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Chapter 7
Physics

I know people who would not deposit a nickel and a dime in a
cigarette-vending machine and push the lever even if a
diamond necklace came out. I know dozens who would not
climb into an aeroplane even if it didn’t move off the ground.
In none of these people have I discerned what I would call a
neurosis, an “exaggerated” fear; I have discerned only a natural
caution in a world made up of gadgets that whir and whine
and whiz and shriek and sometimes explode.

James Thurber, “Sex ex Machina,” in Let Your Mind Alone!

To act effectively and flexibly, to take advantage of opportunities and to
avoid dangers, an intelligent creature must understand the behavior
of the physical world. In particular, it must understand how its own
actions will affect the world. .

The kind of knowledge required for sensible behavior can be quite
different from scientific theories. In general, it is not necessary nor
even useful to incorporate the most complete theories of modern phys-
ics into a robotics program. On the one hand, these theories deal with
phenomena far outside the scope of ordinary experience. On the other
hand, though it is probably true that any valid statement about the
commonsense physical world is, in principle, a consequence of these
underlying theories, deriving a useful commonsense inference from
fundamental physical laws, or even stating boundary conditions for a
commonsense problem in terms of fundamental physical properties, is
wholly impractical. A commonsense physical reasoning system should
deal with concepts more or less at the level of everyday discourse.

The theories that we will study in this chapter are all grounded in
scientific theories; they are approximations to scientific truth. The
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physical theories that can be elicited from the man on the street
are, apparently, substantially different. (See, for example [McCloskey
1983].) We have chosen to ignore these, first, because correct theories
are presumably more useful, and, second, because correct theories are
more uniform, better known, more easily specified, and less prone to
internal inconsistency. Also, since the man on the street can, gener-
ally, accept physical reality without continual surprise, the predictions
of the true physical laws must be largely compatible with his beliefs
in most situations. (There are exceptions, such as gyroscopes, even
among simple physical situations.)

In their daily lives, human beings deal with myriads of different
types of physical substances and interactions. Al theories of physi-
cal reasoning do not yet begin to reflect this range of phenomena; so
far, they have studied only a rather small number of different areas,
Often the choice of an area for study has been based on a perceived
potential for practical application, rather than on centrality or inter-
est for commonsense reasoning. This chapter, necessarily, follows the
existing research in its choice of topics.

7.1 The Component Model

A divide-and-conquer strategy that is often useful in analyzing phys- -
ical systems, particularly man-made devices, is to view the system as
a whole as composed of separate components connected together. The
“behavior of the system can then be analyzed by studying the behav-
iors of the components, each of which is presumably simpler than the
overall system, and determining how these behaviors interact. This
kind of analysis is easiest and most effective if the assemblage has the
following properties:

e The device is assembled out of a set of components, which are con-
nected together. What components are used, and how they are
connected together, is invariant over time.

e The instantaneous state of the assemblage can be characterized by
the values of a number of one-dimensional parameters. (We rule
out devices where two- or three-dimensional motion is important,
except where each dimension of motion can be handled indepen-
dently.) :

e Each component has a fixed number of ports. Components interact
only by being connected at ports.
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e Each parameter is associated with one port of one component. The
behavior of a component is entirely characterized in terms of con-
straints that it imposes on values of parameters at its various ports.
The behavior of a connection is entirely characterized in terms of
constraints that it imposes on the ports that it joins.

The best examples of such systems are electronic devices, which,
however, are at best marginally objects of a commonsense understand-
ing. The model may also be applied, less well, to other types of devices
such as hydraulic systems, heat-transfer systems, and simple mechan-
ical devices. Our description of the component model is based on the
well-known ENVISION program [de Kleer and Brown 1985].

An important objective in analyzing such systems is the principle
of “No function in structure” [de Kleer and Brown 1985]. That is, the
component and connection descriptions, which constitute the input
description of the system (structure), should be given in a form that
is independent of properties of the overall system. This objective is
rarely fully achievable in a component analysis, except for electronic
devices, but it can be partially achieved if the specified descriptions
apply across a large range of devices that use the component. For
example, a description of a switch that specifies that current flows
through a switch just if the switch is closed would violate “No func-
tion in structure” badly, since there are many closed switches with
no current flow, such as a switch in a circuit with no power source,
or a closed switch in series with an open switch. A description that
specifies that a switch prohibits current flow if it is open and prohibits
voltage difference if it is closed would be valid for most standard uses
of a switch, and so would observe the “no function in structure” prin-
ciple. The account will not serve for nonstandard uses of a switch —
e.g., as a paperweight, or to cast a shadow, or to create an electric arc
by placing it almost closed. No description of an object in terms of
constraints among ports will cover all of its possible physxcal behav-
iors.

As an example of component-based analysis, consider the simple
scale shown in Figure 7.1. In this scale, the height of the needle
varies with the mass in the pan. The relation is controlled by the
two springs. For the purposes of this example, we will assume that,
within the operating range of the scales, the slope of the lever is small
enough that the horizontal displacement of the ends can be ignored.

We divide the scales into five components: A weight with two ports,
one for the gravitational force and one for the support; a lever with
two ports; a base with one port; and two springs, each with two ports.
Each port has two parameters associated: its height and the vertical
force exerted on the component at the port. (In a substantial violation
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Figure 7.1 Scale

of “no function in structure,” our models of springs and lever presume
that the springs are vertical and that the lever is nearly horizontal.)
The component models are as follows: The port. of the base is at a
constant height. The force on the two ends of the lever are equal. The
heights of the two ends of the lever are constrained by the fact that
their midpoint is a fixed fulerum of constant height, so that the sum
of their heights is constant. The forces exerted on the spring at each
of its ports are equal in magnitude and opposite in direction, and the
difference in height between the two ports is an increasing function
of the difference in the forces. (The sign is not reversed, because we
are considering the force exerted on the spring rather than the force
exerted by the spring.) The weight obeys Newton’s laws: The total
force on the weight is equal to its mass times its vertical acceleration.
The total force on the weight is equal to the gravitational force, which
is considered one port, plus the force exerted on the weight by its-
support, which is considered another port.

The following rules apply to connections:

o All ports at a connection must have equal heights.

e The sum of the forces exerted on all the ports at a connection must
be zero.

The system is at rest (in equilibrium) when all parameter values are
constant. In particular, the acceleration of the weight must be zero.
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Figure 7.2 Schematic of scale

Figure 7.2 shows an abstract component diagram of the scale. Ta-
ble 7.1 shows the primitives used in representing the scale. Table
7.2 gives an axiomatization of the physical laws involved. Table 7.3
shows a specific description of the scale. Table 7.4 shows the equations
that govern the scale; these can be derived straightforwardly from the
axioms and problem statement.

If we restrict attention to situations where the system is at rest,
so that all derivatives are zero, then the last equation in Table 7.4
becomes, “f, = mg.”

There are a number of ways that these equations can be used for
physical inference:

Exact solution: If the properties of the springs are stated exactly,
rather than merely specifying that the expansion of the spring is an
increasing function of the force applied, then the equations can be
solved exactly. For example, suppose it is specified that the springs
are linear; that is, they are governed by the rule

spring(O, P1, P2) =
(1/2) x (force_on(P1) — force_on(P2)) =
spring_const(O) x (height(P1) — height(P2) — rest_length(0))




]

316 Physics

Table 7.1 Primitives for Scales

Sorts: Ports, components, heights, forces, situations, and fluents.

