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This paper is a supplement to the paper, “Reasoning about Containers and Manipulation using
Radically Incomplete Information” (Davis, Marcus, and Chen, 2013).1 We present an axiomatic
theory for qualitative reasoning about containers and manipulation. Motivation and larger context
for this work is presented and manipulation or developing cognitive models of this reasoning is in
the main paper. This supplement is a bare-bones account of the details of the first order theory and
of its use in supporting sample inferences.

This supplement is a work in progress. In particular, the development of the axiomatic theory has
far outrun the formalization of examples that use the axioms. This imbalance should be corrected
over time. The axiomatization here is certainly not intended as a complete qualitative theory of
containers.

1 Microworld

We have in mind a microworld of the structure described below. We have not given a formal
characterization of the microworld, still less a formal semantics of the symbols; but it should be
reasonably clear that such an account could be given in a way that makes the axioms true.

1.1 Ontology

Time is forward-braching and continuous; each time line is isomorphic to the real line R. Forward
branching corresponds to an agent’s choice between actions. Branches occur after instants; that is,
an interval that is bounded and open on the right has a unique least upper-bound, but there can be
any number of non-overlapping intervals with the same lower bound.

Space is assumed to be three-dimensional Euclidean space R3.

Nothing that is yet in the theory requires such a high-powered spatio-temporal theory; in fact, the
theory in its current form can probably be instantiated in a discrete branching model of time and a
finite model of space. However, the theory is constructed with these continuous models in mind.

Objects are distinct; that is one object cannot be part of another or overlap with another. They
are eternal, neither created nor destroyed. They move continuously. Distinct objects cannot overlap
spatially. They are not required to be connected. An object occupies a region of some three-
dimensional extent (technically, a topologically regular region); it cannot be a one-dimensional curve
or two-dimensional surface.

1http://www.cs.nyu.edu/faculty/davise/containers/Containers.pdf
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This object ontology works well with solid, indestructible objects. It works much less well for liquids,
thought it does not entirely exclude them; better ontologies for liquids are developed in (Hayes, 1985)
and (Davis, 2008)

For any object O, there is some range of regions that O can in principle occupy, consistent with its
own internal structure; these are called the feasible regions for O. For instance, a rigid object can in
principle occupy any region that is congruent (without reflection) to its standard shape. A string
can occupy any tube-shaped region of a specific length. A particular quantity of liquid can occupy
any region of a specific volume.

There is a single agent, which itself is an object. The agent is capable of moving by itself and of
directly manipulating one other object.

1.2 Physical Theory

We posit the following very general physical theory.

Two distinct objects do not overlap spatially.

The trajectory of an object is a continuous function of time.

An object O occupies a region feasible for O. More detailed theories of specific object categories would
give geometrical details of what regions are feasible for a given object; we do not include any such
axioms here.

The agent can hold an object O only if the agent is in contact with O along an extended face, and
can manipulate the object only if he is holding it.

If the agent is holding an object, he can release it at any time.

If the agent is holding an object and releases it in an unstable position, then the object will fall for a
short period of time. (We do not develop any theory of stability at all; and all that is asserted in our
theory of falling is that the object does not move outside any upright container that it is currently
in.)

Our theory characterizes the effect of moving one object o on another object ox only in cases where
this effect is a controlled one (see section 6.3 for details).

• If o is a closed container and ox is inside, then ox remains inside, however o is moved.

• If o is carried upright and either

– o is an upright open container and ox is inside; or
– ox is a lid, placed on box o; or
– o is a box with a lid and ox is inside the box with lid.

then this relation will be preserved.

Otherwise, we dichotomize the space of effects very crudely. If ox is not possibly moved by o, then a
motion of o has no effect on ox. If ox is possibly moved by o, and does not fall into one of the above
categories, then in the current theory the effect on ox of moving o is entirely unconstrained. We do
not give any further conditions for this relation; those can be specified, either in a problem statement
or in specialized axioms. For instance, if object o is sitting on a stable table but is otherwise isolated,
then no other objects are possibly moved by it.

If no objects are being manipulated and no objects are falling, then no object other than the agent
moves.
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These conditions on motion are not, of course, true in general in the real world. However, it is
possible for these axiom to be consistent with a model in which the objects other than the agent
follow Newtonian mechanics by positing that the agent cautiously avoids moving objects in ways
that would cause them to violate the axioms here Since there is no general comprehension axioms
on the actions of an agent, such a restriction is consistent with our theory.

2 Logic, Sorts, Notation

We use a simple sorted first-order logic with equality.

Sorts are in italics. Other symbols are in typewriter font.

Lower case symbols are variables. Symbols beginning with upper case are constants, functions, and
predicates. Free variables are implicitly universally quantified, with a scope of the entire formula.

The precedence of Boolean operators is: ¬, ∧, ∨, ⇒, ⇔. The quantifiers ∃, ∀, and ∃1 (unique
existence) have scope until the end of the formula or close bracket of larger scope.

The entities in the universe are partitioned into sorts: Each entity is of exactly one sort. There are
six sorts: Time, Region, History, Object, ObjectSet and Event. For each sort there is a corresponding
unary predicate, written in typewriter font; for example, the predicate Time(t) corresponds to the
sort Time.

