, it is evaluated

with the values of propositional fluents at Ti, and the values of numeric
fluents after Ti, Q[T+

i].

We begin by guessing at an upper bound N on the number of significant time
points that will be needed to solve the problem. The significant time points
are then T0 . . . TN .

As discussed in Section 4, we assume throughout that there cannot be two
actions or processes executing concurrently whose name is the same except
for numerical parameters. 12 For example, the actions “pour(a1,b2,b3,2,l1)”
and “pour(a1,b2,b3,5,l1)” cannot be executed concurrently; there cannot be
two concurrent processes of the form “fillingBucket(b1,t2,l3)” and so on.

6.1 Atomic actions

6.1.1 Effects

A: If an effect of action A is to assign term α to discrete or interval fluent F ,
then add the constraint:

(1.1) active(A)[Ti] ⇒ [F [Ti] = α[T−
i]].

(Here the term α is just the implicit Boolean value TRUE.)

12 This is slightly at variance with the PDDL+ semantics, which does allow this
for durative actions. For example, it is possible that in the bucket domain given
in Example 5.5, “Modified-fillBucket2(a1,b1,ST,sl1)” starting at T2 and “Modified-
fillBucket2(a1,b1,ST,sl1)” starting at T4 can continue concurrently until T6, as long
as the bucket b1 is not full until T6.

22

For example, one constraint generated by the action “turnOnTap” is

active(turnOnTap(a1,t1,b2,l3))[T5] ⇒ on(t1)[T5].

B: If an effect of action A is to assign term α to numeric fluent F , then add
the constraint:

(1.2) active(A)[Ti] ⇒ [F [T+
i] = α[T−

i]].

For example, walking between two locations can be represented as a “walk-
ing” process triggered by “go” action and “arrive” event. The “go(?a,?sl,?dl)”
action sets the distance for the agent to walk as follows:

(assign (distance-to-walk ?a ?dl) (distance ?dl ?sl)).

The constraint associated with this would be:

active(go(a1,sl1,dl1))[T5] ⇒ distance-to-walk(a1,dl1)[T+
5] = distance(dl1,sl1).

C: If an effect of action A is to increase numeric fluent Q by the term α, then
add the constraints:

(1.3) active(A)[Ti] ⇒ [∆[A, Q, Ti] = α[T−
i]].

(1.4) ¬active(A)[Ti] ⇒ [∆[A, Q, Ti] = 0].

For example, two constraints associated with the “pour” action are:

active(pour(a2,b2,b3,·,l1),T5) ⇒

∆(pour(a2,b2,b3,·,l1), level(b3),T5) = pour?q(a2,b2,b3,l1)[T5].

¬active(pour(a2,b2,b3,·,l1),T5) ⇒

∆(pour(a2,b2,b3,·,l1), level(b3),T5) = 0.

The first constraint above is read, “If agent a2 pours water from bucket b2 to
bucket b3 at location l1 at time T5, then the increase in the level of water in
b3 due to this action is equal to the amount that has been poured.”

D: Let A1 . . . Ak be all the action/events that can change numeric fluent Q
incrementally. Let E1 . . . Ep be all the action/events that can assign to Q. Add
the constraint:

(1.5) ¬active(E1)[Ti] ∧ . . . ∧ ¬active(Ep)[Ti]
⇒ [Q[T+

i] = Q[T−
i] +

∑

j ∆(Aj , Q, Ti)].

For example, suppose that there are three buckets, b1, b2, b3, one agent a1
and two locations l1 and l2. Then the level in b1 can be changed either by
pouring out of b1 to b2 or b3 or by pouring into b1 from b2 or b3. We have
therefore the following constraint:

23

level(b1)[T+
5] − level(b1)[T−

5] =

∆(pour(a1,b1,b2,·,l1),level(b1),T5) + ∆(pour(a1,b1,b2,·,l2),level(b1),T5) +

∆(pour(a1,b1,b3,·,l1),level(b1),T5) + ∆(pour(a1,b1,b3,·,l2),level(b1),T5) +

∆(pour(a1,b2,b1,·,l1),level(b1),T5) + ∆(pour(a1,b2,b1,·,l2),level(b1),T5) +

∆(pour(a1,b3,b1,·,l1),level(b1),T5) + ∆(pour(a1,b3,b1,·,l2),level(b1),T5).

Of course, in any specific scenario all but at most two of these are 0, because
at most two of these events can occur concurrently. In most instances of these
constraints, all the terms end up being 0. For this reason, the actual process
of solving these constraints is not nearly as difficult as one might guess from
just looking at the number and size of the constraints.

E: Conditional effects: If an effect of one of the above types is conditional
on expression β then add β[T−

i] as a conjunct on the left side of the above
implication.

6.1.2 Preconditions

If action A has precondition β, then add the constraint:

(1.6) active(A)[Ti] ⇒ β[T−
i].

For example, one constraint generated by the action “turnOnTap” is

active(turnOnTap(a1,t2,b1,l3))[T5]

⇒ ¬on(t2)[T4] ∧ at(a1,l3)[T4] ∧ at(t2,l3)[T4] ∧ at(b1,l3)[T4].

6.1.3 Mutual exclusion

If action A is mutually exclusive (mutex) with action or event E then add the
constraint:

(1.7) active(A)[Ti] ⇒¬active(E)[Ti].

As mentioned in Section 4, the PDDL+ rules [25] for mutual exclusion are
complex, but statically determined.

6.2 Events

6.2.1 Effects

The axioms for the effects of an event have exactly the same form as those for
the effects of an action. (Section 6.1.1 above.)

24

6.2.2 Preconditions

We assume that any numeric precondition of an event is a non-strict (in)equality
(that is, of the form τ ≥ 0 where τ is a term). Otherwise, if there were a pre-
condition τ > 0 where τ was a term involving continuously changing fluents,
there would be no first instant at which the precondition became TRUE, and
therefore there might be no way in which the event could be triggered at the
exact moment of change. The same applies to preconditions of processes.

Let β be the precondition of event E. Add the constraint:

(2.1) active(E)[Ti] ⇔ β[T−
i].

For example, suppose that we define the event “breakBucket” in the “Bucket”
domain as follows:

(:event breakBucket
:parameters (?b - bucket)
:precondition (and (not (broken ?b))

(>= (level ?b) (weight-limit ?b)))
:effect (and (broken ?b) (assign (level ?b) 0))

)

This gives the constraint:

active(breakBucket(b2))[T5] ⇔

¬broken(b2)[T4] ∧ [level(b2)[T−
5] >= weight-limit(b2)].

6.2.3 Immediate triggering of events by a discrete change

Let β be the preconditions of event E. Add the constraint:

(2.2) β[T+
i] ⇒ [c(Ti+1) = c(Ti)].

This constraint ensures that when the event E is triggered at Ti+1 by a discrete
change made by actions or events at Ti, it happens immediately, without any
finite time duration between the change and the event.

For example, suppose that “(weight-limit b1)” is 55 gallon, that “(level b1)”
is 50 gallon at Ti−1, and that the atomic action “(pour a1 b2 b1 10 l1)” occurs
at Ti. Then the even “breakBucket” must occur at Ti+1, and Ti+1 and Ti must
have equal clock times.

Note that the zero crossing axiom (10.7) in Section 6.10.1 assumes that the
event is triggered when a numeric precondition attains its threshold value,
and therefore does not correctly handle a discrete change that discontinuously

25

pushes a precondition past its threshold value, as in the above example.

6.2.4 Mutual exclusion

Any interference between an action and an event is resolved in a way that
gives priority to the event over the action. This is enforced by axiom (2.1) and
axiom (1.6): axiom (2.1) asserts that the event must occur if the preconditions
hold; axiom (1.6) asserts only that the action can be carried out only if the
preconditions hold. Therefore, if the preconditions of both event E and action
A are satisfied, but it is logically inconsistent that both the event and the
action should occur, the logical consequence is that the event does occur and
that the action therefore does not.

It is the domain designer’s responsibility to make sure that events happening
at the same time point do not interfere each other; otherwise, the theory is
inconsistent.

6.3 Processes

6.3.1 Effects

A: For each process P , for each quantity Q influenced by P , let Φ be the
influence of P on the derivative of Q. For each time Ti add the constraints:

(3.1) active(P)[Ti] ⇒ Γ(P, Q, Ti, Ti+1) = Φ · (c(Ti+1) − c(Ti)).
(3.2) ¬active(P)[Ti] ⇒ Γ(P, Q, Ti, Ti+1) = 0.

Note that Φ must be constant and statically evaluable; otherwise, the system
becomes non-linear.

For example, the process “fillingBucket(b2,t3,l2)” generates the constraints:

active(fillingBucket(b2,t3,l2))[T5] ⇒

Γ(fillingBucket(b2,t3,l2),level(b2),T5 , T6) = flow-rate(t3) * (c(T6) - c(T5)).

¬active(fillingBucket(b2,t3,l2))[T5] ⇒

Γ(fillingBucket(b2,t3,l2),level(b2),T5 , T6) = 0.

B: For each quantity Q, let P1 . . . Pm be the processes that potentially affect
Q. Add the constraint:

(3.3) Q[T−
i+1] = Q[T+

i] +
∑

j Γ(Pj, Q, Ti, Ti+1).

For example, suppose there are two taps t1 and t2 and two locations l1
and l2. Then the four processes that might affect “level(b1)” are “filling-
Bucket(b1,t1,l1)”, “fillingBucket(b1,t1,l2)”, “fillingBucket(b1,t2,l1)”, and “fill-

26

ingBucket(b1,t2,l2)”. Thus we get the constraint:

level(b1)[T−
6] − level(b1)[T+

5] =

Γ(fillingBucket(b1,t1,l1),level(b1),T5 , T6) +

Γ(fillingBucket(b1,t1,l2),level(b1),T5 , T6) +

Γ(fillingBucket(b1,t2,l1),level(b1),T5 , T6) +

Γ(fillingBucket(b1,t2,l2),level(b1),T5 , T6).

6.3.2 Preconditions

Let β be the precondition for process P . Add the constraint: 13

(3.4) active(P)[Ti] ⇔ β[T+
i] ∧ β[T−

i+1].

The atom “active(P)[Ti]” means that P is active over an interval starting with
Ti. The condition β must continue to hold over this entire interval. The time
point when P terminates must be a significant time point. Hence, β holds both
after Ti and before Ti+1.

If the process is triggered or terminated by a discrete change, then that change
must occur at a significant time point, and hence this axiom will suffice to make
P triggered or terminated. If the process is triggered by a continuous change,
then the zero crossing axioms given in Section 6.10 below suffice to ensure that
the exact moment of change will be constructed as a significant time point.

For example, the process “fillingBucket(b2,t3,l2)” generates the constraint:

active(fillingBucket(b2,t3,l2))[T5] ⇔

filling(t3,b2)[T5] ∧ at(b2,l2)[T5] ∧ at(t3,l2)[T5] ∧

[level(b2)[T+
5] ≤ capacity(b2)] ∧ [level(b2)[T−

6] ≤ capacity(b2)].

6.4 Durative Actions

6.4.1 Conditions and effects at start and at end

The axioms for these are exactly analogous to those for atomic actions.

6.4.2 Constraints on duration

In PDDL+ it is possible to specify, either that the duration of a durative action
is equal to a specified term, or that it is bounded by two specified terms. One
can specify that these terms be evaluated either at the beginning of the action
(time-annotated as at start) or at the end of the action (time-annotated as

13 The formulation of these axioms in [51] was not quite correct.

27

at end). Each such constraint is translated directly into the corresponding
constraint on “Duration(A, Ti)”.

If a duration constraint is given in the form “(at start β(?duration))” the
corresponding axioms have the form:

(4.1) starts(A)[Ti] ⇒ β(Duration(A, Ti))[T
−
i].

That is, the instance of action A that starts in Ti has a duration that con-
strained by β where β is evaluated with values at T−

i .

Similarly, if a duration constraint is given in the form “(at end β(?duration))”
the corresponding axioms have the form:

(4.2) [starts(A)[Ti] ∧ continues(A)[Ti+1] ∧ . . . ∧ continues(A)[Tj−1] ∧
end(A)[Tj]]

⇒ β(Duration(A, Ti))[T
−
j].

(Here and in axiom (4.3) below, if j = i + 1, then there are no “continues”
literals in the left-hand side of the implication.)

For example, in the durative action “fillBucket1” given in Example 5.2, the
constraint on duration is represented as:

(at end (<= ?duration (/ (− (capacity ?b) (level ?b)) (flow-rate ?t)))).

This is encoded as the following constraint:

starts(fillBucket1(a1,b1,t1,l2))[T2] ∧ continues(fillBucket1(a1,b1,t1,l2))[T3] ∧

ends(fillBucket1(a1,b1,t1,l2))[T4]

⇒ [Duration(fillBucket1(a1,b1,t1,l2),T2) <=

(capacity(b1) − level(b1)[T−
4]) / flow-rate(t1)].

6.4.3 Coherence

For a durative action A, for each time Ti, 1 ≤ i < N , add the following
constraints:

A: Elapsed time between the starting action and the ending action. Add the
constraint for all j, i < j ≤ N :

(4.3) [starts(A)[Ti] ∧ continues(A)[Ti+1] ∧ . . . ∧ continues(A)[Tj−1] ∧
ends(A)[Tj]]

⇒ [c(Tj) − c(Ti) = Duration(A, Ti)].

B: A durative action does not continue before the beginning or after the end
of the plan.