Atemporal:
grav_acc — Constant. Acceleration of gravity.
mass(0) — Function. Mass of weight O.
base_height(O) — Function. Height of frame O.
center_height(O) — Function. Central height of lever O.
frame(O, P) — Predicate. Object O is a frame with port P.
weight(O, P1, P2) —  Predicate. Object O is a weight with
ports P1 and P2.
lever(O, P1, P2) — Predicate. Object O is a lever with
ports P1 and P2.
spring(O, P1, P2) — Predicate. Object O is a spring with
ports P1 and P2. ’
connection(P1, P2... Pk) — Predicate. Ports P1... Pk are connected.
Fluents:
height(P) = — Theight of port P.
force.on(P) — force exerted on port P.

Let k, = spring_const(osa); k; = spring_const(osb); 1, = rest_length(osa);
and 1; = rest_length(osb). The above constraint gives us the equations

%(faal - fsa2) = ka ' (xw — Xy - la)

3(Eos1 — fop2) = ko - (x5 — x5 — 1y)

Solving the above equations algebraically, together with those of Ta-
ble 7.4, we can derive that the height of the arrow obeys the equation

.. 1
Xp=8— _IH((ka + kb)xb - (ka + kb)hf + kala - kblb - Qkahlf)

If the system is at rest, the arrow is at height

1
Xp = Xpest = hf + m(mg +kyly + 2kah1j - kala)

Otherwise, the arrow executes a motion of form

Xp(t) = Xrest + @ sin(wt + to)
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Table 7.2 Axioms for Scales
Component Rules

SC1. weight(O, P1, P2) =

value_in(S,force_on(P1)) = mass(O) x grav_acc.
SC2. weight(O, P1, P2) =

mass(0) x deriv(deriv(height(P2))) =

force_on(P1) + force_on(P2).

SC3. spring(O, P1, P2) =

monotonictheight(P1) — height(P2),

force_on(P1) — force_on(P2), pos).

SC4. spring(0, P1, P2) = force_on(P1) = —force_on(P2).
SC5. frame(O, P) = value.in(S,height(P)) = base_height(O).
SC6. lever(0O, P1,P2) =

value_in(S,height(P1)) — center_height(O) =

center_height(O) — value_in(S,height(P2)).

SC7. lever(O, P1, P2) = force_on(P1) = force_on(P2).
(The lever has arms of equal length.)
Connection Rules

SC8. connection(P1... Pk) = height(P1) = ...= height(Pk).

SC9. connection(Pl...Pk) = force_on(P1) + ...+ force_on(Pk)=
0.

Table 7.3 Problem Description of Example Scale

weight(ow,pw1,pw2).
lever(ol,pl1,pl2).
frame(of,pf).
spring(osa,psal,psa2).

i spring(osb,psb1,psb2).

= connection(pw2,pl1,psal).
connection(pl2,psb1).
connection(psa2,psb2,pf).
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Table 7.4 Equations of Scales

Define the following constants and fluents:
Constants: (See Figure 7.3)

m = mass(ow).

g = grav_acc.

h; = center_height(ol).

h; = base_height(of).

h;y =h; —h;. (Height of the lever above the frame.)

Fluents:

X, = height(pw2) = height(psal) = height(pl1).
x; = height(pf) = height(psa2) = height(psb2).
x; = height(pl2) = height(psb2).

f, = force_on(pw2).

f;q1 = force_on(psal).

fyq2 = force_on(psa2).

f,51 = force_on(psb1l).

f52 = force_on(psb2).

f; = force_on(pll) = force_on(pl2).

f; = force_on(pf).

Then we have the following relations:

fi +fa1+f, =0.

fl +fsbl =0.

faa2 + fsb2 + ff =0.

f:al = —fsa2'

fop1 = —fopo.

Xp -—h1 :h( — Xyw.

monotonic(xy — Xy, fsq1 — fia2, POS).
monotonic(x, — Xy, — fi52, pos).
m%, =f, — mg.
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Figure 7.3 Constants of scale

where w = \/(k, + k;)/m and “a” and “t0” depend on the initial values
of motion.

Perturbation of equilibrium: If the exact properties of the springs
are not known, or if they obey a complex nonlinear equation, then
it may be impossible or impractical to find closed-form solutions like
those above, or even to find numerical values. However, it is still pos-
sible to extract various types of qualitative information. One type of
qualitative inference is to calculate how the equilibrium state changes
with a change to the constant parameters of the problem. For exam-
ple, we can calculate how the rest position of the arrow is affected by
a change in the mass. Suppose that the mass of the weight increases,
and that all the other parameters of the system — the spring constants
and lengths, the heights of the base and the lever, and the gravita-
tional field —remain constant. Assuming the equilibrium state, where
Xy = 0, and applying axioms SGN.1-SGN.3 of Table 4.6 governing the
A operation, we obtain the following relations:

Af( + Afsal + Afw ~ 0.
Afl + Afsbl ~ 0.

Afsa2 + Af,bz + Afj ~ 0.
Af.sal ~ “’Afaa2-
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Afsbl ~ —Af362~

AXf ~ 0.

Axp + Axy ~ 0.

Axy — Ax; ~ Afa1 — Afyan. -
Axb - ij ~ Af_,bl - Af,bg.

0 ~ Af, — Am

The last equation above relies on the facts that the gravitational
acceleration constant, grav.acc, is positive. Given these equations, it
is easy to show that, if Am is positive, then Ax; is likewise positive.
(Exercise 1)

Qualitative dynamic equations: It is also possible to use these par-
tial constraints to derive a qualitative description of the dynamic be-
havior of the system, for fixed values of the constant parameters. Dif-
ferentiating and applying sign operations to the equations in Table
7.4, we obtain the following qualitative equations:

sign(f;) + sign(f,o1) + sign(fy) ~ 0.
sign(f)) + sign(fy31) ~ 0.
Sign(fsaz) + Sign(fsbz) + sign(ff) ~ 0.
Sign(faal) ~ = Sign(faaZ)-

sign(f,p1) ~ — sign(fyp2).

6Xf ~ 0.

Oxp + 0%y ~ 0.

axw - axf ~ afsal - af.m2-

6Xb - 6xf ~ Bf,bl - af,bg.

0x, ~ sign(f,).

We may use algebraic techniques to reduce the above relations to
the following:

9%xy ~ —sign(fy).
Ofy, ~ 0xs.

These equations thus have the same form as those analyzed in Sec-
tion 4.9. Using the techniques discussed there, we can show that the
height of the arrow follows the state transition illustrated in Figure
4.11; that is, it oscillates, regardless of the exact properties of the
springs involved. (We have discussed some limitations on this conclu-
sion in Section 4.9) “

The ENVISION program carries out qualitative analyses of equi-
librium perturbation and of dynamic behavior; it does not find exact
quantitative solutions.
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Figure 7.4 Boiling water in a can

7.2 Qualitative-Process Theory

As we have seen, the component model analyzes a complex physical
system in terms of the questions “What are the pieces of the system?,”
“How does each piece constrain the parameters associated with it?,”
and “How are the pieces connected?”” An alternative method, called
qualitative process (QP) theory [Forbus 1985], focuses instead on the
questions “What processes take place in the system?,” “How do these
processes influence system parameters?,” and “How do the processes
interact?” Consider, for example, a closed can of water suspended over
a lit Bunsen burner (Figure 7.4). We would like to determine that.
heat fows from the burner through the can to the water, and that
the water first becomes hotter until reaching its boiling point, then it
boils and turns to vapor, then it continues to get hotter until reaching
the temperature of the flame (or bursting the can). To analyze this
system in terms of components constraining parameters at ports would
be unnatural. Also, by focusing exclusively on the relations between
parameters, the component model would entirely avoid facts such as
the boiling of the water, which seem to be central to a commonsense
understanding of the system behavior.

The central concept in Forbus’s analysis! is that of a process. An
individual process is a state token of a particular type. The process
is said to be active during the time interval in which it takes place.
The significant properties of a process are its preconditions and its
influences. The preconditions of a process are states that must hold

1We simplify Forbus’s theory and depart from his terminology in some respects.