We use italicized sortal symbols in two contexts. The first use is for restricted quantification. A
quantified variable can be restricted to a sort, with the standard meanings: If µ is a variable, α is a
sortal symbol and φ(µ) is a forumla, then

∀µ:α φ(µ) is equivalent to ∀µ α(µ)⇒φ(µ); and
∃µ:α φ(µ) is equivalent to ∀µ α(µ) ∧ φ(µ).

For example
∀u,v:Time Leq(u,v) ⇔ Lt(u,v) ∨ u=v

is equivalent to
∀u,v Time(u) ∧ Time(v) ⇒

[Leq(u,v) ⇔ Lt(u,v) ∨ u=v].

The second use of sortal symbols is in the declaration of non-logical symbols. Every non-logical
symbol is introduced with a declaration of the sorts of its arguments and values. In our theory,
sorting of non-logical symbols is strict; every symbol except the equality and inequality signs is
sorted and there is no overloading or polymorphism. Each such declaration implicitly expresses a
sortal axiom governing the symbol. The syntax of declarations is modelled on the syntax of function
declarations in programming languages such as Pascal or Ada. These declarations and axioms are
of three types:

• Constant symbols. A constant symbol has a declaration of the form Symbol → Sort. The
corresponding axiom states that the symbol is of the sort. For example, the declaration
“Ta→Time” corresponds to the axiom “Time(Ta).”

• Predicate symbols. A predicate symbol declaration declares a sort for each argument. The
corresponding axiom asserts that the predicate holds on arguments only if the arguments are
of the proper sorts. For instance, the declaration “Continuous(ta,tb:Time; h:History)”
corresponds to the axiom

“∀ta,tb,h Continuous(ta,tb,h) ⇒ Time(ta) ∧ Time(tb) ∧ History(h).”

• Function symbols. A function symbol declaration declares the sorts of each argument and
the sort of the result. The corresponding axiom asserts that if the arguments have the specified
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sorts, then the result has the specified sort. For example, the declaration
Slice(t:Time, h:History) → Region corresponds to the axiom
∀t,h Time(t) ∧ History(h) ⇒ Region(t,h).

Functions are all total over the space of arguments of the proper sort. (Presumably, the
function is undefined if the sortal conditions on the arguments are not met, but we do not
axiomatize that.)

Thus, the entire theory in the sorted logic can be translated into an equivalent theory in an unsorted
logic — which, indeed, is exactly what we do in preprocessing this theory for input into SPASS.

In each section or subsection, we first declare the new formal symbols introduced, then enumerate
the definitions, then enumerate the axioms. (The distinction between axioms and definitions is
informal, but intuitively useful.) Axioms are numbered using four letters. The first two indicate the
second and subsection; the third is ‘D’ or ‘A’ for definition or axiom; the fourth is just enumerative;
these are not necessarily consecutive, if axioms have been deleted or rearranged. Some of the axioms
are redundant; no attempt has been made to generate a minimal set of axioms (see discussion in
main paper).

2.1 Sorts

We use the following sorts:

Time — An instant of time.
Region — A region of space.
History — A function from time to regions.
Object — A physical entity.
ObjectSet — A set of objects.
Event — An event or action.

A region is a non-empty, bounded, topologically regular sets of points. Additional well-behavedness
conditions could certainly be added. Events take place over a duration of some non-zero length; we
do not allow instantaneous events.

3 Time

3.1 Time Ordering

The time line is forward-branching. Forward branching correspond to an agent’s choice between
actions. Since time is forward branching, it is not totally ordered; but the times previous to any
given time z are totally ordered (axiom T.I.A.E below).

Symbols:
Lt(x,y:Time) — Time x is earlier than time y.
Leq(x,y:Time) — Time x is earlier than or equal to time y.
Ordered(x,y:Time).
Leq3(x,y,z:Time). x ≤ y ≤ z
TimeIntervalOverlap(w,x,y,z). The intervals [w,x] and [y,z] overlap;

that is, they have an interior point in common.

Definitions
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T.I.D.A ∀x,y:Time Leq(x,y) ⇔ Lt(x,y) ∨ x=y.

T.I.D.B ∀x,y Ordered(x,y) ⇔ [Lt(x,y) ∨ Lt(y,x) ∨ x=y].

T.I.D.C Leq3(x,y,z) ⇔ Leq(x,y) ∧ Leq(y,z).

T.I.D.D TimeIntervalOverlap(w,x,y,z) ⇔
∃t Lt(w,t) ∧ Lt(t,x) ∧ Lt(y,t) ∧ Lt(t,z).

Axioms

T.I.A.A ¬(Lt(x,y) ∧ Lt(y,x)). Lt is antisymmetric.

T.I.A.B Lt(x,y) ∧ Lt(y,z) ⇒ Lt(y,z). Lt is transitive.

T.I.A.E Lt(x,z) ∧ Lt(y,z) ⇒ Ordered(x,y).
Forward branching: The times earlier than z are totally ordered.

3.2 Events / Actions

Occur(ta,tb:Time: e:Event).
Event e occurs starting at time ta and ending at time tb.