28

Add the constraint:

(4.4) ¬continues(A)[T1] ∧ ¬continues(A)[TN]

C: For continuity, add the constraint:

(4.5) starts(A)[Ti] ⇒ continues(A)[Ti+1] ∨ ends(A)[Ti+1].
(4.6) ends(A)[Ti] ⇒ continues(A)[Ti−1] ∨ starts(A)[Ti+1].
(4.7) continues(A)[Ti] ⇒ ends(A)[Ti+1] ∨ continues(A)[Ti+1].
(4.8) continues(A)[Ti] ⇒ starts(A)[Ti−1] ∨ continues(A)[Ti−1].

6.4.4 Invariant conditions

Let β be the invariant conditions for a durative action A. Add the constraint:

(4.9) continues(A)[Ti] ⇒ β[T+
i].

(4.10) starts(A)[Ti] ⇒ β[T+
i].

Termination (i.e. from TRUE to false) of the invariant conditions at a “con-
tinues” point by continuously changing quantities is handled by axiom of zero
crossing from TRUE to false, axiom (10.11) in Section 6.10.1.

6.4.5 Continuous effects over the period of a durative action

The axiom for continuous effects of a durative action are exactly analogous to
the axioms given in Section 6.3.1 for the continuous effects of a process.

“starts(A)[Ti]” and “continues(A)[Ti]” initiate a continuous change over Ti

and Ti+1.

6.5 Frame Axioms

6.5.1 Propositional or interval fluents

For any fluent F let A1 . . . Ak be the actions and events that potentially change
F . For each time Ti, for each value V of F , add the constraint:

(5.1) ¬active(A1)[Ti] ∧ . . . ∧ ¬active(Ak)[Ti] ⇒F [Ti] = F [Ti−1].

For instance, the only actions that can change the fluent “filling(t2,b3)” are
turning the tap on and off. Therefore, if there is one agent a1 and two locations
l1 and l2, we get the constraint:

[¬active(turnOnTap(a1,t2,b3,l1))[T5] ∧ ¬active(turnOnTap(a1,t2,b3,l2))[T5] ∧

¬active(turnOffTap(a1,t2,b3,l1))[T5] ∧ ¬active(turnOffTap(a1,t2,b3,l2))[T5]]

29

⇒ [filling(t2,b3)[T5] ⇔ filling(t2,b3)[T4]].

6.5.2 Numeric fluents

No additional frame axioms are needed. If no atomic actions or events that
change quantity F are active at time Ti, then all the terms in the sum in
equation of axiom (1.5) will be 0, so the equation will state that F does not
change. If no processes or durative actions that change F are continuing be-
tween Ti and Ti+1, then all the terms in the sum in equation (3.3) will be 0,
so the equation will state that F does not change.

6.6 Gap between Significant Time Points

In Level 4, we have the constraint that, for each Ti,

(6.1) c(Ti+1) − c(Ti) ≥ ǫ.

In Level 5, we have the constraint 14 that, for each Ti,

(6.2) c(Ti+1) ≥ c(Ti).

6.7 Reusable Metric Resources

The encoding we give here is for a finite resource shared among durative
actions. The encoding for sharing resources among atomic actions or in a
mixed collection of atomic actions and durative actions is given in [50]; the
latter uses two variables for the resource level at each time point. An example
would be where a robot with multiple identical manipulators must use some
of them for durative actions, such as carrying a tray, and concurrently use
others for atomic actions, such as flipping a light switch.

Recall that “U(R, A, Ti)” denotes the amount of R that A uses at time Ti.

6.7.1 Resource allocation and deallocation

For any numeric resource R, and durative action A, let β be the expression
describing the amount of R that A would use during its period. Add the
constraints:

(7.1) starts(A)[Ti] ⇒ U(R, A, Ti) = β[T−
i].

(7.2) ¬starts(A)[Ti] ⇒ U(R, A, Ti) = 0.

14 See Section 4.

30

(7.3) ends(A)[Tj] ∧ starts(A)[Ti] ⇒ U(R, A, Tj) = −β[T−
i].

(7.4) ¬ends(A)[Tj] ⇒ U(R, A, Tj) = 0.

6.7.2 Propagation

For any resource R let A1 . . . Ak be the actions that could use R; let “L(R, Ti)”
be the level of resource R at Ti. Add the constraint:

(7.5) L(R, Ti) = L(R, Ti−1) −
∑

j U(R, Aj , Ti).

6.7.3 Capacity constraint

For each time Ti, add the constraint:

(7.6) 0 ≤ L(R, Ti) ≤ capacity(R).

6.8 Intervals

Predicates and functions over intervals can be translated in the standard way
into (in)equalities and functions over their endpoints [13,50].

6.9 Reusable Interval Resources

Recall that “lower(A, R, Ti)” and “upper(A, R, Ti)” be the lower and upper
bounds of the segment of R allocated to A at Ti. Let “left(R)” and “right(R)”
be the lower and upper bounds of interval resource R.

6.9.1 Segment allocation

(9.1) starts(A)[Ti] ⇒ [upper(A, R, Ti) − lower(A, R, Ti) = β[T−
i]].

(9.2) lower(A, R, Ti) ≥ left(R).
(9.3) upper(A, R, Ti) ≤ right(R).

6.9.2 Frame axiom: Segments don’t move

(9.4) continues(A)[Ti] ⇒ [lower(A, R, Ti+1) = lower(A, R, Ti)].
(9.5) continues(A)[Ti] ⇒ [upper(A, R, Ti+1) = upper(A, R, Ti)].
(9.6) starts(A)[Ti] ⇒ [lower(A, R, Ti+1) = lower(A, R, Ti)].

6.9.3 Non-overlap

Let A1 and A2 be two distinct durative actions that use R.

31

(9.7) continues(A1)[Ti] ∧ continues(A2)[Ti]
⇒ [[lower(A2, R, Ti) ≥ upper(A1, R, Ti)] ∨

[lower(A1, R, Ti) ≥ upper(A2, R, Ti)]].

6.10 Zero Crossings

6.10.1 Triggering/Terminating by Continuous Change

One final type of constraint is rather trickier. This has to do with an event
or process being triggered or terminated by a continuously changing numer-
ical fluent attaining a particular value. 15 Suppose that process P1 is active
between times Ta and Tb and is steadily increasing the value of fluent Q; that
process P2 will be triggered when Q reaches value V; and that this transi-
tion will occur at a time Tx between Ta and Tb. Suppose, further, that in the
absence of P2, no significant change would occur between Ta and Tb, so they
would be consecutive significant time points. The problem is, how do we force
the system of constraints to recognize the time point Tx? That is, how can we
prevent the system from accepting a solution in which Ta and Tb are consecu-
tive time points and process P2 starts at time Tb? (Worse yet, consider a case
where P2 is only triggered if Q is between V1 and V2; Q is less than V1 at
time Ta and Q is greater than V2 at time Tb. Then the system of constraints
will discover that P2 is not triggered at time Ta and not triggered at time Tb

and will conclude that it never occurs at all.)

The same thing can happen, in the reverse direction, with the numeric condi-
tions of processes and the “over all” conditions of durative actions: We must
check that they continue to hold throughout the interval, not just that they
hold at the endpoints.

The solution rests on the fact that all numeric conditions are Boolean combi-
nations of linear constraints, and that, within our domains, any numeric fluent
that changes continuously is a linear function of time. A simple solution, there-
fore, is as follows: Assume that every numerical constraint that appears as any
kind of precondition for events or processes has the form Q(t) ≥ 0, where Q(t)
is a linear function of the numerical variables and of time t. We can “track”
each such constraint Q(t) and make sure that we “notice” whenever any such
constraint becomes TRUE or becomes FALSE by asserting that it does not
change from positive to negative or vice versa without an intermediate “sig-
nificant time point” where it is zero. This gives the following two constraints:

15 It would appear, though the point is not entirely clear, that in the definition of
PDDL+ Level 5, one process cannot directly trigger another, nor can one process
terminate another or itself; such an interaction must be mediated by an event. We
do not see what purpose this restriction serves, so we have not required it.

32

(10.1) ¬[(Q[T+
i] > 0) ∧ (Q[T−

i+1] < 0)].
(10.2) ¬[(Q[T+

i] < 0) ∧ (Q[T−
i+1] > 0)].

These are respectively equivalent to

(10.3) Q[T+
i] > 0 ⇒ Q[T−

i+1] ≥ 0.
(10.4) Q[T+

i] < 0 ⇒ Q[T−
i+1] ≤ 0.

This is just a continuity constraint over Q of a form familiar from qualitative
process theory [22].

The problem with these constraints is that they will generate lots of spurious
time points, where a constraint of this form becomes TRUE or FALSE, but
no actual event or process is triggered, because the constraint is only one of
a set of preconditions and the other preconditions are not TRUE. Generating
spurious time points is extremely undesirable, of course, because the number
of propositional atoms and the size of the constraint set is proportional to the
number of time points.

We need, therefore, to rephrase the above constraints in such a way that
they will generate a significant time point only when a numerical constraint
changes its truth value and thereby causes an entire set of preconditions to
changes its truth value. We will first deal with the case where a truth value
changes from FALSE to TRUE and then with the case where it changes from
TRUE to FALSE. First, we put every precondition of an event or process
into disjunctive normal form; that is, we express it as the disjunction of a
collection of conjuncts. (This in itself can be a fairly complex manipulation of
the PDDL+, especially in the case of conditional expression.) Now, consider
any such conjunct:

F1 ∧ . . . ∧ Fk ∧ Q1 ≥ 0 ∧ . . . ∧ Qm ≥ 0,

where the Fi are literals and the Qi are linear functions.

What we wish to assert is that, if this condition is not satisfied at Ti, then
it remains unsatisfied until Ti+1; equivalently, if it is satisfied at any time T
between Ti and Ti+1 then it is satisfied at T+

i . Symbolically,

(10.5) [∃T∈(Ti,Ti+1) ∧p Fp[T] ∧ . . . ∧p Qp[T] ≥ 0]
⇒ ∧p Fp[T

+
i] ∧ . . . ∧p Qp[T

+
i] ≥ 0.

We now have to convert the quantified formula on the left hand side of this
implication to an evaluable expression. This is done as follows:

• The values of the Fp do not change between two consecutive significant time
points. That is, Fp[T] = Fp[Ti].

33

• Since between any two significant time points the Qp are all linear and
hence monotonic functions of time, we know that, if Qp[T] ≥ 0 then either
Qp[T

+
i] > 0 or Qp[T

−
i+1] > 0 or Qp[T

+
i] = Qp[T

−
i+1] = 0.

Hence the following axiom is sufficient to achieve the above condition:

(10.6) [∧pFp[Ti] ∧
∧p [Qp[T

+
i] > 0 ∨ Qp[T

−
i+1] > 0 ∨ Qp[T

−
i+1] = Qp[T

+
i] = 0]]

⇒ ∧p Qp[T
+
i] ≥ 0.

The following set of axioms 16 is slightly stronger, but substantially simpler:
for each Qj, assert

(10.7) [∧pFp[Ti] ∧ Qj [T
+
i] < 0 ∧ ∧p 6=j[Qp[T

+
i] ≥ 0 ∨ Qp[T

−
i+1] ≥ 0]]

⇒ Qj [T
−
i+1] ≤ 0.

The logical relations between the above axioms is that [the conjunction over
i of axioms (10.3)] implies [the conjunction over j of axioms (10.7)] which
further implies axiom (10.6). Since axiom (10.6) implies (10.5), the conjunction
of (10.7) implies (10.5). That means that if we enforce (10.7), that will enforce
(10.5) and ensure that no significant zero crossing are missed. On the other
hand, since (10.3) implies (10.7), that means that (10.7) can be satisfied if there
are enough time points to satisfy (10.3) — i.e. there is a time point for every
zero crossing of the constraints. That, however, is a worst-case upper bound;
in practice, (10.7) generates few if any time points that are not significant.

(The proof of the above implications is as follows. That axiom (10.3) implies
axiom (10.7) is trivial, as axiom (10.7) differs from axiom (10.3) only in having
additional conditions on the left side of the implication. That axiom (10.6)
implies axiom (10.5) was discussed above. That axiom (10.7) implies axiom
(10.6) can be justified as follows. Axiom (10.7) has the form

(10.8) β ∧ Qj [T
+
i] < 0 ⇒ Qj[T

−
i+1] ≤ 0.

Taking the contrapositive of the conditions on Qj we have

(10.9) β ∧ Qj [T
−
i+1] > 0 ⇒ Qj [T

+
i] ≥ 0.

Now, since trivially

Qj[T
+
i] = Qj[T

−
i+1] = 0 ⇒ Qj [T

+
i] ≥ 0 and Qj[T

+
i] > 0 ⇒ Qj [T

+
i] ≥ 0,

axiom (10.9) is equivalent to

(10.10) β ∧ [Qj [T
−
i+1] > 0 ∨ Qj [T

+
i] > 0 ∨ Qj [T

+
i] = Qj [T

−
i+1] = 0]

16 The formulation of these axioms in [51] was not quite right.

34

⇒ Qj [T
+
i] ≥ 0.

Now, β is the conjunction

∧pFp[Ti] ∧p 6=j[Qp[T
+
i] ≥ 0 ∨ Qp[T

−
i+1] ≥ 0].

We can weaken axiom (10.10) by strengthening the condition in β on the
left-hand side of the implication. Specifically, we replace

[Qp[T
+
i] ≥ 0 ∨ Qp[T

−
i+1] ≥ 0] by

[Qp[T
−
i+1] > 0 ∨ Qp[T

+
i] > 0 ∨ Qp[T

+
i] = Qp[T

−
i+1] = 0].

Substituting these forms in the left hand side of axiom (10.10), and combining
the constraint on Qj with the same constraints on Qp where p 6= j gives us
axiom (10.6). End of proof.)