322 Physics

if the process is to be active. (In some circumstances, it is useful
to distinguish between the initiating conditions, which must hold for
the process to start, and the sustaining conditions, which must hold
for the process to continue. For example, a fire requires an external
spark as an initiating condition, but not as a sustaining condition.)
The influences of a process are the effects it has on parameters.

For example, consider the process of a heat flow from object A to
object B. A sufficient precondition for heat flow is that A and B are
thermally connected, and the temperature of A is greater than the
temperature of B. Necessary preconditions are that A and B are
thermally connected and that the temperature of A is greater than
or equal to the temperature of B. (Heat can flow from one object to
another of equal temperature if there is an external heat flow into the
first. Consider, for example, flow between the two levels of a double
boiler when both levels are boiling.) The influences of the heat flow
are to reduce the heat of A and to increase the heat of B.

Besides characterizing processes, a QP theory must describe the
connections between parameters. Parameters are divided into two
types. Parameters of the first type are directly influenced by pro-
cesses. The time derivative of such a parameter is equal to the sum of
* the influences of all processes on the parameter. In our example, the
parameter “heat of A” is directly influenced by the heat flows into and
out of A. Parameters of the second type are affected directly by other
parameters; they are affected by processes only indirectly, through
other parameters. In our example, the parameter “temperature of A”
is directly affected by the parameter “heat of A” and only indirectly by
the heat-flow process. QP theory expresses relations between param-
eters using statements of qualitative proportionality. Parameter R1 is
qualitatively proportional to parameter R2, written Rl xg4 R2, if an
increase in R2 will cause an increase in R1, other things being equal.
R1 is negatively qualitatively proportional to k2, written Rl xg_ K2,
if an increase in R2 will cause a decrease in R1, other things being
equal. In our example, QP theory would specify that temperature(A)
is qualitatively proportional to heat(A).

(Neither of the ideas in the previous paragraph — distinguishing
between directly and indirectly affected parameters, and the defini-
tion of qualitative proportionality — have sound foundations in actual
physics. Consider a piston containing gas. In such a system it is possi-
ble to control either the volume, by fixirig the position of the piston, or
the pressure, by putting a weight on the piston, or some function of the
volume and pressure, by attaching a spring to the piston. Similarly,

one can control either the temperature, by bringing it into thermal

equilibrium with a heat reservoir of fixed temperature, or the heat, by

e |
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Table 7.5 Nonlogical symbols for Qualitative-Process Theory

Sorts: Situations (S), processes (P), process types (A), parameters
(@). Formally, processes and process types are just special cases of
state tokens and state types. A parameter is a fluent into a quantity
space.
Nonlogical symbols: .

active(S, P) — Predicate. Process P is active in situation S.

Equivalent to “S € time_of(P).”
process(P, A) — Predicate. P is a process of type A.

Equivalent to “token_of(P, A).”
influence(P,Q) — Function. Influence of process P on

parameter Q.
A fluent onto the differential space,
“Units of Q per unit time.”

Pl xg4 P2 — Predicate (at least syntactically).
P1 is qualitatively proportional to P2.
Pl xg- P2 — Predicate. P1 is negatively qualitatively

proportional to P2. .

insulating the system. Thus, which parameters are directly affected
and which are indirectly affected depends on circumstances. The re-
lations between parameters similarly depends on circumstances. For
example, if the pressure is held constant, then temperature and vol-
ume increase together, while if heat is held constant (adiabatic ex-
pansion), then temperature increases as volume decreases. Asking
whether the temperature is an increasing or decreasing function of
volume is somewhat like asking whether the area of a rectangle is an
increasing or decreasing function of the length of its longer side. If the
length of the shorter side is held constant, then the area is increas-
ing; if the perimeter of the rectangle is held constant, then the area
is decreasing.)

We now have all the representational equipment to express the ex-
ample of the water in the can. Table 7.5 shows nonlogical symbols
and axioms for QP theory. Tables 7.6 and 7.7 give the axioms neeeded
for the particular example. Table 7.8 gives the particular problem
statement.
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Table 7.6 Nonlogical Symbols for Heat Flow Example

Sorts: Situations (S), processes (P), process types, states, fluents,
temperature, heat, mass, objects (O). Temperature, heat, and mass
are parameters. Objects, for the purpose of this example, are rather
artificial constructs; they are collections of stuff, of uniform composi-
tion and uniform temperature, which at any instant may be gaseous,
liquid, or solid, depending on the temperature.

Atemporal properties:
boiling_point(O)

freezing_point(O)
mass(0)

Parameters:
temperature(0O)

heat(0)
solid_mass(O)
liquid_mass(0)

gas_mass(0)

State type:

thermally_connected(O1, 02).

Processes types:
heat_flow(01,02)

boiling(O)

Function. Boiling temperature
of object O.

Function. Freezing temperature
of object O. '

Function. Mass of object O.

Function. Fluent of tempera-
ture of gbject O.

Function. Fluent of heat of
object O.

Function. Fluent of the mass
of the solid part of O.
Function. Fluent of the mass
of the liquid part of O.
Function. Fluent of the mass
of the gaseous part of O.

Function. State of O1 being
thermally connected to O2.

Function. Process type of a
heat flow from O1 to O2.
Function. Process type of
object O boiling.
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Table 7.7 Axioms for Heat-Flow Example

HF1

HF2.

HF3.

HF4.

HFS.

HF6.

Process Definition for Heat Flow

. [ truein(S,thermally_connected(OS,OD)) A
value_in(S,temperature(0S)) >
value_in(S,temperature(OD)) ] =
Jp process(P,heat_ flow(OS,0D)) A active(S, P).

(Sufficient precondition for heat flow: If source OS is ther-
mally connected to destination OD and OS is hotter than
OD, then heat will flow from OS to OD.)

[ process(P,heat_flow(OS,0D)) A

active(S,P) ] =

[ OS # OD A truein(S,thermally_connected(OS,O0D)) A
value_in(S,temperature(0S)) >
value_in(S,temperature(O D)) 1.

(Necessary preconditions for heat flow: For heat to flow.
directly from OS to OD, they must be thermally connected
and OS must be at least as hot as OD.)
[token_of(P,heat_flow(OS, OD)) A active(S, P)] =

[ value_in(S,influence(P,heat(0S))) < 0 A
value_in(S,influence(P heat(OD))) > 0]

(Influences of heat flow.)

Process Definition for Boiling

[ value_in(S,liquid_mass(OB)) > 0 A
value_in(S,temperature(OB)) = boiling_point(OB) A
process(P2,heat flow(OS,0B)) A active(S, P2) ]«

3p process(P,boiling(OB)) A active(S, P).

(Preconditions for boiling: An object OB will boil if it is
partially liquid and is at its boiling point and there is heat
flow into OB.) '
[process(P,boiling(OB)) A active(S, P)] =
[influence(P,liquid_mass(OB)) < 0 A
influence(P,gas_mass(OB)) > 0. ]

(Influences of boiling: It reduces the liquid mass of OB and
increases its gaseous mass.)

Qualitative Proportionality
temperature(O) xg4+ heat(0)
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Table 7.7: Axioms for Heat-Flow Example (Continued)

HF7.

HF8.

HF9.

HF10.

HF11.

State Coherence Axioms

value_in(5,solid_mass(0)) > 0 =
value_in(S,temperature(0)) < freezing_point(O).

(An object can exist in solid form only below its freezing
point.)

value_in(S,liquid_mass(0)) > 0 =

freezing_point(0) < value.in(S,temperature(0)) < boil-
ing_point(O).

(An object can exist in liquid form only between its freezing
and boiling points.)

value_in(S,gas_mass(0)) > 0 = .

boiling_point(0) < value_in(S,temperature(0)).