Feasible(t:Time: e:Event).
It is possible to execute action e starting at time t.

Definition:

T.E.D.A Feasible(ta,e) ⇔ ∃tb Occurs(ta,tb,e).
If action e is feasible at time ta, then there is some branch of the time line in which e occurs.

Axiom:

T.E.A.A Occurs(ta,tb,e) ⇒ Lt(ta,tb).

4 Spatial Relations

4.1 Basic spatial relations

We use the RCC (Randell, Cui, and Cohn, 1992) binary spatial relations P, C, O, DR, EC, OV.
We do not give a complete theory of these here; we only enumerate the definitions and axioms that
we need. For a more complete discussion of the axiomatization of RCC, see (Pratt and Schoop,
1998; Pratt-Hartmann, 2007). The function RUnion(u,v) is the union of regions u and v.

Symbols:
P(u,v:Region) — Region u is a subset of v.
C(u,v:Region) — Regions u and v are in contact.
O(u,v:Region) — Regions u and v overlap.
DR(u,v:Region) — Regions u and v do not overlap.
EC(u,v:Region) — Regions u and v are externally connected.
OV(u,v:Region) — Regions u and v partially overlap.
RUnion(u,v:Region) → Region.
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Definitions:

S.B.D.A O(u,v) ⇔ ∃z P(z,u) ∧ P(z,v).

S.B.D.B ∀u,v:Region DR(u,v) ⇔ ¬O(u,v).

S.B.D.C EC(u,v) ⇔ DR(u,v) ∧ C(u,v).

S.B.D.D ∀u,v:Region DC(u,v) ⇔ ¬C(u,v).

S.B.D.E ∀u,v,w:Region w = RUnion(u,v) ⇔
P(u,w) ∧ P(v,w) ∧
[∀z P(u,z) ∧ P(v,z) ⇒ P(w,z)].

The union of u and v is the minimal set containing both u and v.

S.B.D.F OV(u,v) ⇔ O(u,v) ∧ ¬P(u,v) ∧ ¬P(v,u).

Axioms:

S.B.A.A P(u,v) ∧ P(v,u) ⇒ u=v.

S.B.A.B P(u,v) ∧ P(v,w) ⇒ P(u,w).

S.B.A.C ∀u:Region P(u,u).

S.B.A.D ∀u:Region C(u,u).

S.B.A.E C(u,v) ⇒ C(v,u).

S.B.A.F C(u,v) ∧ P(v,w) ⇒ C(u,w).

S.B.A.G O(u,v) ⇒ C(u,v).

S.B.A.H ∀u,v,w:Region O(w,RUnion(v,u)) ⇒ O(w,v) ∨ O(w,u).

S.B.A.I P(u,v) ∧ DC(v,w) ⇒ DC(u,w).

4.2 Same Vertical

The predicate SameVertical(ra,rb) means that region ra is congruent to region rb and that
the mapping from one to another does not involve a rotation of the vertical axis, though it may
involve a rotation around the vertical axis. This is an equivalence relation. Two regions that are
SameVertical have corresponding parts, also SameVertical.

Definition:
Axioms:

S.V.A.A ∀ra:Region SameVertical(ra,ra).

S.V.A.B SamVVertical(ra,rb) ⇒ SameVertical(rb,ra).

S.V.A.C SameVertical(ra,rb) ∧ SameVertical(rb,rc) ⇒ SameVertical(ra,rc).

S.V.A.C SameVertical(ra,rb) ∧ P(rc,ra) ⇒
∃rd P(rd,rb) ∧ SameVertical(rd,rc).
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Figure 1: Closed, open, and open upright containers

4.3 Spatial Containment

For convenience, we define symbols for what are essentially the same containment relations applying
to one region containing another; to an object or set of objects containing a region (section 5.3); or
to one object or set of objects containing another (section 5.4).

Region R is a closed container for cavity C if C is an interior-connected, bounded compo-
nent of the complement of R (figure 1).

Region R is an open container for cavity C (a region) if there exists a region A, between
two parallel planar surfaces S1 and S2 such that:

• A and R do not overlap. The intersection where they meet R∩ A is equal to the ring
around A separating S1 and S2: R ∩ A = Bd(A) \ (S1 ∩ S2).

• C is a cavity of the union R ∪ A, but is not a cavity of either R or of A separately.

Region R is an upright open container for cavity C if the planar surfaces S1 and S2
associated with A are horizontal and A is above C.

Region R is a simple upright open container with cavity C if C is the unique maximal
interior with respect to which R is an upright open container (figure 2).

The definition of closed container is purely topological, and therefore is expressible in our qualitative
spatial language. However, expressing the conditions that the surfaces S1 and S2 are planar and
parallel would require a much more powerful geometric theory than we are undertaking here.

Symbols:
IntConn(r:Region). – Region r is interior connected.
FaceConn(u,v:Region) — Regions u and v are connected on a face.
Cavity(u,v:Region) — Region u is an interior cavity of v.
Outside(u,v:Region) — Region u is outside region v.

(u is a subset of the unbounded connected component of the complement of v).
Contained(u,v:Region). Region u is is inside a cavity in v.
CombinedContainer(ra,rb,rc:Region).