The case of change from TRUE to FALSE applies in somewhat different cases.
On the one hand, the preconditions of events do not have to be checked.
As soon as the precondition of an event becomes TRUE, it is executed and
necessarily “turns off” its own precondition; hence, these never become FALSE
by virtue of the change to a continuous fluent. On the other hand, the invariant
conditions of durative actions do have to be checked. We do not have to
detect zero crossings for durative actions from FALSE to TRUE, because a
durative action is optional, and if the planner decided to execute it, then a
time variable for its starting time will be generated. On the other hand, the
invariant conditions for a durative action could change from TRUE to FALSE
and then back to TRUE between Ti and Ti+1, and that should be detected
and marked as impossible. 17

To construct the axiom for checking for changes from TRUE to FALSE, we
simply “run time backward”; if a precondition changes from TRUE to FALSE
when time is run in the positive direction, then it changes from FALSE to
TRUE when time is run backward. It suffices, therefore, just to exchange T−

i+1

and T+
i in the numerical terms in axiom (10.7):

(10.11) [∧pFp[Ti] ∧ Qj [T
−
i+1] < 0 ∧ ∧p 6=j[Qp[T

+
i] ≥ 0 ∨ Qp[T

−
i+1] ≥ 0]]

⇒ Qj[T
+
i] ≤ 0.

The effect of these constraints is, essentially, to generate the necessary inter-
mediate time points by a sort of proof by contradiction, but a logic-based
system such as TM-LPSAT has no trouble with proof by contradiction.

For example: The process “fillingBucket(b1,t2,l2)” has the propositional con-
ditions “filling(t2,b1)”, “at(t2,l2)” and “at(b1,l2)”, and the numeric condition

17 This can happen if there is a disjunctive precondition that depends on a contin-
uously increasing fluent, such as ((>= 2 Q) ∨ (<= Q 4)).

35

“capacity(b1)−level(b1) ≥ 0”. These conditions therefore generates the two
constraints:

[filling(t2,b1)[T5] ∧ at(t2,l2)[T5] ∧ at(b1,l2)[T5] ∧
[capacity(b1)−level(b1)[T+

5] < 0]]
⇒ [capacity(b1)−level(b1)[T−

6] ≤ 0].

[filling(t2,b1)[T5] ∧ at(t2,l2)[T5] ∧ at(b1,l2)[T5] ∧

[capacity(b1)−level(b1)[T−
6] < 0]]

⇒ [capacity(b1)−level(b1)[T+
5] ≤ 0].

Putting together the constraints from all these categories, it seems like a lot
of constraints, and in many cases it is. But things are not quite as bad as
they look. For any given plan, many of the numerical variables are of the form
∆[A, Q, Ti] where A is inactive at Ti or Γ[P, Q, Ti, Ti+1] where P is inactive
between Ti and Ti+1, and are therefore equal to 0. Many of the constraints turn
out to be equations between variables or between a variable and a constant;
these can be eliminated by variable renaming and constant folding. Others are
difference constraints of the form Vi − Vj ≥ C where Vi and Vj are variables
and C is a constant; these are also easy to deal with [3].

6.10.2 Extended Example of Zero Crossing

Let us give an artificial example to illustrate how the above zero crossing
constraints work. Suppose that we have the following world: There is a numeric
fluent N and two Boolean fluents P and Q. Process R is always active and
causes N to grow at the rate of 1 unit per second. Event E is triggered if
1 ≤ N ≤ 2 and P is true, and it causes P to be false. Event F is triggered if
N ≥ 3 and P is true, and it causes Q to be true and P to be false. Action A
has no precondition and causes P to be true. Initially N=0, P is true and Q
is false. The goal is that Q should be true.

Note that only event F can bring about Q, and that F can only occurs if P is
true and the time is at least 3. Any time between 1 and 2, if P becomes true,
it will immediately cause P to be false. Therefore the correct plan is to wait
until any time after 2 and then execute A to make P true. F will then occur
at time 3 (or immediately after A, if A was executed later than time 3.)

The PDDL+ representation of this world is shown in Table 2. The correspond-
ing set of axioms is shown in Table 3.

Note that, if we omit the zero crossing axioms 17 and 18 in Table 3, there
would be a solution with two time points 18 , T1 at clock time 0 and T2 at clock

18 T0 denotes the initial state. A plan starts at T1.

36

(define (domain Extended-Example)

(:requirements :time)

(:predicates P Q)

(:functions (N) - fluent)

(:action A

:parameters ()

:precondition ()

:effect P

)

(:event E

:parameters ()

:precondition (and (<= 1 N) (<= N 2) P)

:effect (not P)

)

(:event F

:parameters ()

:precondition (and (<= 3 N) P)

:effect (and Q (not P))

)

(:process R

:parameters ()

:precondition ()

:effect (increase N (* #t 1))

)

)

(define (problem EE-problem)

(:domain Extended-Example)

(:requirements :time)

(:inits (= (N) 0)

P)

(:goal Q)

)

Table 2. PDDL+ Representation of Extended Example

time 3. The remaining axioms do not “notice” that E would be triggered in
between. At clock time 3, since P is still true, F will be triggered, and will cause
Q to be true. Table 4 shows this “solution” symbolically. However, the zero
crossing axiom 17 excludes this solution; the left hand side of the implication
is true, and the right hand is false.

Indeed, it is easily shown that there is no solution to the axioms with only
two time points. Since ¬Q[T1] and Q[T2] by 14 we have active(F)[T2]. By 6 we
have N[T−

2] ≥ 3. By 4 we have ¬active(E)[T1]. Using 15, 1, and 20 we have
P[T2]. But now we have a contradiction with 17.

37

1. active(A)[Ti] ⇒ P[Ti]. (Effect of A. Axiom (1.1))
2. active(A)[Ti] ⇒ true. (Precondition of A – vacuous. Axiom (1.2))
3. active(E)[Ti] ⇒ ¬P[Ti]. (Effect of E. Section 6.2.1)
4. active(E)[Ti] ⇔ P[Ti−1] ∧ 1 ≤ N [T−

i] ∧ N [T−
i] ≤ 2.

(Precondition of E. Axiom (2.1))
5. active(F)[Ti] ⇒ Q[Ti] ∧ ¬P[Ti]. (Effect of F. Section Section 6.2.1)
6. active(F)[Ti] ⇔ P[Ti−1] ∧ 3 ≤ N [T−

i]. (Precondition of F. Axiom (2.1))
7. active(A)[Ti] ⇒ ¬active(E)[Ti].
8. active(A)[Ti] ⇒ ¬active(F)[Ti].

(7 and 8 are mutex conditions. In this case, they are redundant. Section 6.2.4)
9. N[T+

i] − N[T−
i] = 0.

(Frame axioms for N at significant time points. Axiom (1.5).
Since there are no actions or events that affect N, the sum on the right
is taken over the null set.)

10. active(R)[Ti] ⇒ Γ(R,N,Ti, Ti+1) = 1 · (c(Ti+1) - c(Ti)).
(Direct influence of process R on N. Axiom (3.1))

11. ¬active(R)[Ti)] ⇒ Γ(R,N,Ti, Ti+1) = 0.
(Influence of process R on fluent N. Axiom (3.2))

12. N[T−
i+1] − N[T+

i] = Γ(R,N,Ti, Ti+1).
(Net effect of processes on N. Axiom (3.3))

13. active(R)[Ti)] ⇔ true. (Precondition of R. Axiom (3.4))
14. ¬active(F)[Ti] ⇒ Q[Ti] ⇔ Q[Ti−1]. (Frame axiom for Q. Axiom (5.1))
15. [¬active(A)[Ti] ∧ ¬active(E)[Ti] ∧ ¬active(F)[Ti]] ⇒ [P[Ti] ⇔ P[Ti−1]].

(Frame axiom for P. Axiom (5.1))
16. c(Ti+1) ≥ c(Ti). (Sequence of time points. Axiom (6.2))
17. P[Ti] ∧ N[T+

i]−1 < 0 ∧ [2−N[T+
i] ≥ 0 ∨ 2−N[T−

i+1] ≥ 0] ⇒ N[T−
i+1]−1 ≤ 0.

(First zero crossing rules for precondition of E. Axiom (10.7))
18. P[Ti] ∧ 2−N[T+

i] < 0 ∧ [N[T+
i]−1 ≥ 0 ∨ N[T−

i+1]−1 ≥ 0] ⇒ 2−N[T−
i+1] ≤ 0.

(Second zero crossing rules for precondition of E. Axiom (10.7))
19. P[Ti] ∧ N[T+

i]−3 < 0 ⇒ N[T−
i+1]−3 ≤ 0.

(Zero crossing rule for precondition of F. Axiom (10.7))
20. P[T0] ∧ ¬Q[T0] ∧ N[T+

0] = 0. (Initial state.)
21. Q[TK]. (Goal.)

Table 3. Axioms for Extended Example

Similarly, there is no solution with three time points. There is a solution with
four time points, shown symbolically in Table 5 corresponding to the plan
described above.

7 Soundness and Completeness

We have proven a soundness and completeness proof for TM-LPSAT over a
restricted class of problems in our extended version of PDDL+. Stating the
proof involves the following three steps.

38

Time c(Ti) active(A) active(E) active(F) active(R) N[T−
i

] N[T+

i
] P Q

0 0 F F F F 0 0 T F

1 0 F F F T 0 0 T F

2 3 F F T T 3 3 F T

Table 4. Solution to constraints with no zero crossing axiom

Time c(Ti) active(A) active(E) active(F) active(R) N[T−
i

] N[T+

i
] P Q

0 0 F F F F 0 0 T F

1 0 F F F T 0 0 T F

2 1 F T F T 1 1 F F

3 3 T F F T 3 3 T F

4 3 F F T T 3 3 F T

Table 5. Correct Solution

First, we must give a suitable definition of the semantics of PDDL+ Level
5. To allow the possibility of multiple time points with the same clock time,
as described in Section 4, we use the following non-standard temporal model:
A time point is a pair 〈X, N〉 where X is a positive real number (the clock
time) and N is a positive integer (the N ’th time points at that clock time).
Time points are ordered lexicographically; that is, 〈X1, N1〉 < 〈X2, N2〉 iff
X1 < X2 or [X1 = X2 and N1 < N2]. A history is a mapping that maps any
time point within a bounded interval to the values of the fluents at that point,
and the sets of actions, events, and processes that are active at that point. A
history is consistent with a PDDL+ domain description if it obeys the rules
set forth in the description. A plan is a mapping that maps any time point to
the set of actions that are executed at that point.

History H is a projection of plan P starting in situation S0 relative to domain
description D if

• H and P specify the same actions at the same times.
• H is consistent with D.
• S0 is the starting state of H.

A goal is a property of histories. A planning problem is a specification of a
starting state, a goal, and a domain description. A plan is a correct solution

of a planning problem if every projection of the plan from the starting state
relative to the domain description satisfies the goal.

Note that constraint-based planning techniques give correct results only if the
only source of uncertainty is the actions to be carried out; once the actions
are specified, there is only one possible projection. If there is more than one
possible projection, or if there is anything unspecified in the starting state,
then a constraint-based planner will make the most optimistic assumptions

39

about these; that is, it will set these uncontrolled parameters in the same way
that it sets the actions to be carried out.

Second, we must properly delimit the class of problems. A problem is a can-

didate for TM-LPSAT if the following two conditions are satisfied:

• Let H be a history. We say that time point T is significant in H if either at
least one action is executed at H(T); at least one event occurs at H(T); or
at least one process begins or ends at H(T). A planning problem is finitely

solvable if there exists a history that satisfies the problem with finitely many
significant time points.

• Every arithmetic function that appears in the PDDL+ domain description
is a linear function of the numeric fluents and non-constant numeric param-
eters involved with constant coefficients.

Note that the first condition is a semantic constraint over the class of histories
considered, and that the second condition is a syntactic constraint over the
form of the PDDL+ description. Moreover, it is in general only semi-decidable
whether the semantic constraint holds. That is inelegant, but there does not
seem to be any way around it.

Third, we must use the right notion of “completeness”. (There are several
different possible notions of what it means for a planner to be complete.) TM-
LPSAT is complete in the following sense: Let G be any planning problem
that is a candidate for TM-LPSAT. Then if TM-LPSAT is executed with a
sufficient number of time points, it will return a plan that is a valid solution
to the problem.

In Appendix B, we give an extensive, though not fully formal, account of the
semantic definition, of the precise statement of the theorem, and of the proof.

8 Conclusions and Future Work

There exist very few domain-independent planners that can handle problems
involving continuous change to numeric quantities. The TM-LPSAT planner
demonstrates that the SAT-based planning framework can be extended to deal
with such problems. Other features incorporated in TM-LPSAT include real-
valued and interval-valued fluents, exogenous events and processes, atomic and
durative actions with numeric parameters, and reusable metric and interval
resources. To permit the representation of some of these features, we have
introduced a number of extensions into the PDDL+ description language.
We have tested our encoding generated by the TM-LPSAT compiler, using
different SAT-based arithmetic constraint solvers, on a number of problems

40

of varying complexity and characteristics. We have proven that TM-LPSAT
is sound and complete for a significant subset of this extended description
language.

The contributions of our work are:

• We have shown that the SAT-based planning framework can be used for
reasoning about continuous change. This disproves previous claims, cited in
Section 2.1, that this would be impossible.

• The capability of TM-LPSAT for dealing with issues typical of scheduling
problems, such as metric quantities and reusable resources, suggests that
SAT-and-LP-based planning techniques may offer a bridge spanning the
divide between domain-independent planning and scheduling.

• Our approach to dealing with continuous change and continuous time —
specifically, the characterization of overall behavior in terms of the values
of fluents at “significant” time points — may also be applicable to other
planning methodologies, such as Graphplan [8].