(An object can exist in gaseous form only above its boiling
point.)

value_in(S,solid_mass(0)) + value_in(S,liquid_mass(0)) +
value_in(S,gas_mass(0O)) = mass(O) > 0.

(The sum of the solid, liquid, and gaseous parts of an object
is equal to the total mass of the substance, which is positive
and time-invariant.)

value_in(S,solid_mass(0)) > 0 A
value_in(S,liquid_mass(0)) > 0 A
value_in(S,gas_mass(0)) > 0.
(No masses are less than zero.)

d



=1

72 Qualitative-Process Theory 32

Table 7.8 Problem Specification for Heat-Flow Example

Constants: oflame, owater, s0, i0.

infinite_on_right(i0) A start(i0) = s0.
(i0 is an infinite interval beginning with s0.)

¥scio truedn(S, thermally_connected(oflame,owater)).
(The water is always thermally connected to the flame.)

Ve ci0 value_in(S,temperature(oflame)) > boiling_point(owater).
(The flame is always above the boiling point of water.)

freezing_point(owater) < value_in(s0, temperature(owater)) <
boiling_point(owater).

(The water temperature starts between its freezing point and
its boiling point.)

Given process characterizations and qualitative proportionalities, as
in Table 7.7, and the boundary conditions of a physical situation, as
in Table 7.8, it is possible to predict the behavior of the system. This
involves the following algorithm:

Algorithm 7.1: Prediction in QP Theory

1. Determine what processes have their preconditions satisfied and
are therefore active. If no processes are active, then halt.

2. Determine the influences of these processes.

3. Determine the direction of change of the parameters. First, deter-
mine the change in each directly influenced parameter by summing
the influences of the active processes. Then determine the change
in indirectly influenced parameters by using the qualitative pro-
portionalities in topological sort order. If the direction of change is
ambiguous, then consider all combinations of possibilities disjunc-
tively. "

4. Extrapolate the changes to the parameters to predict which quan-
tity conditions will change first, causing the beginning or end of
a process. If it is ambiguous which change occurs first, then con-
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sider all possibilities disjunctively. If no such change can occur,
then halt.

5. Compute the state of the world at the transition point computed in
(4). Go to 1.

Algorithm 7.1 above is very similar to the techniques discussed in
Section 4.9 for solving qualitative differential equations. However, it
involves three types of nonmonotonic inference. First, a closed-world
assumption is applied to the predicate “active(S, P)”; that is, we as-
sume that the only processes that are active in a given situation S are
those that we have proven. Second, the use of a qualitative propor-
tionality P1 g P2 in step (3) assumes that any parameter relevant
to P1 whose change has not been calculated is constant. Third, the
algorithm makes the assumption, discussed in Section 4.9, that if a
quantity-valued fluent approaches a value, then it will eventually at-
tain the value.

Table 7.9 shows how this algorithm behaves on the heat-flow exam-
ple.

7.3 Rigid Solid Objects ‘ , -

Perhaps the most common area of commonsense physical reasoning
is the interactions of solid objects. Solid objects are involved in most
terrestrial natural phenomena and in nearly every man-made arti-
fact. They are familiar to every human from infancy and fairly well
understood by childhood. So natural and familiar is solid-object be-
havior that it was long believed to be the fundamental type of physi-
cal behavior; hence, the efforts of physicists from the Greek atomists
through the beginning of this century to explain physical phenomena
of all sorts in mechanistic terms.

In reasoning about solid objects, it is often possible to assume that
the class of solid objects and the shape of each solid object remains
fixed. That is, the solid objects involved are not created, destroyed,
broken, bent, or worn down. If so, we can define a time-invariant
function, “shape(0),” mapping an object O to the region that it occupies
in some standard position. The fluent “place(0)” is the region occupied
by O in each situation; since O is rigid, place(O) is always congruent
to shape(O). The fluent “position(0)” is the rigid mapping that maps
shape(O) to place(O).
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Table 7.9 Prediction in QP Theory

First iteration:

1. Active process: From HF1, infer that there is a heat flow phl from
oflame to owater active in s0.

2. From HFS3, infer that phl has a positive influence on the heat of
owater and a negative influence on the heat of oflame.

3. Applying the closed-world assumption on influences, infer that the
heat of owater increases and the heat of oflame decreases. From
HF6, infer that the temperature of owater increases and the tem-
perature of oflame decreases. (This is not true, of course, of an
actual flame, but it will not affect the remainder of the prediction.
A richer theory of flames could block this nonmonotonic inference
(see Exercise 2). The inference would be valid if we immersed the
can in a high-temperature bath, rather than putting it over the
flame.) : ’

4. By extrapolating the changes, we can see two possible changes in
the quantity conditions. First, the temperature of the flame and of
the water could become equal, which might bring an end to the heat
flow. Second, the temperature of the water might reach its boiling
point, which would cause a boiling‘process to begin. However, due
to the boundary condition that the temperature of the flame is
always above the boiling point of water, we can determine that the
second transition always takes place before the first. Hence, we
can define a new situation s1, in which the temperature of owater
is at its boiling point.

5. In s1, the temperature of owater is equal to the boiling point of
water. All other relations remain the same as in owater.
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Table 7.9: Prediction in QP Theory (Continued)

Second iteration:

1. Active processes: From HF1, infer that the heat flow phl from
oflame to owater continues. (See Exercise 3 for a discussion of this
inference.) From HF4, infer that there is a boiling process pbl
active in sl.

2. From HF3, the heat flow phl has a positive influence on the heat
of owater and a negative influence on the heat of oflame. From
HFS, the boiling has a positive influence on the gaseous mass of
owater and a negative influence on its liquid mass.

3. Applying the closed-world assumption on influences, we infer that
the heat of owater increases, the heat of oflame decreases, the lig-
uid mass of owater decreases, and the gaseous mass decreases.
Applying HF6, we infer that the temperature of oflame decreases.
We would also infer that the temperature of owater increases, ex-
cept that we can show that it cannot, since, by HFS, its tempera-
ture cannot exceeed its boiling point unless its liquid mass is zero.
Therefore, we conclude that, due to the change from liquid to gas,
HF6 does not apply. (To make the blocking of this inference more
direct, it may be advisable to add the qualitative proportional-
ity “temperature(0) «o- gaseous.mass(0).” Note that this rule
will only be invoked during a boiling (or condensing) process, since
those are the only times that the gaseous mass changes.)

4. By extrapolating the changes we can see two possible changes.
Either the temperature of the flame will reduce to the point where
it is no longer higher than the water, bringing the heat flow to an
end, or the liquid mass of the water will reach zero, bringing the
boiling to an end. Again, the boundary conditions rule out the first
event. We can thus predict that at the next transition situation,
s2, the liquid mass of owater will be zero.

5. In s2, the liquid mass of owater is zero and (by HF7 and HF10) the
gaseous mass is equal to the total mass. All other relations remain
as in sl.
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Table 7.9: Prediction in QP Theory (Continued)

Third iteration:

1. In s2, the only active process is the heat flow phl.

2. The heat flow hfl has a positive influence on the heat of owater
and a negative influence on the heat of oflame (HF1).

3. As above, we infer nonmonotonically that the heat of owater and
its temperature increase, while the heat and temperature of oflame
decrease. (HF6.)

4. The only possible transition is that the temperature of the water
and the flame become equal, possibly bringing the heat flow from
oflame to owater to an end.