Region rc is an interior cavity of ra ∪ rb.
OpenContainerShape(rb,rc:Region). Region rb is an open container with interior rc.
UprightContainerShape(rb,rc:Region).
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A is a simple upright container: C is the unique maximal region contained.
B is an upright container that is not simple; D1, D2, D3 are each maximal contained regions.

Figure 2: Closed, open, and open upright containers

Region rb is an upright open container with interior rc.
SimpleUprightContainerShape(rb,rc).
OpenContained(ra,rb) — Region ra is in the open container rb.
OutsideContainer(ro,rb) — Region ro is outside the container rb.

Definitions:

S.C.D.A FaceConn(u,v) ⇔ EC(u,v) ∧ IntConn(RUnion(u,v)).

S.C.D.B Cavity(u,v) ⇔
IntConn(u) ∧ DR(u,v) ∧
∀r,rx IntConn(r) ∧ O(r,u) ∧ P(rx,r) ∧ DR(rx,u) ⇒

O(r,v).
Region u is a cavity of v if it is a maximal interior-connected region disjoint from v. (Note
that the outside of v does not satisfy this condition, since u must be a region and by definition
a region is bounded.)

S.C.D.C Outside(u,v) ⇔ [DR(u,v) ∧ [∀w Cavity(w,v) ⇒ DR(u,w)]].
Region u is outside v if u is disjoint from v and from every cavity of u.

S.C.D.D Contained(u,v) ⇔ ∃c Cavity(c,v) ∧ P(u,c).
Region u is contained in v if u is part of a cavity of v.

S.C.D.E CombinedContainer(ra,rb,rc) ⇔
EC(ra,rb) ∧ Cavity(rc,RUnion(ra,rb)) ∧ ¬Cavity(rc,ra) ∧ ¬Cavity(rc,rb).

S.C.D.F SimpleUprightContainerShape(rb,rc) ⇔
UprightContainerShape(rb,rc) ∧
∀rd UprightContainerShape(rb,rd) ⇒ P(rd,rc).

S.C.D.G OpenContained(ra,rb) ⇔
∃rc OpenContainerShape(rb,rc) ∧ P(ra,rc).

S.C.D.H OutsideContainer(ro,rb) ⇔
DC(ro,rb) ∧ ∀rc OpenContainerShape(rb,rc) ⇒ DC(ro,rc).
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Axioms:

S.C.A.A Contained(u,v) ∧ Contained(v,w) ⇒ Contained(u,w).

S.C.A.C UprightContainerShape(rb,rc) ⇒ OpenContainerShape(rb,rc).

S.C.A.E UprightContainerShape(rb,rc) ∧ SameVertical(ra,rb) ⇒
∃rd UprightContainerShape(ra,rd)

4.4 Much Smaller

We include a qualitative comparator on the size of regions: MuchSmaller(ra,rb), meaning that
ra is much smaller than rb. This comparator on region is related to the predicate SmallSet(s,r)
(section 5.6) which in turn is used in some specialized physical axioms (e.g. A.C.A.A, section 9).

The axioms state that MuchSmaller is a partial ordering (S.M.A.A, .B); compatible with the part
relation P (S.M.A.C); and invariant under the relation SameVertical (S.M.A.F). Also a small region
cannot contain a larger region, under any kind of “containment”. These axioms, and further proper-
ties stated below, are satisfied if MuchSmaller(ra,rb) is defined as holding if a sphere circumscribing
ra would fit inside rb.

Symbols:
MuchSmaller(ra,rb:Region).

Axioms:

S.M.A.A ¬MuchSmaller(ra,ra).

S.M.A.B MuchSmaller(ra,rb) ∧ MuchSmaller(rb,rc) ⇒ MuchSmaller(ra,rc).

S.M.A.C MuchSmaller(ra,rb) ∧ P(rc,ra) ∧ P(rb,rd) ⇒
MuchSmaller(rc,rd).

S.M.A.D MuchSmaller(ra,rb) ⇒ ¬Cavity(rb,ra) ∧ ¬OpenContainerShape(ra,rb).

S.M.A.E MuchSmaller(ra,rb) ⇒ ∃rc SameVertical(rc,ra) ∧ P(rc,rb).

S.M.A.F MuchSmaller(ra,rb) ∧ SameVertical(ra,rc) ∧ SameVertical(rb,rd) ⇒
MuchSmaller(rc,rd).

5 Objects

The theory of objects introduces two sorts Object, and ObjectSet. Objects are disjoint; they do not
overlap, and one object is not part of another.

5.1 Object Sets

The relations over object sets and their definitions are standard. The sole axiom O.S.A.A is the
axiom of extension, that two sets with the same elements are equal. (The usual ZF axiom of pairing
is implicit in the fact that Pair is a function.)
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Symbols:
Element(x:Object; s:ObjectSet). — Object x is an element of ObjectSet s.
Null → ObjectSet.
Singleton(x:Object) → ObjectSet. — {x}
Pair(x,y:Object) → ObjectSet. — {x, y}
Subset(sa,sb:ObjectSet).
Disjoint(sa,sb:ObjectSet).
Union(sa,sb:ObjectSet) → ObjectSet.