The current version of TM-LPSAT has the following limitations:

• The existing SAT-based arithmetic constraint solvers can only deal with
Boolean combinations of linear (in)equalities and propositional atoms. This
makes it necessary to require that all numeric terms in preconditions and
in effects are linear functions of fluents, and that any continuous effect of
processes and durative actions is a constant influence on the derivative of
the affected fluent.

• It is not possible in TM-LPSAT to specify a given plan metric to be opti-
mized. This limitation is inherited from the architecture of the constraint
solvers we used, such as LPSAT [57] or MathSAT [3]; that is, it is from
the way the SAT solver interacts with the LP solver. (The search strategy
in TM-LPSAT will return a plan with the minimum number of significant
time points; but this is not even the same as the plan with the minimum
number of actions, let alone any other metric.)

• Neither the compilation process nor the encoding is optimized in the current
version of TM-LPSAT.

• Scalability is certainly a concern, as in all SAT-based planners. The ques-
tion is, how far can you go, using optimized encodings and heuristics for
constraint solvers based on domain characteristics, before running into in-
tractable combinatorial explosion.

Some thoughts on overcoming these limitations:

As regards non-linear constraints: It would certainly be possible using current
technology to develop an more powerful arithmetic constraint solver that could
solve Boolean combinations of non-linear constraints. How effective such a
solver could be made, we cannot guess. If such an engine were constructed,

41

then that would allow two easy extensions to TM-LPSAT. First, obviously, it
would make it possible to use non-linear arithmetic terms in preconditions and
on the right-hand side of assignment and increment effects. Second, a little
more subtly, it would allow processes whose continuous effect on a output
fluent is constant, but depends on a numeric fluent set by a atomic action or
event. For example, the “Bucket” domain could be modified to allow the agent
to turn on a tap to any desired level of flow-rate. In the Zeno domain of [57],
it would be possible to set a desired constant speed for the airplane, which
would affect both the rate of motion and the rate of fuel consumption. Since,
in such domains, all numeric fluents would be piecewise linear functions of
time, with breaks only at significant time points, the TM-LPSAT compilation
rules, including the zero crossing rules, would still be valid; indeed, the proof
of their soundness and completeness would be essentially unchanged.

Extensions beyond that would involve substantially greater difficulties. If the
effect of a process depends on a fluent whose value changes continuously, then
there is a differential equation to be solved, particularly if the dependencies
have a cycle. If numeric fluents can be non-linear functions of time, then it
becomes hard to guarantee that they are monotonic functions of time; and
if they are not monotonic, then the zero crossing rules of Section 6.10.1 are
insufficient. The constraint solver would need to incorporate a zero crossing
detector.

We can think of a couple of approaches to adapt TM-LPSAT to plan opti-
mization. 19 If an upper bound is placed on N , the number of time points,
then an objective function M can be optimized by adding a constraint of the
form M ≤ B where B is a constant, and doing binary search to find the
smallest possible value of B [32]. However, this strategy cannot be used to
find the overall optimal plan, where N is not bounded. In principle, of course,
one could dovetail the search for B and N ; but such dovetailing is surely more
suited to proofs in computation theory than to practical programming.

A more promising approach would be to modify the interaction between the
SAT solver and the LP solver in the arithmetic constraint solver to use branch
and bound [32]. The problem space consists of a collection of states. Each state
is represented by two sets of constraints, one of logical constraints and the
other of mixed logical linear constraints, such that the two sets share action

19 One difficulty about plan optimization is that, in domains as rich as these, there
may not exist any optimal plan; it is easy to construct problems in which plans can
be made better and better as the number of actions increases, as the number of
significant time points increases, as the duration of the plan goes either to infinity
or to a finite limit, or as the value of a numeric action parameter goes either to
infinity or to a finite limit. Moreover, even if an optimal solution is known to exist
— e.g. the metric is always a positive integer, and one is searching for a minimum
— proving that a particular solution is optimal may be undecidable.

42

variables appearing in the mixed constraints. The relaxed version of mixed
constraints is solved, only if the set of logical constraints is satisfiable; the
optimal value of the relaxed constraints gives the lower bound (for a mini-
mization problem) of the mixed constraints so that it can be used either to
bound the optimal value of the problem (if the values of action variables in
the solution satisfy the set of logical constraints), to prune the search space,
or to branch from the current state. This approach, we believe, may prune
the search space quickly due to the action variables shared between the two
sets of constraints. The major challenge is to derive heuristics to decide a
branching variable or to pick up a state to solve next. Branching heuristics for
non-directional search, specific to (temporal, metric) planning domains, have
not been extensively explored [31,5,48,28]. Currently we are working on this
approach using an incremental SAT solver and an LP solver.

Optimization techniques known for the propositional domains may be ex-
tended for temporal metric domains: adding domain axioms, such as state
constraints, that are inferred through domain analysis [26] as preprocessing
step; reducing encoding size by removing unnecessary action instantiations
through type analysis [23] at compilation stage; simplifying binary clauses in
the encoding produced by the compiler, which are generally numerous in the
SAT encoding of planning [11]. We, however, hardly know of any extension of
these techniques into temporal metric domains.

In the SAT-based arithmetic constraint solver, it is known that the running
time is dominated by the time consumed by the LP solver [58,1]. In order
to reduce calls to the LP solver, one optimization technique at the encoding
(compiling) phase would be to lift arithmetic constraints mutually exclusive
up to the Boolean level. In the example of Section 6.10.2, the inequalities
N [Ti] ≤ 2 in axiom 4 of Table 3 and 3 ≤ N [Ti] in axiom 6 are mutually
exclusive. If we were to add this mutual exclusion as a clause, then the SAT
solver could not assign them (or, more precisely, their Boolean triggers) true
in a partial propositional solution. Thus, it would never be necessary to pass
the two of them together to the LP solver to find the inconsistency. The
detection of arithmetic constraints mutually exclusive in the encoding can
generally be done as a preprocessing step in a constraint solver, called static

learning. It, however, is certainly more expensive than at the encoding phase.
The layered structure adopted in MathSAT [3] is also an effective approach to
reduce unnecessary calls to the LP solver (or, generally computationally more
expensive routines).

It was known that a branching heuristic utilizing characteristics specific to
encoding of planning domains (i.e. nondeterminism on choices of actions) can
drastically reduce running times [28]. Our preliminary experiments also show
that different branching heuristics could make a big difference in running time
of a planning problem in temporal metric domains. We, however, do not know

43

any SAT solver or SAT-based arithmetic constraint solver specially tailored
for planning domains. Our ongoing work on branch-and-bound architecture
built on LP and SAT solvers is to combine completeness and these heuristics
coming from planning domains.

We have done some preliminary experiments 20 with IPC3 problem domains
[40] and “Bucket” domain, and a number of SAT-based arithmetic solvers
based on different algorithms. The intention of the experiments was to observe
the feasibility of our encoding, the scalability of this approach in temporal
metric domains, and how features of different constraint solvers react with
characteristics of constraints specific to different kinds of planning (metric
planning in discrete time, temporal planning with durative actions, temporal
metric planning of real-time model).

The difficulty of solving a constraint set generally grows rapidly with its
size, and shows striking difference in performance among different constraint
solvers. This is particularly apparent in the problems of the “Bucket” domain,
which are more constrained, and which intertwine metric constraints with
temporal constraints. For temporal planning problems in which the arithmetic
constraint set consists mostly of equality equations, we have found that the
solver with a specialized routine for equality equation, a variant of Bellman-
Ford algorithm, in the layered and delayed architecture [3] performs consider-
ably better than others. Currently the constraint solver is used as a black box
and advanced analysis cannot be done.

Finally, we plan to explore some further applications of this type of planning.
It should be possible to implement some kinds of spatial reasoning by allow-
ing region-valued fluents and motion as a process. If regions are restricted to
polygons or polyhedra, either fully specified, or of a specified maximum com-
plexity, and all motions are constant-velocity translations, then it should be
possible to compile these domains into systems of linear constraints.

20 The report will be available at http://cs1.cs.nyu.edu/∼jiae/papers/experiments.pdf.

44

Appendix A: The bucket domain and problem in an extended PDDL+

A.1: The Bucket domain

;; ===

;; "Bucket" Domain: ;;

;; Deliver a specified amount of water to a specified ;;

;; location(s) by a specified deadline. ;;

;; ;;

;; Assumptions: ;;

;; - An agent can carry at most one bucket at a time. ;;

;; - Zero or more than one tap are in each location. ;;

;; - Each tap fills only one bucket at a time. ;;

;; - Each bucket can be filled by more than one tap ;;

;; in a location at a time, allowing concurrent continuous ;;

;; changes on the level of a bucket. ;;

;; ===

(define (domain Buckets)

(:requirements :time :continuous-effects)

(:types agent bucket tap location)

(:predicates (at ?o - (either agent bucket tap) ?l - location)

(on ?t - tap)

(filling ?t - tap ?b - bucket)

(carrying ?a - agent ?b - bucket)

(is_walking ?a - agent ?d - location)

(connected ?s - location ?d - location)

)

(:functions (capacity ?b - bucket) - float

(flow_rate ?t - tap) - float

(walking_speed ?a - agent) - float

(distance ?s - location ?d - location) - float

(amount_of_water ?l - location) - fluent

(distance_to_walk ?a - agent ?d - location) - fluent

(level ?b - bucket) - fluent

)

;; ==

;; Filling buckets with taps ;;

;; ==

(:action turnOnTap

:parameters (?a - agent ?t - tap ?b - bucket ?l - location)

:precondition (and (at ?a ?l)

45

(at ?b ?l)

(at ?t ?l)

(not (on ?t)))

:effect (and (on ?t)

(filling ?t ?b))

)

(:action turnOffTap

:parameters (?a - agent ?t - tap ?b - bucket ?l - location)

:precondition (and (at ?a ?l)

(at ?t ?l)

(on ?t)

(filling ?t ?b))

:effect (and (not (on ?t))

(not (filling ?t ?b)))

)

(:process fillingBucket

:parameters (?b - bucket ?t - tap ?l - location)

:precondition (and (at ?b ?l)

(at ?t ?l)

(filling ?t ?l)

(<= (level ?b) (capacity ?b)))

:effect (increase (level ?b) (* #t (flow_rate ?t)))

)

;; ===

;; Moving buckets between locations ;;

;; ===

(:action pickUp

:parameters (?a - agent ?b - bucket ?l - location)

:precondition (and (at ?a ?l)

(at ?b ?l))

:effect (and (not (at ?b ?l))

(carrying ?a ?b))

)

(:action putDown

:parameters (?a - agent ?b - bucket ?l - location)

:precondition (and (at ?a ?l)

(carrying ?a ?b))

:effect (and (at ?b ?l)

(not (carrying ?a ?b)))

)

46

(:action go

:parameters (?a - agent ?s - location ?d - location)

:precondition (and (at ?a ?s)

(or (connected ?s ?d) (connected ?d ?s))

(not (is_walking ?a ?d)))

:effect (and (not (at ?a ?s))

(is_walking ?a ?d)

(assign (distance_to_walk ?a ?d)

(distance ?d ?s)))

)

(:process walking

:parameters (?a - agent ?d - location)

:precondition (and (is_walking ?a ?d)

(>= (distance_to_walk ?a ?d) 0)

:effect (decrease (distance_to_walk ?a ?d)

(* #t (walking_speed ?a)))

)

(:event arrive

:parameters (?a - agent ?d - location)

:precondition (and (is_walking ?a ?d)

(<= (distance-to-walk ?a ?d) 0))

:effect (and (not (is_walking ?a ?d))

(at ?a ?d))

)

;; ===

;; Filling among buckets in a location ;;

;; ===

(:action pour

:parameters

(?a - agent ?s - bucket ?d - bucket ?q - real ?l - location)

:precondition (and (at ?a ?l)

(carrying ?a ?s)

(at ?d ?l)

(> ?q 0)

(<= ?q (level ?s))

(<= ?q (- (capacity ?d) (level ?d))))

:effect (and (decrease (level ?s) ?q)

(increase (level ?d) ?q))

)

(:action deliver

:parameters (?a - agent ?b - bucket ?l - location ?q - real)

47

:precondition (and (at ?a ?l)

(carrying ?a ?b)

(> ?q 0)

(<= ?q (level ?b)))

:effect (and (increase (amount_of_water ?l) ?q)

(decrease (level ?b) ?q))

)

A.2: A Bucket Problem

;; ===

;; ;;

;; The Problem 1.1 in Section 1 ;;

;; ;;

;; A possible solution: ;;

;; 1. turnOnTap(ERNIE,TAP1,BUCKET1,SL) ;;

;; ==> fillingBucket(BUCKET1,TAP1,SL) on ;;

;; 2. turnOffTAP(ERNIE,TAP1,BUCKET1,SL) ;;

;; 3. turnOnTap(ERNIE,TAP1,BUCKET2,SL) ;;

;; ==> fillingBucket(BUCKET2,TAP1,SL) on ;;

;; 4. pickUp(ERNIE,BUCKET1,SL) ;;

;; 5. go(ERNIE,SL,DL) ==> walking(ERNIE,DL) on ;;

;; 6. arrive(ERNIE,DL) ;;

;; 7. deliver(ERNIE,BUCKET1,DL,1) ;;

;; 8. go(ERNIE,DL,SL) ==> walking(ERNIE,SL) on ;;

;; 9. arrive(ERNIE,SL) ;;

;; 10. turnOffTAP(ERNIE,TAP1,BUCKET2,SL) ;;

;; 11. pickUp(ERNIE,BUCKET2,SL) ;;

;; 12. go(ERNIE,SL,DL) ==> walking(ERNIE,DL) on ;;

;; 13. arrive(ERNIE,DL) ;;

;; 14. deliver(ERNIE,BUCKET2,DL,4) ;;

;; ===

(define (problem problem1.1)

(:domain Buckets)

(:requirements :time :continuous-effects)

(:objects SL - location DL - location

TAP1 - tap

BUCKET1 - bucket BUCKET2 - bucket

ERNIE - agent

)

(:init (at ERNIE SL)

(at BUCKET1 SL)

(at BUCKET2 SL)

(at TAP1 SL)

(= (flow_rate TAP1) 0.1)

48

(= (walking_speed ERNIE) 5)

(= (capacity BUCKET1) 4)

(= (capacity BUCKET2) 4)

(= (distance SL DL) 100)

(= (distance DL SL) 100)

(= (amount_of_water SL) 0)

(= (amount_of_water DL) 0)

(= (distance_to_walk ERNIE SL) 0)

(= (distance_to_walk ERNIE DL) 0)

(= (level BUCKET1) 0)

(= (level BUCKET2) 0)

(connected SL DL)

(connected DL SL)

)

(:goal (and (>= (amount_of_water DL) 5))

(<= ?total-time 70))

)

)

49

Appendix B: Proof of Soundness and Completeness

In this appendix we present the proof that TM-LPSAT is sound and complete
over a substantial subset of our extended version of PDDL+ Level 5. We do
not carry this analysis to the point of a full formal semantics, in the sense of a
fully specified mapping from the symbolic form of the PDDL+ description to
the ontological model; rather, we rely on an informal reading of the PDDL+
description. We are confident that the aspects of the formal semantics not
dealt with here involve only issues that are well established in the theory
of formal semantics of representations and that are essentially orthogonal to
the issues that we will deal with here. Our focus here is on defining how
a valuation over discrete and numeric variables characterizes behavior over
real-valued time and on establishing that the formal constraints generated by
TM-LPSAT correspond to the meaning of the PDDL+ representation.