5. In s3, the temperatures of oflame and owater become equal. All
other relations are as in s2.

Fourth iteration:

1. In s3, the heat flow phl may or may not continue (HF1, HF?2).
If it does not, then the system has reached stasis. If it does, we
continue as follows:

2. The influence of the heat flow is to raise the heat of owater and
decrease the heat of the flame.

3. Applying the closed-world assumption, we infer that the heat of
owater increases and the heat of oflame decreases. From HF6,
we would infer that the temperature of owater increases and the
temperature of oflame decreases. If this happened, however, the
heat flow would immediately halt, by HF2. Therefore, we can infer
that as long as the heat flow continues, the temperatures of owater
and oflame must be equal. If the heat flow ever stops, then since
there are no active processes, the temperatures will still remain
the same.

4. No further transitions are possible.
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The basic constraints on solid objects are that they are rigid, they
move continuously, and two objects do not overlap. We further assume
that all objects are regular and connected. Axioms S0.1-S0.5 express
these formally.

SO.1. value.n(S,place(0)) =
image(value_in(S,position(0)),shape(0)).
(Relation of position and place.)
S0.2. rigid_mapping(value_in(S,position(0))).
(Objects are rigid.)
S0.3. continuous(position(0)).
(Objects move continuously over time.)
S0.4. 01 # 02=
—overlap_reg(value_in(S,place(01)), value_in(S,place(02))).
(Two distinct objects do not overlap in the same situation.)
S0O.5. regular(shape(O)) A connected(shape(0)).
(Objects are regular and connected.)

A kinematic analysis of a system of solid objects is one that uses only
the above properties. Thus, it considers only how the geometry of
the solid objects involved causes them to block each other’s motion or
to push one another into position, and ignores issues such as mass,
forces, energies, friction, and so on. Kinematic analysis by itself is
sufficient to establish inferences like the following: (Figure 7.5)

A. If the topmost gear in Figure 7.5A is rotated clockwise, the other
objects will move as shown. (We assume that the gears are pinned
at their centers to a fixed frame.) :

B. The gear in Figure 7.5B cannot move.
C. An object cannot go from inside to outside a closed box.

D. A hanger on a pole cannot move directly downwards.

Formalizing statements such as those above involves only enumer-
ating the objects involved and specifying their shapes, their positions,
and the constraints on their motions. Kinematic analysis is then just
determining the class of motions consistent with these boundary condi-
tions and the constraints SO.1-S0.5. We have discussed a number of
techniques for such analysis, including topological reasoning and the
use of configuration spaces, in Sections 6.1.6 and 6.2.5. For example,
the statement C can be formalized as follows:
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Figure 7.5 Kinematic systems

[ precedes(S, S1) A
is_inside(value_in(S,place(02)), value_in(S,place(01))) 1 =
is_inside(value_in(S1,place(02)), value_in(S1,place(01))) ]

This follows directly from the geometric rule that, if a continuous flu-
ent over regular regions goes from inside a box to outside it, then it
must at some point overlap the box.

Another example: We can show that gear B will rotate if gear A
rotates in Figure 7.5A, by constructing the configuration space for the
two gears and establishing that, for any path P through the permitted
region of the space, if A rotates on P, then B rotates as well.




334 Physics

There are, however, many aspects of solid-object behavior that are
not captured in a kinematic analysis. For example, consider the fol-
lowing inferences (Figure 7.6):

E. A block sitting on a table will remain motionless. A block dropped
on a table will come to rest near where it was dropped.

F. If you lift a table at one end, it will rotate around the farther legs.
G. A round wheel will roll easily; a square wheel will not.

H. A garden rake placed in an umbrella stand is likely to knock it
over. A rake placed against a piano may fall, but it will not knock
the piano over.

Kinematic analysis supports none of these conclusions; any other con-
tinuous rigid motion that does not bring objects into collision is equally
consistent with the constraints of kinematics. These inferences re-
quire a dynamic analysis, involving masses, forces, and related con-
cepts. ’

The standard theory of solid-object dynamics is Newtonian mechan-
ics. The central new concept is that of a force. In most problems,
three types of forces are needed: the gravitational force, which may
be taken, within a local terrestrial environment, to be uniformly down-
ward; constraint forces, which enforce the constraint that solid objects
do not overlap; and frictive forces, which act to reduce the sliding be-
tween objects. Force is related to motion by two differential equations:
Force equals mass times linear acceleration, and torque equals the mo-
ment of inertia times angular acceleration. Collisions must be handled
separately by conservation of energy and momentum.

In order to avoid a theory in which all objects are in free fall, it is
necessary to define certain objects as being fixed in space. We intro-
duce the predicate “fixed(0),” satisfying the axiom that fixed objects
do not move.

fixed(O) = 3p Vs value_in(S,position(0)) = P.

- It is often useful to introduce the ground as a special fixed object
occupying an infinite surface below all other objects.

We now present Newtonian mechanics for a very restricted domain,
in which there is only one mobile point object moving among fixed
obstacles. This radical simplification enables us to avoid the messy
issues involved in variable orientations and the associated issues of
angular velocity, angular momentum, and torque; extended contact
between objects; and collisions among collections of mobile objects.
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Figure 7.6 Dynamic systems

(More on these below.) We denote the space occupied by the obstacle
as “obstacle,” and we posit that it is regular and smooth. Table 7.10
shows the nonlogical symbols involved in the theory. (The physical
symbols are all constants, owing to the restricted nature of the domain.
We also introduce some new geometric symbols.) Table 7.11 gives the
axioms that govern the behavior of the object. '

From the rules in Table 7.11 it is possible (though not easy) to prove
the following two useful rules: (i) Reduction of energy: The mechanical
energy of the object never increases. (ii) Attainment of rest: The object
eventually reaches a state of rest, unless there is an infinitely deep
hole, or the coefficient of friction is zero.

PO.17. energyp = massp x grav_acc x height(placep) +
1/2 massp x velocityp - velocityp.
(Definition of the fluent “energyp”, mechanical energy of the
object.)

g
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Table 7.10 Nonlogical Symbols for Point-Object Dynamics

Sorts: Mass (a quantity space), spatial sorts, states, situations, forces
(vectors with dimension mass times distance over time squared).

Physical:

obstacle — Spatial region occupied by the obstacle.

massp — Mass of the point object.

coeff fricp - —  Coefficient of friction of the object against
the obstacle (dimensionless quantity).

restitutionp — Coefficient of restitution of the object
colliding with the obstacle
(dimensionless quantity).

placep — Place of the object (luent).

velocityp —  Velocity of the object (luent).

contact — State of contact between the object and
the obstacle.

collision — State of a collision between the object and
the obstacle.

forcep — Total force exerted on object (fluent).

fricp — Frictive force exerted on object (fluent).

normalp — Normal force exerted on object (fluent).

grav_acc - — Acceleration of gravity.

Geometric and quantitative:
surf_ norm(RR, P) — Function. Surface normal out of RR at
boundary point P.

smooth(RR) — Predicate. Region RR has a smooth
boundary.

mag(V) — Function. Magnitude of vector V.

low_limit(F) — Function. Let F be a fluent. low limit(F)

is likewise a fluent. The quantity
value_in(S,low_limit(F)) is the limit of F
as time approaches S from below
(previous times).

high_limit(F) — Function. Fluent analogous to low_limit.

perpcomp(V1,V2) — Function. Component of vector V1 in
direction perpendicular to V2.
perp_comp(V1,V2) =
V1—-(V1-V2)V2/mag(V2).
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Table 7.11 Axioms for the Dynamics of a Point Object

Kinematics: PO.1-P0.3 are analogous to SO.3-S0.5 but modified to suit
the requirements of a point object.

PO.1.

PO.2.

PO.3.

PO.4.

continuous(placep).

(The object moves continuously over time.)
-wvalue_in(S,placep) € interior(obstacle).
(The object is never inside the obstacle.)
regular(obstacle) A smooth(obstacle).

(The obstacle is regular and smooth.)
velocityp = deriv(placep).