Definitions:

O.S.D.A ∀x ¬Element(x,Null).

O.S.D.B ∀x,y:Object Element(y,Singleton(x)) ⇔ y=x.

O.S.D.C ∀sa,sb:ObjectSet Subset(sa,sb) ⇔ ∀o Element(o,sa) ⇒ Element(o,sb).

O.S.D.D ∀x,y:Object,z Element(z,Pair(x,y)) ⇔ z=x ∨ z=y.

O.S.D.E ∀sa,sb:ObjectSet Disjoint(sa,sb) ⇔ ¬ ∃o Element(o,sa) ∧ Element(o,sb).

O.S.D.F ∀sa,sb:ObjectSet;x:Object Element(x,Union(sa,sb)) ⇔ Element(x,sa) ∨ Element(x,sb).

Axiom

O.S.A.A ∀sa,sb:ObjectSet [∀x Element(x,sa) ⇔ Element(x,sb)] ⇒ sa=sb.

5.2 Objects and Object Sets: Spatio-Temporal

We next define the primitives that relate objects to the regions they occupy at a given time. The func-
tion Place(t,o) is the region the object o occupies at time t. The predicate FeasiblePlace(o,r)
holds if it is physically possible to configure o so that it occupies r. The predicate OSPlace(t,s,r)
holds if r is the region occupied by object set s at time t. (This is a predicate rather than a function,
since the null set does not occupy any region.) Contents(t,r) is the set of objects that are in region
r at time t.

Symbols:
Place(t:Time; o:Object) → Region.
FeasiblePlace(o:Object; r:Region).
OSPlace(t:Time; s:ObjectSet; r:Region).
Contents(t:Time; r:Region) → ObjectSet.

Axioms

O.T.A.A ∀t:Time;o:Object FeasiblePlace(o,Place(t,o)).
Every object always occupies a feasible place.

O.T.A.B ∀p,q:Object;t:Time p 6= q ⇒ DR(Place(t,p), Place(t,q)).
Any two objects are spatially disjoint.

O.T.A.C ¬∃t,r OSPlace(t,Null,r).
The null set has no place.
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O.T.A.D ∀s:ObjectSet; t:Time s 6= Null ⇒ ∃1r OSPlace(s,t,r).
Every non-empty set of objects occupies a unique region at any time.

O.T.A.E OSPlace(t,s,r) ⇒
[∀o Element(o,s) ⇒ P(Place(t,o),r)] ∧
[∀ra [∀o Element(o,s) ⇒ P(Place(t,o),ra)] ⇒ P(r,ra).].

The region occupied by a set s is the minimal region that contains all the regions occupied by
the elements of s.

O.T.A.F ∀o:Object;r:Region;t:Time Element(o,Contents(t,r)) ⇐⇒ P(Place(t,o),r).

O.T.A.G FeasiblePlace(o,r) ∧ SameVertical(ra,r) ⇒ FeasiblePlace(o,ra).
FeasiblePlace is invariant under SameVertical.

5.3 Objects containing regions

We here define the containment relations between a container, which is an object or a set of objects
and a region contained. Here and in section 5.4, we define closed containers in terms of a set of
objects but open containers in terms of a single object, because closed containers are often composed
of multiple objects (e.g. a box with a lid; a bottle with a cap; and so on) where as this is much rarer
for open containers, though it does occur (e.g. cupping your two hands.)

Symbols:
ClosedContainer(t:Time; s:ObjectSet; rc:Region).
OpenContainer(t:Time; o:Object; rc:Region).
UprightContainer(t:Time; o:Object; rc:Region).
SimpleUprightContainer(t:Time; o:Object; rc:Region).

Definitions:

O.R.D.A ClosedContainer(t,s,rc) ⇔
Time(t) ∧ ObjectSet(s) ∧ ∃rc OSPlace(t,s,rs) ∧ Cavity(rc,rs).

Note: A cup upside down inside a box is both an object inside a closed container and part of a
closed container. A box with shelves therefore forms n(n− 1)/2 closed containers (any pair of
shelves/top/bottom determine a container) and a box with small cubby holes and dividers in
two directions forms an exponential number (any interior-connected collection of cubby holes
is considered a closed container) but that’s the way it goes.

O.R.D.B OpenContainer(t,o,rc) ⇔
Time(t) ∧ Object(o) ∧ OpenContainerShape(Place(t,o),rc).

O.R.D.C UprightContainer(t,o,rc) ⇔
Time(t) ∧ Object(o) ∧ UprightContainerShape(Place(t,o),rc).

O.R.D.D SimpleUprightContainer(t,o,rc) ⇔ SimpleUprightContainerShape(Place(t,o),rc).

5.4 Object Containment

Same relations again, for one object or a set of objects containing another object.

Symbols:
CContained(t:Time; ox:Object; s:ObjectSet).
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OContained(t:Time; ox,ob:Object).
UContained(t:Time; ox,ob:Object).
CContents(t:Time; s:ObjectSet) → ObjectSet.
UContents(t:Time; ob:Object) → ObjectSet.
Outside(t:Time; ox:Object).
Empty(t:Time; ox:Object).