The subset of PDDL+ Level 5 that we deal with here includes atomic ac-
tions, events, discrete and numeric fluents, and processes. It does not include
interval-valued fluents or resources, but we are confident that extending the
proof to cover these is both straightforward and uninteresting. For the remain-
der of this appendix, we will use “PDDL+” to mean that subset of PDDL+
that we are dealing with here.

To simplify the exposition, in most of this section we will ignore the issue of
actions with numerical parameters; these make the definitions more complex
but do not present any substantive difficulty. At the end, we will sketch how
these can be incorporated.

Formulating and proving these theorems involves the following steps:

1. Defining the ontology of the microworld in which PDDL+ plans are exe-
cuted.

2. Defining the semantics of a PDDL+ problem statement in terms of this
ontology.

3. Defining the relation between a valuation over the variables used in TM-
LPSAT and microworld entities.

4. Identifying the rare circumstances in which the physical projection of a
system of processes is underdetermined.

5. Formalizing and proving the sense in which TM-LPSAT is “sound” and
“complete”. (In particular, there are several different senses in which a plan-
ner can be “complete”; only one of these applies to TM-LPSAT.)

50

B.1 Ontology

We assume that there are disjoint finite sets of actions, events, processes, and
fluents. Each fluent F has associated with it a set of possible values, denoted
vals(F). If F is discrete then vals(F) is a finite set of non-numeric values. If
F is numeric, then vals(F) is the set of real numbers.

Definition 1: A situation is a four-tuple 〈A, E, P, M〉 where A is a set of
actions; E is a set of events; P is a set of processes, and M is a mapping over
the set of fluents, such that, for any fluent F , M(F) ∈vals(F).

We will use a Pascal-style dot notation to denote the fields of a tuple; for
example, if S is a situation, then S.A is the set of actions in S, S.P is the set
of processes, and so on.

To allow the possibility of multiple time points with the same clock time, as
discussed in Section 4, we use the following non-standard temporal model:

Definition 2: A time point is a pair 〈X, N〉 where X is a real number and N
is a positive integer.

Intuitively, 〈X, N〉 is the Nth time point (counting from 0) at clock time X.
Time points are ordered lexicographically; that is, 〈X1, N1〉 < 〈X2, N2〉 iff
X1 < X2 or [X1 = X2 and N1 < N2].

Definition 3: A time interval I is a non-empty set of time points such that,
if T1 ∈ I, T2 ∈ I and T1 < T < T2 then T ∈ I. If T1 and T2 are time points
with T1 < T2 then the closed interval [T1, T2] is, as usual, the set of all time
points T such T1 ≤ T ≤ T2.

Definition 4: For any time point T = 〈X, N〉, if N > 0 then the time point
preceding T is the point 〈X, N − 1〉. If N = 0, then there is no time point
preceding T .

Definition 5: Let I = [〈X1, 0〉, 〈X2, N〉] be a closed time interval. A history

H over I is a mapping from I to situations.

The following abbreviations will be convenient. Let H be a history over the
time interval I = [〈X1, 0〉, 〈X2, N〉]. We will write I=dom(H) (read “the
domain of H”), and the real interval [X1, X2] = domX(H) (read “the X-
domain of H)”. For any time point T ∈dom(H) and fluent F we will write
H(T, F) as an abbreviation for [H(T).M](F), and we will write ΦH,F (X) for
the function over domX(H) defined by ΦH,F (X) = H(〈X, 0〉, F). Note that
H(T).A, H(T).E, and H(T).P are respectively the set of actions, events, and
processes active in H at time point T .

51

Definition 6:

A history H over [T0, T1] is compact if the following holds: For any TA, TB,
if TA 6= T0, TA.X=TB.X, TA.N < TB.N and H(TA).A = H(TA).E = ∅
then H(TB).A = H(TB).E = ∅.

That is, looking at a sequence of time points 〈X, 0〉, 〈X, 1〉, . . . all of the time
points when an action or event happens are “compacted” together at the
beginning of the sequence, with the exception of the starting time point of
this history.

Definition 7: Let H be a history and let X ∈ domX(H). We say that the

processes in H are constant around X if there exists a neighborhood (XA, XB)
of X over which the active processes do not change. That is, for every TC, TD
if XA < TC.X < XB and XA < TD.X < XB, then H(TC).P = H(TD).P.
If the processes in H are not constant around X, then X is a time of process

change in H .

Definition 8: Let H be a history and let T be a time point in dom(H). T is
a significant time point in H if either

• T is the starting time point of H .
• T is the ending time point of H .
• H(T).A 6= ∅.
• H(T).E 6= ∅.
• T .X is a time of process change and T .N=0.

Definition 9: A history H has finite complexity if it has finitely many signif-
icant time points. H is monotonous over real interval (XA, XB) if there is no
significant time point T such that T .X ∈ (XA, XB).

In all that follows, we will write “history” to mean “compact history of finite
complexity.”

Definition 10: Let H be a history, T a time point in the domain of H , and F
a fluent. Assume that T is not starting time point of H . Value V is the value

of F before T if the following conditions are satisfied.

• If T .N > 0, then V = H(T1, F) where T1 is the point preceding T .
• If T .N=0 and F is discrete, then there exists a T0 < T such that for all T1,

if T0 < T1 < T then V = H(T1, F).
• If T .N=0 and F is numeric, then V is the limit of ΦH,F (X) as X approaches

T .X from below.

If α is a term computed over fluents, then the value of α before T is α computed
over the values of the fluents before T . If α is a Boolean expression and the

52

value of α before T is true, in the above sense, then we say that α holds before
T .

Definition 11: A plan P is a mapping over a bounded time interval I, such
that,

• For any T ∈ I, P (T) is a finite set of actions;
• P (T) = ∅ for all but finitely many T.

We write I=dom(P), the domain of P .

Intuitively, P (T) is the set of actions that the plan says should be executed
at time T .

B.2 Semantics of PDDL+

Definition 12: A PDDL+ planning problem is a triple 〈D, S, G〉 where D is
a PDDL+ domain representation, S is a PDDL+ representation of a starting
situation, and G is a PDDL+ representation of a goal.

In Section 6 we did not describe how PDDL+ representations of a starting
situation and of a goal are compiled into axioms (a) because it is obvious;
(b) because it is the same as in any SAT-based planner. We will similarly not
discuss the issue here. We do, however, assume that a PDDL+ representation
of a starting situation uniquely determines the situation. If S is a PDDL+
representation of a starting situation, we will write “Sit(S)” to denote the
actual situation. As for goals, for our purposes here a “goal” can be essentially
any property of a history; we assume that the translation of a PDDL+ goal
into the corresponding property is done correctly.

The following long definition contains the details of the meaning of the con-
structs of PDDL+ in terms of the properties of a history. As is common in
this kind of semantic definition, the left-hand side of the definition is an al-
most tautological rewording of the right-hand side. Likewise notable is the
strong resemblance of the definition here to the description of the constraint
compiler in Section 6. This resemblance (a) is to be expected; (b) means that
large parts of the proof of correctness are trivial; (c) limits substantially the
degree to which the exhibition of a soundness and correctness proof of this
kind actually increases the reader’s confidence in the compiler or augments
her understanding of it.

Definition 13: Let H be a history and let D be a PDDL+ domain represen-
tation. H conforms to D if the following conditions hold:

53

1. If action Z ∈ H(T).A or event Z ∈ H(T).E and D specifies that Z assigns
term τ to fluent F , then H(T, F) is equal to the value of τ before T .

2. If F is a numeric fluent and if there is no action Z ∈ H(T).A nor event
Z ∈ H(T).E such that D specifies that Z assigns a value to fluent F ,
then H(T, F) is equal to the value of F before T plus the sum over (all
actions/events Z ∈ [H(T).A ∪ H(T).E]) of the increase/decrease that Z
causes in F .

3. (Frame property) Let F be a discrete fluent and let T1, T2 be time points
such that T1 < T2. Then H(T2, F) = H(T1, F), unless there exists a time
T such that T1 < T ≤ T2 and either an action Z ∈ H(T).A or an event
Z ∈ H(T).E such that D specifies that Z assigns a value to fluent F .

4. If action Z ∈ H(T).A, then the precondition for Z holds before T in H (in
the sense of definition 10).

5. Event E is in H(T).E if and only if the precondition of E holds before T in
H .

6. Process P is in H(T).P if and only if the precondition of P holds before T
in H .

7. Suppose that H is monotonous over real interval (X1, X2). Let F be a
numeric fluent. Then:

7.1 The function ΦH,F is continuous and differentiable throughout (X1, X2).
7.2 For any x ∈ (X1, X2) the derivative d

dX
(ΦH,F (X)) at time x is equal to

the sum over all processes P in H(〈x, 0〉).P of the influence of P on F at
time 〈x, 0〉.

7.3 For all sufficiently large N , H(〈X1, N〉, F) is equal to the limit of ΦH,F (x)
as x approaches X1 from above.

Definition 14: Let P be a plan; let H be a history; let S be a PDDL+ repre-
sentation of a starting situation; and let D be a PDDL+ domain description.
H is a projection of plan P starting in S and following D if the following
conditions hold:

• dom(P) = dom(H);
• For all T ∈dom(H), H(T).A = P (T).A;
• Sit(S) is the starting situation of H ; and
• H conforms to D.

As we shall see in lemma 1, for any P, S, D there exists at most one such
projection, with rare exceptions to be discussed below.

Definition 15: Let R = 〈D, S, G〉 be a PDDL+ problem. History H is a
historical solution of R if H starts in Sit(S), conforms to D, and achieves G.
A finite plan P is a planning solution of R if every projection of P starting in
S and following D is a historical solution of R.

Note that constraint-based planning techniques give correct results only if the

54

only source of uncertainty is the actions to be carried out; once the actions are
specified, there is only one possible projection. If there is more than one pos-
sible projection, or if there is anything unspecified in the starting situation,
then a constraint-based planner will make the most optimistic assumptions
about these; that is, it will set these uncontrolled parameters in the same way
that it sets the actions to be carried out. Note also that the definition above of
the correctness of a plan only works for complete plan representations; partial
plan representations, such as those returned by TWEAK [12], require a more
complex definition of correctness.

B.3 Valuations and their interpretations

Definition 16: Let R be a PDDL+ problem representation. Let T0 . . . Tk be
a sequence of k + 1 distinct symbols, called “time point variables”. We define
the set “ATOMS[R, k]” to be the set of all the following atoms: For each time
point variable Ti,

• The atom “c(Ti)”.
• For each action, event, or process Z in R, the atom “active(Z)[Ti]”.
• For each discrete fluent F in R, the atom “F [Ti]”.
• For each numeric fluent F in R, the atoms “F [T−

i]” and “F [T+
i]”.

• For each numeric fluent F and each action or event Z that potentially
changes F incrementally, the atom “∆(F, Z)[Ti]”.

• For each numeric fluent F and each process P that potentially influences
F , the atom “Γ(F, P, Ti, Ti+1)”.

Definition 17: A T-valuation V is an assignment of each atom in ATOMS[R, k]
to a value of the appropriate sort, such that, for each i < j, V(“c(Ti)”) ≤
V(“c(Tj)”).

Definition 18: Let V be a T-valuation over ATOMS[R, k]. The time point

mapping for V is the function τ from Ti to time points defined as follows:
τ(Ti) = 〈X, J〉 where

• X = V(“c(Ti)”);
• Ti is the Jth time point variable such that X=V(“c(Ti)”). That is, V(“c(Ti)”)

= V(“c(Ti−1)”) = . . .= V(“c(Ti−J)”) 6= V(“c(Ti−J−1)”).