(Definition of velocity.)

Dynamics:

PO.5.

PO.6.

PO.7.

PO.10.

PO.11.

PO.12.

PO.13.

PO.14.

—true.in(S,collision) = value_in(S,forcep) =

massp x value_in(S,deriv(deriv(placep))).

(Newton’s second law: F=ma.)

forcep = —grav_acc x massp x k + fricp + normalp.
(The forces are gravity, friction, and the normal force.)

true_in(S,contact) & value_in(S,placep) € boundary(obstacle).
(Definition of contact.) .

—true_in(S,contact) =

value_in(S ,fricp) = value_in(S,normalp) =

(Frictive and normal forces only apply when the object is in contact
with the obstacle.)

parallel(value_in(S ,normalp),
surf_norm(obstacle,value_in(S,placep))).

(The normal force is always parallel to the surface normal at the

contact point.)

perpendicular(value_in(S,fricp),

surf_norm(obstacle,value_in(S,placep))).

(The frictive force is always perpendicular to the surface normal

at the contact point.)

mag(value.in(S,fricp)) < coeff fricp x mag(value_in(S,normalp)).

(The magnitude of the frictive force is always less than or equal to

the magnitude of the normal force times the coefficient of friction.)

[ valuein(S,velocityp) # 0 A true.in(S,contact) ] =

[ mag(value.in(S,fricp)) =

coeff_fricp x mag(value_in(S,normalp)) A

parallel(value._in(S.fricp), —value_in(S,velocityp)) 1.

(If the object is moving against an obstacle, then the magnitude of

the friction is equal to the magnitude of the normal force times the

coefficient of friction, and it is directed opposite to the velocity.)
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7.11 Axioms for the Dynamics of a Point Object (Continued)

PO.15 true.in(S,collision) <
[true_in(S,contact) A
-perpendicular(value_in(S,low_limit(velocityp)),

surf_norm(obstacle,value_in(S,placep)) 1.

(A collision is taking place just if the object is in contact with the
obstacle, and the limit of velocity from before is not tangent to the
obstacle.)

PO.16. [ true_in(S,collision) A
N =surf_norm(obstacle,value_in(S,placep))] =
[ value_in(S,high limit(velocityp)) - N =
—restitutionp - value_in(S,low limit(velocityp)) - N A
perp_comp(value_in(S,high limit(velocityp)),N) =
perp-comp(value_in(S,high limit(velocityp)),N)].
(Rule of collisions: The velocity in the direction of the surface
normal is reversed and reduced by the coefficient of restitution.
The velocity tangential to the surface is unchanged.)

PO.18. precedes(S1,52) = .
value_in(S1,energyp) > value_in(S2,energyp).
(Energy never increases.)

PO.19. [ infinite_on_right(I) A coeff_fricp # 0 A

[3xVp height(P) < H = P € obstacle ]] =
Jser Vsaer precedes(S,S2) =
value_in(S,placep) = value_in(52,placep).
(The object eventually reaches a state of rest.)

These rules can be used to solve a variety of problems. A simple
problem is shown in Figure 7.7: The object is dropped from within
a steep funnel. We wish to show that it must eventually exit the
bottom of the funnel. The proof is as follows: Geometrically, since the
object cannot enter the interior of the obstacle (PO.2), it must either
exit the top, exit the bottom, or stay inside forever. To exit the top,
it would have to go higher than it is at the start, which (by PO.17)
would mean that it has more energy than at the start, which is ruled
out by (P0O.18). If it stays inside forever, then, by (PO.19), it must
eventually come to a state of rest. By (P0O.15) and (PO.5), the net forces
on it then must be zero. By (PO.6) this means that the frictive and
normal forces must counteract the gravitational force. However, using
(PO.11), (PO.12), and (PO.13), which assert that the normal force is
parallel to the surface normal, the frictive force is perpendicular, and
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Figure 7.7 Point object in a funnel

the frictive force is at most the coéfficient of friction times the normal
force, we can show geometrically that this balancing of forces can only
hold if the slope of the surface is less than.the coefficient of friction.
Thus, by showing from the geometric specifications of the funnel that,
at any point of the surface that the object can reach, the slope is too
great, we can conclude that the object cannot come to rest inside. The
only remaining possibility is that it exits the bottom.

Another example of the use of the above theory is in deriving the
rules used for a point object on a track in the NEWTON program,
discussed in Section 6.2.6. We will illustrate with the derivation of
the following rule: The object cannot stay on a curve (or surface) at a
point where the curve is convex and has a normal with a downward
component. The proof runs as follows: We wish first to show that
the object must undergo an acceleration with a positive component in
the direction of the surface normal. By (PO.11), the normal force on
the object (if any) is parallel to the surface normal; by (P0O.12), the
frictive force is perpendicular to the surface normal, so that it is irrel-
evant; by hypothesis, the surface normal is pointing downward, so the
gravitational force, which is nonzero and points downward, also has a
positive component. By (PO.6) the net force is the sum of these, and
therefore has a positive component in the direction of the surface nor-
mal. By (PO.5), therefore, the acceleration has a positive component
in the direction of the surface normal. However, it is possible to show
geometrically that a motion on a curve can have an acceleration with
a positive component in the direction of the surface normal only if the
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curve is concave at that point. Since the curve is convex, the object
cannot stay on it.

The full theory of Newtonian mechanics extends the above toy the-
ory to handle multiple extended objects. The complete theory has the
strengths that it is correct (to the extent that rigid objects exist at
all) and that it is complete: It gives a prediction for any situation.
Moreover, no alternative is available; no one has described a common-
sense dynamic theory of solid objects that is anywhere near complete.
However, Newtonian mechanics has substantial problems as a theory
of commonsense reasoning. First, it is in several respects contradic-
tory to a naive understanding of solid objects. This is partly because
some actual behaviors of solid objects, such as gyroscopic motion, are
strongly counterintuitive even when they are directly perceived, and
partly because inertial motion, which is the default in Newtonian the-
ory, is very much the exception in terrestrial environments, owing to
the ubiquity of friction, air resistance, and other dissipative forces.

Second, axiomatizing the complete theory of Newtonian dynamics,
including friction and collisions, for extended objects is surprisingly
complex (see [Kilmister and Reeve 1966; Davis 1988al). A number of
sticky issues arise, including the following: (i) Forces between objects
may be applied at a point, on a curve, or across a face (Figure 7.8).
The dimensionality of the force at a point depends on which of these
holds: (ii) The analogue to rule (PO.19) above, that an isolated sys-
tem with no source of energy will eventually reach a state of rest, is
frequently useful in commonsense reasoning. Unfortunately, this rule
is not true for extended objects, unless we include forces such as air
resistance, which are hard to quantify. (iii) Newtonian physics is gen-
erally deterministic; that is, given the shapes and material properties
of the objects involved and their positions and velocities in a start-
ing situation, all future events are determined. There are, however, a
variety of circumstances, involving friction or collisions, in which the
theory becomes nondeterministic, allowing more than one possible be-
havior. (iv) Collisions are particularly difficult to analyze within the
idealization of inelastic objects, particularly in cases where the colli-
sion involves more than two objects, or where the objects collide over
some extended surface. The standard rules given in mechanics text-
books for approximating the effects of a collision using the coefficients
of restitution of the objects involved are hard to apply to extended
objects and, in any case, are adopted more for reasons of theoreti-
cal elegance than of close approximation to the truth [Kilmister and
Reeves 1966, p. 189]. (By contrast, Coulomb’s law of friction, though
also an approximation, is very nearly valid across a large range of
circumstances.) :

i

i
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(From [Davig 1988al.)