Definitions:

O.C.D.A CContained(t,ox,s) ⇔
∃rc ClosedContainer(t,s,rc) ∧ Object(ox) ∧ P(Place(t,ox),rc).

O.C.D.B OContained(t,ox,ob) ⇔
∃rc OpenContainer(t,ob,rc) ∧ Object(ox) ∧ P(Place(t,ox),rc).

O.C.D.C UContained(t,ox,ob) ⇔
∃rc UprightContainer(t,ob,rc) ∧ Object(ox) ∧ P(Place(t,ox),rc).

O.C.D.D ∀t:Time; ob:Object; s:ObjectSet

s = CContents(t,ob) ⇔
∀ox Element(ox,s) ⇔ CContained(t,ox,ob).

O.C.D.E ∀t:Time; ob:Object; s:ObjectSet

s = UContents(t,ob) ⇔
∀ox Element(ox,s) ⇔ UContained(t,ox,ob).

O.C.D.F ∀t:Time;r:Region Empty(t,r) ⇔
¬∃o:Object O(Place(t,o),r).

5.5 Box with lid

The intended meaning of a box with a lid is a pair of object that form a closed container, where the
lid is stably placed on the box, so that, if you move the box, the lid will follow along. We do not
fully axiomatize the conditions necessary for this, which are complex, and involve both geometric
and physical properties of the box and the lid. Rather, we present it as a primitive, give some
necessary but hardly sufficient conditions, and use it as a primitive in some further causal axioms
characterizing actions.

Symbols:
BoxWithLidShape(rb,rl,rc:Region).

Regions rb,rl,rc geometrically could be a box, lid, and cavity. Note that rb is not necessarily
an open container with inside rc; the lid can arch over the box and enclose more space.
BoxWithLid(t:Time; ob,ol:Object).

Objects ob,ol physically form a box with lid (thus, ol will move along when ob is moved.)
BoxWithLidC(t:Time; ob,ol:Object; rc:Region).

Object ob and ol are a box with a lid and contain region rc.
LContents(t:Time; ob,ol:Object; s:ObjectSet).

Objects ob and ol form a box with lid with contents s.

Definition:

O.L.D.A BoxWithLidC(t,ob,ol,c) ⇔
BoxWithLid(t,ob,ol) ∧ BoxWithLidShape(Place(t,ob), Place(t,ol), rc).
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O.L.D.A LContents(t,ob,ol,s) ⇔ ∃rc BoxWithLidC(t,ob,ol,rc) ∧ s=Contents(t,rc).

Axioms:

O.L.A.A BoxWithLidShape(rb,rl,rc) ⇒
CombinedContainer(rb,rl,rc) ∧ ¬MuchSmaller(rb,rl).

O.L.A.B BoxWithLid(t,ob,ol) ⇒ ∃rc BoxWithLidC(Place(t,ob),Place(t,ol),rc).

5.6 Fits and Small Set

The final spatial relation between objects and regions we axiomatize is Fits(s,r) — object set s
fits into region r and SmallSet(s,r) — object set s is collectively small as compared to region r.
The axioms are self-explanatory.

Likewise we consider a class of small objects. There are objects that are much smaller than the
agent, and therefore particularly easy to move.

Symbol:
Fits(s:ObjectSet; r:Region).
SmallSet(s:ObjectSet; r:Region).
SmallObject(o:Object).

Definition:

O.F.D.A SmallObject(o) ⇔
∀ra,rb FeasiblePlace(ra,Agent) ∧ FeasiblePlace(rb,o) ⇒ MuchSmaller(rb,ra).

Axioms:

O.F.A.A ∀r:Region Fits(Null,r).

O.F.A.B ∀o:Object;r:Region FeasiblePlace(o,r) ⇒ Fits(Singleton(o),r).

O.F.A.C OSPlace(t,s,r) ⇒ Fits(s,r).

O.F.A.D Fits(s,ra) ∧ P(ra,rb) ⇒ Fits(s,rb).

O.F.A.E ∀r:Region SmallSet(Null,r).

O.F.A.F SmallSet(s,r) ∧ Subset(sa,s) ⇒ SmallSet(sa,r).

O.F.A.G SmallSet(s,r) ∧ OSPlace(t,s,ra) ⇒ MuchSmaller(ra,r).

O.F.A.H SmallSet(s,r) ⇒ Fits(s,r).

O.F.A.I Fits(s,ra) ∧ SameVertical(ra,rb) ⇒ Fits(s,rb).

6 Motion and Manipulation

In this section we present the core of our physical theory, which is the theory of an agent manipulating
an object.
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Figure 3: Grasping on a dense branching time line

6.1 Grasping an Object

We start with a very limited theory of grasping an object. There are two basic primitives here:
the constant Agent, the hero agent who is a distinguished object, and the predicate Grasp(t,o)
meaning that the agent is grasping object o at time t. We define some further predicates for
convenient reference.

By convention we suppose that, on any time line, the agent grasps any given object over a time
interval that is open on the left and closed on the right. Thus, if the agent grasps o from time ta to
tb and then releases it, he is grasping o at time tb and is not grasping it over some closed interval
(tb, tc]. For instance, in the branching structure shown in figure 3, on time line 1, the agent grasps
O from TA to TC; on time line 2, the agent grasps O from TA to TB and then is not grasping at all
times after TB up to TD.