Definition 19: Let V be a T-valuation over ATOMS[R, k]. Let τ be the time
point mapping for V. Plan P is indicated by V if:

• For each Ti, P(τ(Ti)) = the set of all actions A such that V(“active(A)[Ti]”)
= true.

55

• For each T , if T 6= τ(Ti) for all i, then P (T) = ∅.

Definition 20: Let D be a domain description, let V be a T-valuation, and
let H be a history. Let τ be the time point mapping of V . H corresponds to

V if:

1. dom(H) = [τ(T0), τ(Tk)].
2. If i < j then τ(Ti) < τ(Tj).
3. For each Ti, H(τ(Ti)).A = { A | V (“active(A)[Ti]”)=true }.
4. For each Ti, H(τ(Ti)).E = { E | V (“active(E)[Ti]”)=true }.
5. For any discrete fluent F , H(τ(Ti), F) = V (“F [Ti]”).
6. For any numeric fluent F , H(τ(Ti), F) = V (“F [T+

i]”).
7. Let T be any time point in dom(H). Let Ti be the greatest time variable

such that τ(Ti) ≤ T .
7.1. If T 6= τ(Ti) then H(T).A = H(T).E = ∅.
7.2. For any discrete fluent F , H(T, F) = V (“F [Ti]”).
7.3. If T .X = τ(Ti).X, then

7.3.1. For any numeric fluent F , H(T, F) = V (“F [T+
i]”).

7.3.2. For any process P , P ∈ H(T).P if the preconditions of P , as defined
in D, are satisfied before T in H .

7.4. If T .X > τ(Ti).X then
7.4.1. For any numeric fluent F , let

q = (T.X − τ(T+
i).X)/(τ(Ti+1).X − τ(Ti).X).

Then H(T, F) = (1 − q)V (“F [T+
i]”) + qV (“F [T−

i+1]”).
(Linear interpolation between significant points.)

7.4.2. H(T).P = { P | V (“active(P)[Ti]”)=true }.

Note that at a significant time Ti and at all subsequent non-significant times
with the same clock time, the activity of a process in H is rather awkwardly
defined in terms of the preconditions specified in the domain description D
(which is the only reason for including D as a parameter in this definition at
all.) The reason for this is as follows: Recall that in our discussion of axiom
(3.4) we defined “active(P)[Ti]” to mean that P was active over an interval
starting in Ti. Therefore, if P comes to an end at Ti, then in V , “active(P)[Ti]”
is false. However in H , P will be active at T = τ(Ti) if its preconditions are
satisfied at Ti; thus, P will still be active at T in H if the preconditions are
becoming false due to a zero crossing, which will be come negative only after
T , but it will be inactive at T in H if the preconditions have just become false
in T due to a discrete change. The valuation V by itself does not distinguish
these two cases; one needs to know the domain definition. Of course, since
the effect of a process is differential, whether or not a process is active at an
instant actually makes no difference.

56

B.4 Indeterminate projections

As discussed above, the constraint-based approach to planning relies on the
assumption that any plan has a unique projection; that is, once you fix the
actions you are to do, that determines everything else that can happen. Un-
fortunately, in a theory that include processes of the kind in PDDL+, there
are rare cases where that assumption is false.

The problem arises for the following reason: A system of processes in effect
imposes a set of ordinary differential equations (ODE’s) over the numerical
fluents involved. In standard applications of ODE’s one can rely on a standard
existence and uniqueness result for initial value problems to guarantee that,
having set up the starting condition and the differential equation, history can
develop in only one way. However, this result only holds when the “driving
function” for the ODE is continuous. PDDL+ processes define a discontinuous

driving function, so neither existence nor uniqueness is guaranteed and indeed
there are cases where history can develop in more than one way.

Consider the following example: There is one numeric fluent F and two pro-
cesses P1 and P2. P1 has precondition true and increases F at the rate of 1
unit per second. P2 has the precondition F ≤ 0 and decreases F at the rate of
1 unit per second. Suppose that F = 0 at time T = 0. Then for any T1 ≥ 0,
the following is a consistent behavior:

For any time T ,
If 0 ≤ T ≤ T1 then P1 and P2 are active at T and F=0.
If T1 < T then only P1 is active at T and F = T − T1.

This corresponds to the fact that the differential equation

Ḟ =

0 if F ≤ 0

1 if F > 0

has infinitely many solutions (if one allows a “solution” to have finitely many
points where it is continuous but not differentiable.)

However, a history H only encounters this problem at time T if the following
condition is met: (this is a necessary condition for the problem, not a sufficient
condition).

Indeterminacy Condition: There is a dependency cycle between processes,
numeric fluents, and preconditions:

P1→F1→Φ1→P2→ . . .→Φk→P1.

57

such that process Pi is active at T and influences fluent Fi; Fi is involved in
precondition Φi; and Φi is a precondition of process Pi+1 which is satisfied but
just on the borderline at time T .

A history H satisfies the Unique Projection Condition (UPC) if it never
satisfies the indeterminacy condition.

In principle, it would be possible to add the unique projection condition as
a TM-LPSAT constraint. The theoretical advantage would be that doing so
would give a slightly improved pair of soundness and completeness results, as
discussed below. We have not implemented it, however. In most actual domains
where the PDDL+ representation is at all a reasonable approximation, it is
possible to determine at compilation time that no circularity can arise among
fluents and processes; hence, no UPC axioms will be formulated. If a domain
does have this kind of circular dependence among fluents and processes, then
it is very unlikely that it can be adequately modeled using constant-rate influ-
ences. The theoretical improvement to the algorithm in the rare cases where
the UPC axioms do have an effect did not seem worth the programming effort.

B.5 Constraints and theorems

Finally, we introduce a notation for the set of constraints generated by TM-
LPSAT, state our soundness and completeness theorems, and prove the theo-
rems.

Definition 21: Let R be a planning problem and let k be a positive integer.
We define TM-LPSAT(k, R) to be the set of constraints constructed from R
over ATOMS[R, k] as defined in sections 6.1, 6.2, 6.3, 6.5, 6.6, and 6.10, using
versions (10.7) and (10.11) of the zero crossing axioms, but excluding the
mutex axioms in sections 6.1.3 and 6.2.4. The mutex axioms are useful for
enforcing certain regularity conditions that are important in other contexts,
and they are part of the standard semantics of PDDL+, but in the context of
this proof they just get in the way.

Let Λ be an algorithm (the constraint solver) that achieves the following: Λ
takes as input a set of constraints C of the form produced by TM-LPSAT.
If the constraints C have a solution, then Λ returns a T-valuation that is a
solution of C. If the constraints C do not have a solution, then Λ returns a
flag indicating there is no solution.

Theorem 1: (Soundness)
Let R be a planning problem. If Λ(TM-LPSAT(k, R)) returns a T-valuation
V , and V satisfies the UPC then the plan indicated by V is a planning solution

58

to R.

Theorem 2: (Completeness)
Let R be a planning problem. If there exists a planning solution to R, then for
some value of k, Λ(TM-LPSAT(k, R)) returns a T-valuation V . By theorem
1, if V satisfies the UPC then V indicates a planning solution to R.

The above pair of theorems does not close quite tight for the following reason:
One can construct a problem R where there is a correct plan P1 that satisfies
the UPC, but where there is also a plan P2 that does not satisfy the UPC,
such that some but not all of the projections of P2 satisfy the goal. Such a
plan P2 is not a correct solution of the problem, since, if you execute it, you
cannot be sure of accomplishing the goal. In this case, there are two things
that Λ(TM-LPSAT(R)) may do:

• It may return a valuation that indicates P1. In that case, you can check
that P1 satisfies the UPC, and you are certain that it is a correct plan.

• It may return a valuation that indicates P2. In that case, you can detect
that P2 violates the UPC. If you accept P2, you are accepting an incorrect
plan. If you reject P2 then you have failed to find a plan, even though there
exists a plan that satisfies the UPC.

We can tighten this, in principle, by adding the UPC to the constraints gen-
erated by TM-LPSAT. Let TM-LPSATU(k, R) be TM-LPSAT(k, R) together
with the UPC. Thus, if TM-LPSATU is applied to the above problem it will
return P1 and not P2.

Theorem 3: Let R be a planning problem.

• For any k, if Λ(TM-LPSATU(R, k)) returns a T-valuation V , then V indi-
cates a planning solution to R satisfying the UPC.

• If there exists a planning solution to R satisfying the UPC, then there exists
k such that Λ(TM-LPSATU(R, k)) returns a T-valuation V that indicates
a planning solution to R satisfying the UPC.

B.6 Proofs

The proofs of the above three theorems follow, in a series of emmas.

Lemma 1: Let D be a PDDL+ domain description and let S be a PDDL+
representation of a starting situation. Let P be a finite plan. Then there exists
at most one history H of finite complexity that is a projection of P , starts in
S, conforms to D, and satisfies the UPC.

59

Proof by contradiction. Suppose that there exist two such histories H1 6= H2.
Note that, if TS is the starting time point of dom(P) then Sit(S) = H1(TS) =
H2(TS). Note also that dom(P) = dom(H1) = dom(H2). Let interval I be the
maximal initial segment of dom(P) such that, for all T ∈ I H1(T) = H2(T).
(I can be constructed as the union of all initial segments I1 of dom(P) such
that, for all T ∈ I1, H1(T) = H2(T)). There are three cases to be considered:

Case 1: I has the form [TS, TE] for some ending point TE. Let TE1 be the
time point following TE. Then P determines the actions in TE1. Definition 13
parts 5 and 6 determine the events and processes in TE1. Definition 13 parts
1, 2, and 3 determine the value of all the fluents in TE1. Hence H1(TE1) =
H2(TE1).

Case 2: I has the form {T | TS ≤ T ∧ T.X < XE} for some upper bound
XE. Let TE1 = 〈XE, 0〉. Then the situation in TE1 is determined, by the
same argument as in part (1).

Case 3: I has the form {T | TS ≤ T ∧ T.X ≤ XE} for some upper bound XE.
In this case, there is no “next” situation after I, so the arguments in cases 1
and 2 do not apply. Rather, we proceed as follows: Since H1 and H2 have finite
complexity, there exists XF > XE and NE such that no events or actions
after 〈XE, NE〉 and before 〈XF, 0〉 in either H1 or H2. That is, no actions
or events occur in this interval; and the values of discrete fluents does not
change during this interval; and the class of active processes does not change
in the interval { T | 〈XE, NE〉 ≤ T < 〈XF, 0〉 } Let TE = 〈XE, NE〉.
By virtue of the UPC, there is a topological sorting of numerical fluents,
processes that are active at TE, and numerical preconditions of processes that
are active at TE that are just on the borderline such that every process comes
after its preconditions, every fluent comes after the processes that influence
it, and every precondition comes after the fluents that it references. Since
numerical fluents are continuous in the absence of actions and events, there
exists XG > XE such that at all time points T where XE < T.X < XG,
all numerical preconditions that were not on the borderline at TE remain
with the same truth value as at TE. Going through this topological sorting
in order, therefore, we can predict that there is an interval [TE, TH] where
TH .X > XE where the value of a numeric fluent is determined only the value
at TE together with processes preceding it in the list; where the truth of
a borderline precondition is determined only by numerical fluents preceding
it on the list; and where the activities of processes is determined only by
preconditions preceding it on the list. Thus, the history is determined for
some time after I, contrary to the assumption.

Lemma 2: For any T-valuation V and domain description D there exists a
unique history H that corresponds to V relative to D.

60

Proof: Definition 20 gives an explicit, fully determined, construction of H
from V and D.

In all the following definitions, let R be a planning problem; let D be the
domain description of R; let V be a T-valuation; let H be a history; and let τ
be the time point mapping of V .

Definition 22: A valuation V covers time point T if there exists a time point
variable Ti such that T = τ(Ti).

Lemma 3: If H corresponds to V relative to D and either some action or
event A occurs in T at H , then V covers T .

Proof: Contrapositive of part 7.1 in definition 20.

Definition 23: Let T be a time point in dom(H).

• T is significant-1 if there is a precondition Φ of an event that is true in T .
• T is significant-2 if there is a precondition Φ of a process such that Φ is

false in H before T and Φ is true in H(T).
• T is significant-3 if there is a precondition Φ of a process for which one of

the following holds:
· Φ is true in H before T and false in H(T).
· Φ is true in H(T), T.N=0, and there exists X2 > T .X such that,

for all X1, N1, if T .X < X1 < X2 then Φ is false in H(〈X1, N〉).

Lemma 4: Let I be an initial segment of dom(H). Let Ti be a time variable
such that τ(Ti) ∈ I and such that τ(Ti).X < τ(Ti+1).X. Let time interval
I1 = {T ∈ I | τ(Ti) < T < τ(Ti+1)}. Let T1 be any time point in I1.
Let T2 be a time point in I1 such that T2.X > τ(Ti).X. If V satisfies TM-
LPSAT(k, R) and H corresponds to V then

A. τ(Ti+1).N = 0.
B. If τ(Ti).X < T .X < τ(Ti+1).X then P is active in T if and only if

V (“active(P)[Ti]”) = true.
C. H is monotonous over the real interval (τ(Ti).X, T2.X).
D. If F is a discrete fluent then H(T1, F) = H(τ(Ti), F).
E. Let PP = H(T2).P. Let F be a numeric fluent. Let Γ be the sum over

P ∈ PP of the influence of P on F . Then
H(T1, F) = H(τ(Ti), F) + Γ · (T1.X − τ(Ti).X)

F. For any numerical fluent F , the value of F before Ti+1 is equal to V (“F [T−
i+1]”).

Proof:

A. Immediate by definition 18 of a time point mapping.
B. From definition 20 part 7.4.2, for all such T , the active processes are those

61

such that V (“active(P)[Ti]”) = true.
C. By lemma 3, no actions or events can occur in H at uncovered points. By

part B, the set of processes remains constant; hence there are no times of
process change. Hence (T2.X,T3.X) is monotonous.