Figure 7.8 Varying dimensionaﬁty of force

Thirdly, though Newtonian physics is, no doubt, in principle suffi-
cient to support any correct commonsensical inference, in practice it
is often necessary to augment Newton’s laws with more specialized
heuristics. Consider the following statement: “If object O is dropped
from rest onto a flat horizontal surface from height h, then O will

sliding in sequence; but the general result cannot be established by
such simulations. It is currently an open question how to formulate
such rules effectively for commonsense reasoning.




342 Physics

Thus, there is currently no qualitative theory of solid-object dynam-
ics that supports efficient inference of commonsensically obvious facts.
The Reference section at the end of the chapter lists some preliminary
studies.

7.4 Liquids

It is even harder to develop a commonsense theory of liquids than a
theory of solids. First, the scientific theory of fluid mechanics is fur-
ther from commonsense understanding, mathematically enormously
more difficult, and scientifically much less complete than Newtonian
mechanics. (Basic questions, such as the nature and cause of turbu-
lence are still not wholly solved.) Second, the ontology of liquids is
much less clear than the ontology of solids, since liquids are not di-
vided into discrete objects, but combine and divide freely. Conversely,
many persistent liquid entities such as the Mississippi River do not
consist of a constant body of substance but are constantly depleted
and refilled.

The foundations of a commonsense theory of liquids were devel-
oped by Pat Hayes [1979]. Our discussion here derives from Hayes’s,
though it is more limited and differs in details.? The central idea is
that, rather than think about individual pieces of liquid that move
around, as we do with solids, we think about regions of space, and
ask how much liquid they contain. Thus, we introduce the fluent,
“liquidin(RR)”, which is the volume of liquid in region RR in each
situation. (We will assume throughout that we are dealing with only
one type of liquid, so as to avoid the difficult problems of treating mix-
tures.) We also define the predicate “solid(0)” meaning that O is a
solid object. This fluent obeys the following axioms:

LI.1. (Additivity) RR1 N RR2 = 0=
liquid_in(RR1 U RR2) = liquid in(RR1) + liquid_in(RR2).
L1.2. (Bounds) 0 < value_in(S,liquid in(RR)) < volume(RR).
LI1.3. (Nonmixing with solids) solid(O) =
value_in(S,liquid_in(value_in(S,place(O)))) = 0.

2There are two major differences: (i) Hayes uses a nonstandard spatial topology,
while we use Euclidean geometry. (ii) Hayes studies transitions between different states
of liquids using histories, which are chunks of space-time. We will not consider such
transitions, and therefore will not use histories.
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of liquid in RR is equal to the total flow into RR. We can express this
as follows: Let “flow_through(FF)” be a fluent representing the rate of
liquid flow outward through directed surface FF in each situation. Let
the function “dboundary(RR)” give the outward-directed boundary of
region RR. We can state the basic properties of flow as follows.

LI4. deriv(liquid_in(RR)) = —ﬁow_through(dboundary(RR)).
(Conservation of mass: The change in liquid contained is
equal to minus the total outward flow.)

LL5. FF1N FF2 = 0=
flow_through(FF1 y FF2) =
flow_through(FF1) + flow_through(FF2).
(Flow is additive over faces.)

L1.6. [solid(O) A FF Cvalue_in(S,place(0)) ] =
value.in(S,ﬂow_through(FF)) =0.
(There is no flow through a solid face.)

aries always has a constant amount of liquid, and that the change of
liquid of a region with a number of openings is equal to the net flow
through the openings.

In order to express the fundamental dynamic rules governing the
behavior of liquids, we need to define some additional geometric and

surface. (This distance is, in reality, dependent on a number of fac-
tors, particularly the material of the liquid. We ignore this.) The
predicate “bulk(RR,D)”, read “Region RR is bulk with thickness D
holds if, for each point P in RR, there is a sphere SS of radius D, such
that P is in SS and SS is a subset of RR (Figure 7.9). The function
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R is solid coating of thickness D

LL7.

‘LI8.

LIL.9.

LI.10.

LI.11.

Figure 7.9 Predicates “bulk” and state “solid_coating”

bulk(RR,D) < Veerr3gerr P € sphere(Q,D) c RR.
(Definition of bulk.)

true_in(S filled liquid(RR)) &

value.in(S,liquid_in(RR)) = volume(RR).

(Definition of filled liquid.)

truein(S,empty(RR)) <

[ value_in(S,liquidin(RR)) = 0 A

Vo solid(0) = RR N value_in(S,place(0)) = 01] .
(Definition of empty.)

true.in(S,liquid_at_rest(RR)) =

Vrrcrr value_in(S,flow_through(FF)) =

(If the liquid in RR is at rest, then there is no flow through
any face contained in RR.)

true_in(S,solid_coating(RR,D)) &

Vperr Jo solid(0) A distance(P,value_in(S,place(0))) < D.
(Definition of solid coating.)
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We can now express some simple laws of the dynamics of liquids.
We will consider only liquid in bulk and liquid wetting a surface; we
exclude such other states as absorbed in an absorbent material or
spread about as mist. The following rules are then plausible:

LI.12. Liquid at rest must either be in bulk or wetting a surface.
[ true_in(S filled liquid(RR)) A
true_in(S,liquid_at rest(RR) ] =
BRRB,RRC RR=RRB U RRC A bulk(RRB,thin) A
true.in(S,solid_coating(RRC,thin)).

LI.13. A liquid in bulk at rest can border the air only at a hori-
zontal surface.
[bulk(RR,thin) A true_in(S,filled liquid(RR)) A
true_in(S,liquid_at_rest(RR)) A
true_in(S,empty(RR2)) A abut(RR,RR2,FF) ] =
Vpepp surf_norm(RR,P) = k.

LI.14. If, after time S0, there is no flow into or out of region RR,
and no solid object moves in RR, then the liquid in RR will
eventually come to rest. (We introduce the state function,
“motionless(0).” ) .

[Vssso Ve FF Cdboundary(RR) = ,
value_in(S,flow_through(FF)) = 0] A
[ [Vo solid(O) A value_in(S,place(0)) NRR # 0 ] =
true_in(S,motionless(0)) 1] =
351>50 V5>51 true_in(S ,liquid_at_rest(RR)).

These rules are not strictly true. For example, the surface of a
contained liquid is not perfectly horizontal, due to surface tension; in
the scenario of the last rule, the liquid could be scattered as a mist if
it encounters sufficiently violent collisions, like a waterfall on rocks.
However, they are reasonable initial approximations.

Using the above axioms we can establish results such as the follow-
ing: Let O be a solid object with an internal spherical cavity of radius
R containing liquid of volume V. Let 7 =thin. Then, if O is motionless
and V > 47R%r, then after sufficient time, there will be a puddle of
volume at least V — 47 R%r at the bottom of the cavity. (Figure 7.10)

The proof is as follows: Since the cavity is the inside of O, which
is a closed box, any face of the cavity must border on O. Therefore,
by LI.6, there can be no liquid flow into or out of the cavity, and by
axiom SO.4, no solid object can come inside the cavity. By LI.4, the
quantity of liquid in the cavity must remain constant. Morover, the
antecedents of LI.14 are satisfied, so the liquid must attain a state
of rest inside the cavity. By LI.12, when the liquid is in a state of
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Wetting

Figure 7.10 Liquid in a cavity

rest, it must all be either wetting a surface or in bulk. Since the solid
surface bounding the cavity has area 47R?, the maximum quantity
that can be wetting the surface is 47 R2r. Therefore, the remainder of
the liquid, of quantity V — 47 R*r, must be in bulk. However, by L1.13,
liquid at rest in bulk can border empty space only below a horizontal
surface. By a geometrical argument, this remaining liquid must lie in
a puddle at the bottom of the cavity.