We implicitly include in the concept CanGrasp that the agent CanGrasp object o only if he can
move it in some way that is consistent with our restricted theory of motion; that is, he can move
it without pushing other objects out of the way and without removing a support for other objects,
thus causing them to fall over (either of which would be inconsistent with frame axiom M.R.A.A).

Symbols:
Agent → Object.
Grasp(t:Time; o:Object).
EmptyHanded(t:Time).
Grasps(ta,tb:Time; o:Object:).
CanGrasp(t:Time; o:Object). The agent can grasp object o at time t.
Released(ta,tb:Time; o:Object:).

Definitions:

M.G.D.A EmptyHanded(t) ⇔ ¬∃o Grasp(t,o).
The agent is EmptyHanded at time t if he is not grasping anything at t.

M.G.D.B Grasps(ta,tb,o) ⇔
Lt(ta,tb) ∧ ∀t Lt(ta,t) ∧ Leq(t,tb) ⇒ Grasp(t,o).

The agent grasps object o from time ta (non-inclusive) to time tb (inclusive).

M.G.D.C CanGrasp(t,o) ⇔ ∃tb Grasps(t,tb,o).
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M.G.D.D Released(ta,tb,o) ⇔
Lt(ta,tb) ∧ ∀t Lt(ta,t) ∧ Leq(t,tb) ⇒ ¬Grasp(t,o).

Object o is released (i.e. the agent is not grasping it) from time ta (not inclusive) through tb
(inclusive).

Axioms:

M.G.A.A Grasp(t,oa) ∧ Grasp(t,ob) ⇒ oa=ob.
The agent can only grasp one object at a time.

M.G.A.B [Grasp(t,o) ∨ CanGrasp(t,o)] ⇒ FaceConn(Place(t,Agent),Place(t,o)).
The agent can only grasp o if he has contact with o along an extended face.

M.G.A.C ∀ta:Time;o:Object ∃tb Released(ta,tb,o).
At any time ta it is possible for the agent to release object o (assuming that he is holding o).

M.G.A.D ¬Grasp(t,Agent).
The agent does not grasp himself.

6.2 Motion

We next characterize motion. Agents move, objects move when they are carried, directly or indi-
rectly, and objects fall when released in an unstable position.

We do not give any geometric characterization of stability.

Symbols:
Motionless(ta,tb:Time; o:Object:).
TravelTo(r:Region) → Event.

The event of the agent traveling empty-handed to region r.
StandStill → Event.

The event of the agent standing still, not grasping anything.
MoveTo(o:Object; r:Region) → Event.

The event of the agent directly manipulating object o so as to move it to region r.
Stable(t:Time; o:Object).

At time t, object o is in a position where it will be stable, if released.
Falling(ta,tb:Time; o:Object).

Object o is falling from time ta to time tb.
AllStable(t:Time).

All objects are either grasped or stable at time t.

Definitions:

M.O.D.D Motionless(ta,tb,o) ⇔
Lt(ta,tb) ∧ ∀t Lt(ta,t) ∧ Leq(t,tb) ⇒ Place(t,o) = Place(ta,o).

M.O.D.E Occurs(ta,tb,TravelTo(r)) ⇔
r = Place(tb,Agent) ∧ ∀o:Object Released(ta,tb,o).

M.O.D.F Occurs(ta,tb,StandStill) ⇔
Motionless(ta,tb,Agent)∧ ∀o:Object Released(ta,tb,o).

M.O.D.G Occurs(ta,tb,MoveTo(o,r)) ⇔
r = Place(tb,o) ∧ Grasps(ta,tb,o).
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M.O.D.J AllStable(t) ⇔ ∀o:Object o=Agent ∨ Stable(t,o) ∨ Grasp(t,o).

Axioms:

M.O.A.A Falling(ta,tb,o) ⇒ Lt(ta,tb).

M.O.A.B Falling(ta,tb,o) ∧ Leq(ta,tx) ∧ Lt(tx,tb) ⇒
Grasp(ta,o) ∧ Released(ta,tb,o) ∧ ¬Stable(tx,o) ∧ Stable(tb,o).
Object o is falling from time ta to time tb only if o is grasped at time ta and released over
the interval (ta, tb] and unstable over the interval [ta, tb), but stable at time tb. (This, of
course, is an simplification in our microworld; it is not true in the world in general.)

M.O.A.C Grasp(ta,o) ∧ Released(ta,tb,o) ∧ ¬Stable(ta,o) ⇒
∃tf Ordered(tf,tb) ∧ Falling(ta,tf,o).

M.O.A.D ¬Stable(t,o) ⇒
∃ta,tf Leq(ta,t) ∧ Lt(t,tf) ∧ Falling(ta,tf,o).
If o is unstable at time t, then it is falling over some interval [ta, tf) containing t.

M.O.A.E BoxWithLid(t,ob,ol) ⇒ Stable(t,ol).
A lid is stably supported by the box underneath (this is a necessary condition for BoxWithLid.)

6.3 Effect of moving one object on another

We here partially characterize the effect of moving one object on another.