D. Immediate from definition 20 part 7.2.
E. There are two cases to consider:
E.1. T1.X = τ(Ti).X. In this case, the result is immediate from definition 20

part 7.3.1.
E.2. T1.X > τ(Ti).X. By axioms (3.1), (3.2), and (3.3) the difference

V (“F [T−
i+1])” − V (“F [T+

i])” is equal to
[the sum over [all processes P such that V (“active(P)[Ti]”)=true] of the
influence of P on F] times [V (“c(Ti+1)”) − V(“c(Ti)”)]. By part B this set
is PP and this sum is Γ. By definition 20 part 2, V(“c(Ti)”) = τ(Ti).X,
so we have

V (“F [T−
i+1]”) − V (“F [T+

i]”) = Γ · (τ(Ti+1).X − τ(Ti).X).
By definition 20 part 7.4.1,

H(T, F) = (1 − q)V (“F [T+
i]”) + qV (“F [T−

i+1]”), where
q = (T.X − τ(Ti).X)/(τ(Ti+1).X − τ(Ti).X).

By definition 20 part 7.3.1, H(τ(Ti), F) = V (“F [T+
i]”). Combining the

above with some algebraic manipulation gives the desired result.
F. Again there are two cases:
F.1. τ(Ti+1).N > 0. In that case the value of F before τ(Ti+1) is the value

H(T1, F) where T1 is the situation that precedes τ(Ti+1). Since history
H is compact, some action or event must occur in T1. Hence, by lemma 3,
T1 = τ(Ti). By definition 20 part 6, H(T1, F) = V (“F [T+

i]”). By axioms
(3.1), (3.2), and (3.3), V (“F [T+

i]”) = V (“F [T−
i+1]”).

F.2. τ(Ti+1).N = 0. In that case the value of F before τ(Ti) is the limit of
ΦH,F (X) as X approaches τ(Ti).X from below.
By part (E), ΦH,F = H(τ(Ti), F) + Γ · (τ(Ti+1).X − τ(Ti).X).
Using (E) and axioms (3.1), (3.2), and (3.3), this is equal to V (“F [T−

i+1]”).

Lemma 5: If H corresponds to V , then there can be at most finitely many
points that are significant-1, significant-2, or significant-3.

Proof: By definition 20, between any two points τ(Ti) and τ(Ti+1) every
discrete fluent is constant and every numeric fluent is a linear function of time.
Any numeric preconditions are a linear inequality over the numeric fluents, and
thus a linear inequality in time over this time interval. A time point that is
significant-1, -2, or -3 must either involve a change to a discrete fluent, which
do not occur at uncovered points, or a zero crossing of a numeric constraint,
which can occur at most once for each such constraint between τ(Ti) and
τ(Ti+1).

Lemma 6: If H corresponds to V and V satisfies axiom (10.6), then V covers
any time point that is significant-1 or significant-2.

62

Proof: by contradiction. (This proof is essentially the same as the discussion
in Section 6.10, but set in a specific formal context.) Let T be a time point
that is significant-1 or significant-2 but not covered. Let Ti be the greatest
time point variable for which τ(Ti) < T ; thus T < τ(Ti+1). Let T1 = τ(Ti)
and T2 = τ(Ti+1). Let the precondition of the event or process involved be
put into DNF: Θ1 ∨ . . .∨Θz. Then all of the Θi are false before T and at least
one is true at T . Let Θ(T) be a constraint that becomes true at T . Let TF
be a time such that T1 ≤ TF < T and Θ(TF) is false. Θ(T) has the form
∧pFp(T)∧∧pQp(T) ≥ 0. where F (p) are discrete constraints. By definition 20,
Fp(T) = Fp(T1); since Θ(T) is true, ∧pFp(T1) must be true. Thus we must
have ∧pQp(T) ≥ 0 but not ∧pQp(TF) ≥ 0. Since each Qp is a linear function of
time, if Qp(T) ≥ 0 but Qp(TF) < 0 then Qp(T1) < 0. Also, since each Qp is a
linear function of time if Qp(T) ≥ 0 then either Qp(T1) > 0 or Qp(T2−) > 0 or
Qp(T1) = Qp(T2−) = 0. where Qp(T2−) is the limit of Qp(T) as T approaches
T2 from below. But Qp(T1) = V (“Qp(T

+
i)”) and Qp(T2−) = V (“Qp(T

−
i+1)”);

so this possibility is excluded by axiom (10.6).

Let us define an additional axiom for zero crossings from true to false analogous
to axiom (10.6):

(10.12) [∧pFp[Ti] ∧ ∧p[Qp[T
−
i+1] > 0 ∨ Qp[T

+
i] > 0 ∨ Qp[T

+
i] = Qp[T

−
i+1] = 0]

⇒ [∧pQp[T
−
i+1] ≥ 0]

As with axiom (10.11), we constructed this axiom by starting with axiom
(10.6) and interchanging F[T+

i] and F[T−
i+1].

Lemma 7: If H corresponds to V and V satisfies axiom (10.12), then V covers
any time point that is significant-3.

Proof: Exactly analogous to the proof of lemma 6, with the following changes:
Since Θ changes from true to false, choose TF such that T < TF ≤ Ti+1

and Θ(TF) is false. Since Qp is a linear function of time, Qp(T) ≥ 0 and
Qp(TF) < 0, it follows that Qp(T2) < 0.

Lemma 8: Suppose that V satisfies TM-LPSAT(k, R) using axiom (10.6) and
H corresponds to V . If the preconditions of event E are satisfied before T in
H , then E occurs in H at time T .

Proof by contradiction: Suppose that there is a time T when precondition Θ
of event E holds before T but event E is not active. Since E is not active, T
is not a significant time point. We have the following case analysis:

• T .N > 0. In this case, Θ holds in T1 where T1 is the situation preceding T .
This would violate axioms (2.1) and (2.2).

• T .N=0, and T = τ(Ti) is a covered time point. By lemma 4, the value of β
before T is equal to V (“β(T−

i)”). Thus, this violates axiom (2.1).

63

• T .N=0 and T is not a covered time point. Let T1 be the greatest covered
time point such that T1 < T . Let TS be the smallest value such that TS ≥
T1 and such that Θ(TX) holds for all TX ∈ [TS, T]. (Since H has finite
complexity and since numerical preconditions are non-strict inequalities, it
is easily shown that such a smallest value exists.) If TS = T1 then TS is
covered. If Θ(T) comes to be true in TS as a result of a discrete change or of
a discontinuous change to a numeric variable, then TS must be covered. If
Θ(T) comes to be true in TS as a result of a continuous change in a numeric
variable, then TS is significant-1 in H and hence covered. Therefore, since
TS is covered, by axioms (2.1) and (2.2), E occurs in the successor to
TS; hence the successor to TS must be covered. But this contradicts the
definition of T1.

Lemma 9: Suppose that V satisfies TM-LPSAT(k, R) using axioms (10.6)
and (10.12) and H corresponds to V . P is active in H at time T if and only
if the preconditions of process P are satisfied before T in H .

Proof: Let Ti be the maximum time point such that τ(Ti) ≤ T . If τ(Ti).X
= T .X, then the result is immediate from definition 20 part 7.3.2. Otherwise,
note that between τ(Ti) and τ(Ti+1) there are no actions or events or time
points that are significant-2 or significant-3. Since numerical precondition are
all non-strict inequalities, we have the following possible cases:

• Some precondition β of P is satisfied for all T1 such that τ(Ti) ≤ T1 <
τ(Ti+1). Then β[T+

i] is true and, by lemma 4 part F, β[T−
i+1] is true. Hence

by axiom (3.4), V (“active(P)[Ti]”) = true. Hence by definition 20 P is active
in H(T).

• Some precondition β of P is satisfied in τ(Ti) but depends on a numerical
constraint that is on the borderline and just about to become false; and
no precondition of P is satisfied for any T1 such that τ(Ti).X < T1.X <
τ(Ti+1).X. In this case, β[T−

i+1] is false, so by axiom (3.4), V (“active(P)[Ti]”)
= false. Hence by definition 20 P is not active in H(T).

• No precondition β of P is satisfied in τ(Ti). In this case, no precondition β
can be satisfied for any T1 such that τ(Ti) ≤ T1 < τ(Ti+1). Therefore β[T+

i]
is false, so by axiom (3.4) V (“active(P)[Ti]”) = false. Hence by definition
20 P is not active in H(T).

Lemma 10: If V satisfies TM-LPSAT(k, R) using axioms (10.6) and (10.12)
and H corresponds to V , then H conforms to the domain description D of R.

Proof: If an action or event Z occurs in H at time T , then by definition
20 there is a Ti in V such that τ(Ti) = T and such that V(“active(Z)[Ti]”).
By axioms (1.1) - (1.5) for actions and the corresponding axioms for events
(Section 6.2.1), the effects of these actions will be reflected in the value of the
fluents in Ti in a way that exactly matches constraints 1,2, and 3 in definition

64

13. Thus definition 13 constraints 1, 2, and 3 are always satisfied.

By axioms (1.6) and (2.1), if V(“active(Z)[Ti]”) then β[T−] must hold. By
lemma 4 part F, this is equivalent to the condition that β must hold before Ti.
So constraint 4 and the left to right implication of constraint 5 of definition
13 must hold.

The right to left implication of constraint 5 is lemma 6. Constraint 6 is lemma
7. Constraint 7 follows immediately from lemma 4.

Corollary 11: Lemma 10 continues to hold if axioms (10.6) and (10.12) are
replaced, either by axioms (10.3) and (10.4) or by axioms (10.7) and (10.11).

Proof: As discussed in Section 6.10, these new axioms are stronger than (10.6)
and (10.12), so a T-valuation that satisfies the conditions of corollary 11 a

fortiori also satisfies the conditions of lemma 10.

Lemma 12: Let R be a planning problem; let V be a T-valuation that satisfies
TM-LPSAT(k, R) and let H be a history that corresponds to V . Then H is a
historical solution of R.

Proof: Immediate from corollary 11 and definition 15.

Let Λ be a constraint solver, with the properties defined on p. 58.

Theorem 1: (Soundness)
Let R be a planning problem. If Λ(TM-LPSAT(k, R)) returns a T-valuation
V , and V satisfies the UPC then the plan P indicated by V is a planning
solution to R.

Proof: By lemma 2, there exists a unique history H corresponding to V
relative to the domain description of R. By corollary 11, H is a historical
solution of R. By definition 15, P is a planning solution to R.

Definition 24: Let H be a history that conforms to domain description D.
A real value XZ is a zero crossing of H with respect to D if there is some
numerical precondition β ≥ 0 of either an event or a process in D such that
either

• There exists X1 < XZ such that
[if X1 < X < XZ then ΦH,β(X) < 0] and limX→XZ− ΦH,β(X) = 0; or

• There exists X1 > XZ such that
[if XZ < X < X1 then ΦH,β(X) < 0] and limX→XZ+ ΦH,β(X) = 0.

Lemma 13: If history H conforms to domain description D, then H has only
finitely many zero crossings relative to D.

65

Proof: Using definition 20, the fact that H has finite complexity, and the fact
that every precondition β is a linear function of the numeric fluents, it follows
that every such β is piecewise linear.

Definition 24: Let H be a history that conforms to D. A time point Y is
significant-4 if either Y is significant or Y = 〈X, 0〉 where X is a zero crossing.

Definition 25: Let H be a history that conforms to domain description D.
The trace of H relative to D is the T-valuation V constructed as follows:
Let Y0 . . . Yk be all the significant-4 time points of H in sequential order. Let
T0 . . . Tk be time point variables. Then:

• V (“c(Ti)”) = Yi.X.
• For any action A, V (“active(A)[Ti]”) = true iff A ∈ H(T).A.
• For any event E, V (“active(E)[Ti]”) = true iff E ∈ H(T).E.
• For any process P , V (“active(P)[Ti]”) = true iff P ∈ H(T).P.
• For any discrete fluent F , V (“F [Ti]”) = H(T, F).
• For any numeric fluent F , V (“F [T+

i]”) = H(T, F).
• For any numeric fluent F , V (“F [T−

i]”) = the value of F before T in H .
• For each numeric fluent F and each action or event Z that potentially

changes F incrementally, V(“∆(F, Z)[Ti]”) is the change that Z makes to
F at time Yi.

• For each numeric fluent F and each process P that potentially influences
F , the atom “Γ(F, Z, Ti, Ti+1)” is the change that P makes to F between Yi

and Yi+1.

Lemma 14: Let R be a planning problem. Let H be a historical solution
to R. Let V be the trace of H . Then V satisfies TM-LPSAT(k, R) and H
corresponds to V .

Proof: We must establish that if H and the domain description in R satisfy the
conditions of definition 13 for “conform” and if V satisfies the conditions of def-
inition 25 for “trace” then V satisfies each of the axioms of TM-LPSAT(k, R)
and H and V satisfy each of the conditions in definition 20 for “correspond”.
However, this is all a straightforward repetition of the argumentation that we
have given above in Section 6 of the paper and in the proof of theorem 1.

Note that the trace V of H will satisfy the strongest version (10.3) and (10.4)
of the zero crossing axioms, and hence satisfy the weaker forms (10.6), (10.7),
(10.11) and (10.12).

Theorem 2: (Completeness)
Let Λ be a constraint solver, as in Theorem 1 above. Let R be a planning
problem. If there exists a planning solution to R, then for some value of k,
Λ(TM-LPSAT(k, R)) returns a T-valuation V . By theorem 1, if V satisfies the
UPC then V indicates a planning solution to R.