7.5 Physical Agents

So far, our theories have considered only the behaviors of inanimate
objects. In many important applications, however, it is necessary to
reason about physical interactions involving intelligent agents. In par-
ticular, an intelligent creature will generally be interested in how it
can affect the world, and how the world can affect it. To address the
first question, a physical theory must supply a language for describing
the actions of an autonomous agent and a theory of how these action
affect the world. We will not here address the question of reason-
ing about the impact of the world on an agent, though we will touch
on it indirectly in Sections 8.7 and 9.3.5, which deal with perception
and the adoption of goals by an agent. (The conceptual dependency
(CD) representation of human actions [Schank 1975] will be consid-
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ered separately in Appendix 10.4A, since it combines physical, mental,
and interpersonal reasoning.)

Given any physical theory of inanimate objects, such as those we
have considered so far in this chapter, it is possible to extend the
theory to include agents and actions as physical entities and physical
events that are only weakly constrained by physical law. For example,
in a component theory, we could model an agent as a component with
ports, and an action as a relation among the port parameters that is
enforced at the will of the agent. Thus, in the scales example, we could
add an agent as a component with a port attached to the weight side of
the lever, and specify that it executes actions such as “Move the lever
down at a constant rate” or “Apply a force of 50 pounds until the height
of the port reaches 2 feet; thereafter, hold the height constant there.”
It is then possible to use the component model to predict the behavior
of the system, given this action. Similarly, in a process model, we could
model an agent as a process and an action as a trace of its influences
over time. In a kinematic theory of solid objects, we could model an
agent as a solid object, and an action as a trace of its position over
time. In a dynamic theory of solid objects, we could model an agent
as a solid object, and an action as a time-varying relation between its
position and the forces it applies to objects in contact.

7.6 References

General: [Weld and de Kleer 1989] is a very comprehensive collection
of papers on qualitative physics, including most of the papers cited be-
low. Hayes’s paper “The Naive Physics Manifesto” [1978] was the first
extensive discussion of commonsense physical reasoning. It advocates
the development of logical theories that express commonsense physi-
cal intuition. [Gentner and Stevens 1983] is a collection of papers on
psychological and historical aspects of physical reasoning.

Component model: Our description of the component model is
based on the well-known paper [de Kleer and Brown 1985], which de-
scribes the ENVISION program. The “No function in structure” prin-
ciple is discussed there. Also of interest are the papers by Kuipers
[1985] and Williams [1985]. Component-based analyses for electronic
systems have been studied in [Sussman and Steele 1980] and [Davis,
R. 1983]; both papers discuss the use of a hierarchical analysis of sys-
tems. An alternative approach to component analysis, based on com-
bining small components together into larger components of known be-
havior, is considered in [Bylander and Chandrasekaran 1985]. [Rieger
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and Grinberg 1977] was a relatively early attempt at a component
analysis of a complex device (a flush toilet); however, the underlying
theory was never very clearly developed, and the component descrip-
tions did not satisfy the “No function in structure” principle.

Qualitative process theory: Qualitative process theory was first
developed by Forbus [1985). [Forbus 1989] discusses an improved ver-
sion of the program. [Forbus 1986] applies QP theory to the problem of
interpreting a given time sequence of measurements. Also of interest
is the discussion of processes in [McDermott 1982a].

Solid objects kinematics: [Shoham 1985a] considers the motions
possible for an object abutting obstacles. [Faltings 1987a] and [Falt-
ings 1987b] analyze in detail the kinematics of two-dimensional mech-
anisms composed of parts each with one degree of freedom. [Joskowicz
1987] studies the kinematics of a system that has few degrees of free-
dom by virtue of the interaction of its components. [Joskowicz and
Addanki 1988] uses a kinematic analysis to solve problems of design.
[Gelsey 1987] proposes a number of special-case heuristics to increase
the efficiency of the analysis. The possibility of a qualitative kinemat-
ics is denied in [Forbus et. al. 1987]; this is disproved, at least in part,
by [Faltings, et. al. 1989], which exhibits such a qualitative charac-
terization of kinematics, based on the topology of the configuration
space. [Gelsey 1989] discusses the construction of kinematic models
of varying degrees of detail of a physical system from its geometri-

cal specifications, and the use of the kinematic model in prediction.’

Closely related is the work on the “piano-movers” problem; citations
are given in the Reference section for Chapter 6.

Solid object dynamics: Though, as mentioned in the text, there
is no thorough treatment of solid-object dynamics, there are many
partial studies. [Fahlman 1974] gives an algorithm for determining
the stability of a collection of polyhedral blocks. NEWTON [de Kleer
1975], discussed in Section 6.2.6, predicts the behavior of a point ob-
ject sliding on a constraint. MECHO [Bundy 1978] uses force anal-
ysis and conservation laws to solve a variety of problems in closed
form. FROB [Forbus 1979) extends NEWTON by predicting the be-
havior of a point object flying among fixed constraints. WHISPER
[Funt 1980] simulates dynamical systems using an occupancy-array
representation. Davis [1988a] argues that formulations of dynamics
in terms of differential equations are not adequate for many common-
sense problems, and presents a first-order theory for dynamics that,
in some cases, avoids the use of differential equations. Nielsen [1988]
presents a system that does qualitative dynamical reasoning. Also of
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interest are works in robotics (e.g., [Mason 1986; Peshkin and Sander-
son 1987; Wang 1986]) that study exact solutions to restricted classes
of dynamical problems.

Liquids: Our discussion of reasoning about liquids derives fro=
[Hayes 1979]. Other papers of interest include [Schmolze 1986] ar.
[Collins and Forbus 1987]; both of these combine a theory of liquids
with a theory of processes.

Other domains: [Doyle 1989] applies a rich component model to
the problem of guessing the structure of a device, such as a pressure
gauge for tire, from observations of its behaviors. [Bunt 1985] dis-
cusses the problems in giving semantics to “mass” nouns; since these
are generally associated with physical substances, many of the issues
discussed are important for physical reasoning.

Causality: We have deliberately avoided discussing causality in the
text, because there is no consensus in the AI community as to whether,
where, and how causality should enter into physical theories. Vari-
ous approches to causality can be found in [Rieger and Grinberg 1977;
McDermott 1982a; Allen 1984; de Kleer and Brown 1985; Iwasaki
and Simon 1986; de Kleer and Brown 1986; Shoham 1988; and Pearl
1988b]. [Shoham 1988] also has an extensive review of the philosoph-
ical literature on the subject. ’

7.7 Exercises
(Starred problems are more difficult.)

1. Verify the algebraic manipulations used to derive the various solu-
tions to the scale equations in Section 7.1.

2. * Construct a QP model of the process of burning. Use your model
to determine the behavior of the sample system of a can of water
over a candle flame.

3. * In our sample trace of the qualitative process algorithm we wrote
(second iteration, step 1), “From HF1, infer that the heat flow hfl
from oflame to owater continues.” Actually, the axiom HF1 only
supports the conclusion that there is some heat flow, not that it is
necessarily the same heat flow. In fact, it is consistent with the
axioms that there should be more than one heat flow, or that the
identity of the heat flow(s) changes every instant.
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(a) Show that the prediction we derive for the example does not
depend on any of these unwarranted assumptions and, in fact,
can be derived from the axioms.

(b) In view of part a, it might seem that it would be more natural
not to try to distinguish process tokens, and just use process
types, such as “the state of heat flowing from oflame to owater.”
Rewrite the theory in this way.

(¢c) Under what circumstances will it be useful to use process to-
kens rather than process types?

(d) Augment the original theory with axioms that guarantee that,
in the heat-flow example, there is a single heat-flow process
and a single boiling process.

4. Show that the remaining rules used in NEWTON (Section 6.2.6)
can be derived from our axiomatization of point-object dynamics,
together with the suitable geometric theorems.