66

Proof: Let P1 be a planning solution to R. Let H1 be a projection of P1
relative to R. Let k be the number of significant-4 time points in R. Let
V 1 be the trace of H1. By lemma 14, V 1 satisfies TM-LPSAT(k, R), so by
definition of Λ, Λ(TM-LPSAT(k, R)) returns some valuation V that satisfies
TM-LPSAT(k, R). By theorem 1, V indicates a planning solution to R.

Theorem 3: Let R be a planning problem.

• For any k, if Λ(TM-LPSATU(R, k)) returns a T-valuation V , then V indi-
cates a planning solution to R satisfying the UPC.

• If there exists a planning solution to R satisfying the UPC, then there exists
k such that Λ(TM-LPSATU(R, k)) returns a T-valuation V that indicates
a planning solution to R satisfying the UPC.

Proof: Immediate from theorems 1 and 2.

B.7 Actions with numerical parameters

Finally, let us sketch how actions with numerical parameters can be fit into
this framework. Define a symbolic action to be an atom; intuitively, this corre-
sponds to the action functor and its non-numeric parameters. Define an action

to be a tuple 〈SA, P1 . . . Pk〉 where S is the symbolic action and P1 . . . Pk are
values of the numerical parameters. Thus, in the bucket domain, the tuple
〈POUR(A1,B1,B2,L3), 5〉 would correspond to the action “(pour a1 b1 b2 5
l3)”. Modify the definitions in this appendix as follows:

• In definition 1, add the constraint that in any situation S there cannot be
two different actions with the same symbolic action.

• In definition 16, delete the word “actions” from the specification of the
second category of atoms.

• In definition 16, add the following two categories of atoms:
· For each symbolic action SA, the atom “active(SA)[Ti]”
· For every symbolic action SA, for each numerical parameter P , the atom

“SAP [Ti]”.
• Add the following definition between definitions 17 and 18:

For any action A = 〈SA, X1 . . .Xk〉, define V (“active(A)[Ti]”) to be true if
V (“active(SA)[Ti]”) = true and V (SAPj

[Ti]) = Xj for j = 1 . . . k.

The remainder of the definitions and the proofs of the lemmas remain un-
changed. (Nothing in the other definitions or in the proofs depends on the
class of actions being finite. The new atoms enter into the preconditions and
effect constraints for the symbolic action SA in the obvious way.)

67

References

[1] A. Armando, C. Castellini, E. Giunchiglia, F. Giunchiglia, A. Tacchella, SAT-
Based Decision Procedures for Automated Reasoning: a Unifying Perspective,
To appear in Lecture Notes in Artificial Intelligence, 2002.

[2] J.F. Allen, Maintaining Knowledge about Temporal Intervals, Communications
of the ACM, 26(11) (1983) 832-843.

[3] G. Audemard, P. Bertoli, A. Cimatti, A., Kornilowicz, R. Sebastiani, R., A SAT
Based Approach for Solving Formulas over Boolean and Linear Mathematical
Propositions, In: Proceedings of the International Conference of Automated
Deduction, Lecture Notes in Artificial Intelligence 2392, 2002, 193-208.

[4] G. Audemard, M. Bozzano, A. Cimatti, R. Sebastiani, Verifying Industrial
Hybrid Systems with MathSAT, Electronic Notes in Theoretical Computer
Science 89(4) (2004).

[5] M. Baioletti, S. Marcugini, A. Milani, DPPlan: an Algorithm for Fast Solutions
Extraction from a Planning Graph, In: Proceedings of Artificial Intelligence
Planning Systems (AIPS-02), 2000, 13-21.

[6] C. Barrett, S. Berezin, CVC Lite: A New Implementation of the Cooperating
Validity Checker. In: Proceedings of the International Conference on Computer
Aided Verification (CAV-04), 2004, 515-518.

[7] R. Bayardo, R. Schrag, Using CSP Look-Back Techniques to Solve Real-World
SAT Instances, In: Proceedings of the 14th National Conference on Artificial
Intelligence (AAAI-97), 1997, 203-208.

[8] A. Blum, M. Furst, Fast Planning through Planning Graph Analysis, Artificial
Intelligence 90 (1997) 281-300.

[9] A. Borning, G. Badros, The Cassowary Linear Arithmetic Constraint Solving
Algorithm: Interface and Implementation, Technical Report UW-CSE-98-06-04,
University of Washington, WA, 1998.

[10] M. Bozzano, A. Cimatti, G. Colombini, V. Kirov, R. Sebastiani, The MathSAT
Solver – a progress report, In: Proceedings of the Workshop on Pragmatics of
Decision Procedures in Automated Reasoning (PDPAR-04), 2004, ???.

[11] R. Brafman, A Simplifier for Propositional Formulas with Many Binary
Clauses, In: Proceedings of the 19th International Joint Conference on Artificial
Intelligence (IJCAI-01), 2001, 515-522.

[12] D. Chapman, Planning for Conjunctive Goals, Artificial Intelligence 32(3)
(1987) 333-377.

[13] E. Davis, Representations of Common Sense Knowledge, Morgan Kaufmann
Inc., San Fransico, CA, 1990.

68

[14] E. Davis, Axiomatizing Qualitative Process Theory, In: Proceedings of the
3rd International Conference on Principles of Knowledge Representation and
Reasoning (KR-92), 1992, 177-188.

[15] M. Davis, G. Logemann, D. Loveland, A machine program for theorem proving,
Communications of the ACM 5 (1962) 394-397.

[16] T. Dean, J. Firby, D. Miller, Hierarchical planning involving deadlines, travel
times and resources, Computational Intelligence 4(4) (1988) 381-398.

[17] Y. Dimopoulos, A. Gerevini, Temporal Planning through Mixed Integer
Programming: A Preliminary Report, In: Proceedings of the 8th Conference
on Principle and Practice on Constraint Programming (CP-02), 2002, 47-62.

[18] M.B. Do, S. Kambhampati, Sapa: A Scalable Multi-Objective Metric Temporal
Planner, Journal of Artificial Intelligence Research 20 (2003) 155-194.

[19] B. Drabble, EXCALIBUR: A Program for Planning and Reasoning with
Processes, Artificial Intelligence 62 (1993) 1-40.

[20] S. Edelkamp, J. Hoffman, PDDL2.2: The Languages for the Classical Part
of the 4th International Planning Competition, Available at http://ipc.icaps-
conference.org, 2004.

[21] M. Ernst, T. Millstein, D. Weld, Automatic SAT-Compilation of Planning
Problems, In: Proceedings of the 15th International Joint Conference on
Artificial Intelligence (IJCAI-97), 1997, 1169-1176.

[22] K. Forbus, Qualitative Process Theory, Artificial Intelligence 24 (1984) 85-168.

[23] M. Fox, D. Long, The automatic inference of state invariants in TIM, Journal
of Artificial Intelligence Research 9 (1998) 367-421.

[24] M. Fox, D. Long, PDDL+ Level 5: An Extension to PDDL2.1 for
Modelling Planning Domains Continuous Time-dependent Effects, Available
at http://www.dur.ac.uk/d.p.long/competition.html, 2001.

[25] M. Fox, D. Long, PDDL2.1: An Extension to PDDL for Expressing Temporal
Planning Domains, Journal of Artificial Intelligence Research 20 (2003) 61-124.

[26] A. Gerevini, L. Schubert, Inferring state constraints for domain independent
planning, In: Proceedings of the 15th National Conference of Artificial
Intelligence (AAAI-98), 1998, 905-912.

[27] A. Gerevini, A. Saetti, I. Serina, Planning through Stochastic Local Search and
Temporal Action, Journal of Artificial Intelligence Research 20 (2003) 239-290.

[28] E. Giunchiglia, A. Massarotto, R. Sebastiani, Act and the Rest Will Follow:
Exploiting Determinism in Planning as Satisfiability, In: Proceedings of the
15th National Conference on Artificial Intelligence (AAAI-98), 1998, 948-953.

[29] G. Hendrix, Modeling Simultaneous Actions and Continuous Changes, Artificial
Intelligence 4 (1973) 145-180.

69

[30] T. Henzinger, The Theory of Hybrid Automata, In: Proceedings of the 11th
Annual Symposium on Logic in Computer Science, 1996, 278-292.

[31] J. Hoffmann, H. Geffner, Branching Matters: Alternative Branching in
Graphplan, In: Proceedings of the 13th International Conference on Automated
Planning and Scheduling (ICAPS-03), 2003, 22-31.

[32] J. Hooker, Logic-Based Methods for Optimization, John Wiley & Sons, 2000.

[33] H. Kautz, B. Selman, Planning as Satisfiability, In: Proceedings of the 10th
European Conference on Artificial Intelligence (ECAI-92), 1992, 359-363.

[34] H. Kautz, D. McAllester, B. Selman, Encoding Plans in Propositional Logic,
In: Proceedings of the 5th International Conference on Principles of Knowledge
Representation and Reasoning (KR-96), 1996, 374-384.

[35] H. Kautz, B. Selman, Pushing the Envelope: Planning, Propositional Logic and
Stochastic Search, In: Proceedings of the 13th National Conference on Artificial
Intelligence (AAAI-96), 1996, 1194-1201.

[36] H. Kautz, B. Selman, Unifying SAT-based and Graph-based Planning, In:
Proceedings of the 17th International Joint Conference on Artificial Intelligence
(IJCAI-99), 1999, 318-325.

[37] K. Kichkaylo, A. Ivan, V. Karamcheti, Constrained Component Deployment
in Wide-Area Networks Using AI Planning Techniques, In: Proceedings of the
International Parallel and Distributed Symposium (IPDPS-03), 2003, 3-8.

[38] D. Long, M. Fox, I. Sebastia, A. Coddington, An examination of resources in
planning, In: Proceedings of UK Planning and Scheduling SIG Workshop, 2000.

[39] D. Long, M. Fox, Exploiting a Graphplan Framework in Temporal Planning,
In: Proceedings of International Conference on Automated Planning and
Scheduling (ICAPS-03), 2003, 51-62.

[40] D. Long, M. Fox, The 3rd International Planning Competition: Results and
Analysis, Journal of Artificial Intelligence Research 20 (2003) 1-59.

[41] A. Mali, Encoding Temporal Planning as CSP, In: Proceedings of IEEE
International Conference on Tools with Artificial Intelligence, 2002, 75-92.

[42] D. McDermott, the AIPS-98 Planning Competition Committee, PDDL
- the Planning Domain Definition Language, Version 1.2, Available at
http://www.cs.yale.edu/homes/dvm, 1998.

[43] D. McDermott, The Formal Semantics of Processes in PDDL, In: Proceedings
of Workshop on PDDL at International Conference on Automated Planning
Scheduling, 2003.

[44] D. McDermott, Reasoning about Autonomous Processes in an Estimated-
Regression Planner, In: Proceedings of the International Conference on
Automated Planning and Scheduling (ICAPS-03), 2003, 143-152.

70

[45] M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, S. Malik, Chaff:
Engineering an Efficient SAT solver, In: Proceedings of the 38th Design
Automation Conference (DAC-01), 2001, 530-535.

[46] J. Penberthy, Planning with Continuous Change, Ph.D. Dissertation, Dept. of
Computer Science and Engineering, University of Washington, WA, USA, 1993.

[47] J. Penberthy, D. Weld, Temporal Planning with Continuous Change, In:
Proceedings of the 12th National Conference on Artificial Intelligence (AAAI-
94), 1994, 1010-1015.

[48] J. Rintanen, A Planning Algorithm not based on Directional Search, In:
Proceedings of the 6th International Conference on Principles of Knowledge
Representation and Reasoning (KR-98), 1998, 617-624.

[49] J. Rintanen, Evaluation Strategies for Planning as Satisfiability, In: Proceedings
of the European Conference on Artificial Intelligence (ECAI-04), 2004, 682-687.

[50] J. Shin, TM-LPSAT: Encoding Temporal Metric Planning in Continuous Time,
Ph.D. Dissertation, Dept. of Computer Science, New York University, NY, USA,
2004.

[51] J. Shin, E. Davis, Continuous Time in a SAT-Based Planner, In: Proceedings of
the 22th National Conference on Artificial Intelligence (AAAI-04), 2004, 531-
536.

[52] R. Simmons, Combining Associational and Causal Reasoning to Solve
Interpretation and Planning Problems, Technical Report AI-TR-1048, MIT AI
Lab, MA, USA, 1988.

[53] D. Smith, J. Frank, A. Jonsson, Bridging the Gap between Planning and
Scheduling, Knowledge Engineering Review 15(1) (2000) 61-94.

[54] D. Smith, D. Weld, Temporal Planning with Mutual Exclusion Reasoning, In:
Proceedings of the 16th International Joint Conference of Artificial Intelligence
(IJCAI-99), 1999, 326-333.

[55] S. Vere, Planning in Time: Windows and Durations for Activities and Goals,
Pattern Analysis and Machine Intelligence 5 (1983) 246-267.

[56] D. Wilkins, Can AI planners solve practical problems?, Computational
Intelligence 6(4) (1990) 232-246.

[57] S. Wolfman, D. Weld, The LPSAT Engine and its application to Resource
Planning, In: Proceedings of the 16th International Joint Conference of Artificial
Intelligence (IJCAI-99), 1999, 310-316.

[58] S. Wolfman, D. Weld, Combining Linear Programming and Satisfiability Solving
for Resource Planning, Knowledge Engineering Review 16(1) (2000) 85-99.

[59] L. Zhang, S. Malik, The Quest for Efficient Boolean Satisfiability Solvers, In:
Proceedings of the International Conference on Computer Aided Verification
(CAV-02), 2002, 17-36.

71