• We say that object ox is possibly moved by object o at time t if there are small motions of o
that will immediately cause ox to move (this condition is not axiomatized).

• We distinguish two cases in which a motion of o causes a controlled motion of ox.

– If either ox=o or o is a closed container containing ox then that relation persists under
any motion. In this case we say that ox always goes with o (definition M.E.D.A).

– If either o is an upright container containing ox or o is a box with a lid ox or o is a bid
with lid ol and ox is contained in the pair { o,ol }, then that relation persists if o is
moved and kept upright. In this case we say that ox goes with o under upright motions.
(definition M.E.D.B)

• We say that o can be safely moved if every object that can possibly be moved by o either
always goes with o or goes with o under upright motions (definition M.E.D.E). A motion m is
safe if either

– All objects that can possibly be moved by o always go with o. In this case, m can be any
motion.

– All objects that can possibly be moved by o either always go with o or go with o under
upright motions. In this case m is restricted to be an upright motion.

In the current state of our theory, we do not axiomatize the relation PossiblyMovedBy. As the theory
is extended, necessary conditions and sufficient conditions can certainly be stated; for example, if o
is supported by a stable table and is otherwise isolated, then it can be safely moved.

Symbols:
PossiblyMovedBy(t:Time; ox,oc:Object).
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AlwaysGoesWith(t:Time;ox,oc:Object).
Object ox “goes with” object oc at time t.

UprightThroughout(ta,tb:Time; o:Object).
UprightGoesWith(t:Time;ox,oc:Object).
UprightMoveTo(ta,tb:Time; o:Object; r:Region) → Event.
SafelyMovable(t:Time; o:Object).
SafeMoveTo(ta,tb:Time; o:Object; r:Region) → Event.

Definitions:

M.E.D.A AlwaysGoesWith(t,ox,oc) ⇔
Object(oc) ∧ [ox = oc ∨ CContained(t,ox,Singleton(oc))].

M.E.D.B UprightGoesWith(t,ox,oc) ⇔
UContains(t,ox,oc) ∨

∃ol BoxWithLid(t,ob,ol) ∧ [ox=ol ∨ CContained(t,ox,Pair(ob,ol))].

M.E.D.C ∀ta,tb:Time;o:Object UprightThroughout(ta,tb,o) ⇔
∀tm Leq3(ta,tm,tb) ⇒ SameVertical(Place(ta,o),Place(tb,o)).

M.E.D.D Occurs(ta,tb,UprightMoveTo(ta,tb,o,r)) ⇔
Occurs(ta,tb,MoveTo(o,r)) ∧ UprightThroughout(ta,tb,o).

M.E.D.E ∀t:Time;o:Object SafelyMovable(t,o) ⇔
∀ox PossiblyMovedBy(t,ox,o) ⇒

[AlwaysGoesWith(t,ox,o) ∨ UprightGoesWith(t,ox,o)].

M.E.D.F Occurs(ta,tb,SafeMoveTo(o,r)) ⇔
Occurs(ta,tb,MoveTo(o,r)) ∧

∀ox PossiblyMovedBy(t,ox,o) ⇒
[AlwaysGoesWith(t,ox,o) ∨
[UprightGoesWith(t,ox,o) ∧ UprightThroughout(ta,tb,o)]].

Axiom

M.E.A.E AlwaysGoesWith(t,ox,oc) ∨ UprightGoesWith(t,ox,oc) ⇒
PossiblyMovedBy(t,ox,oc).

6.4 Frame axioms

Here are frame axioms: necessary conditions for change over time. These are mostly in “explanation
closure” form: a change in a time-dependent state can occur only under such and such circumstances.
The most important of these, discussed in the main paper, is the frame axiom for change of position
(M.R.A.A). Other explanation closure axioms delimit change in BoxWithLid (M.R.A.B); and Stable.
Axiom M.R.A.E is a forward-direction inference for falling: A falling object in an upright container
remains in the container.

Symbol:
Moves(ta,tb:Time; o:Object).

Object o moves some time between times ta and tb.

Definition:

M.R.D.A Moves(ta,tb,o) ⇔
∃tm Leq(ta,tm) ∧ Lt(tm,tb) ∧ Place(tm,o) 6= Place(tb,o).

17



Axioms:

M.R.A.A Moves(ta,tb,o) ⇒
o = Agent ∨
∃tc,td,ox,rx TimeIntervalOverlap(tc,td,ta,tb) ∧ PossiblyMovedBy(tc,o,ox) ∧

[Occurs(tc,td,MoveTo(ox,rx)) ∨ Falling(tc,td,ox)].
Frame axiom for change of position: Object o moves only if (a) it is the agent; (b) it is “possibly
moved by” object ox, which in turn either is directly moved by the agent or is falling.

M.R.A.B Lt(ta,tb) ∧ BoxWithLid(ta,ob,ol) ∧ ¬BoxWithLid(tb,ob,ol) ⇒
[[∃tc,td,ra IntervalOverlap(tc,td,ta,tb) ∧ Occurs(tc,td,MoveTo(ol,ra))] ∨
[∃tm Lt(ta,tm) ∧ Leq(tm,tb) ∧ ¬SameVertical(Place(tm,ob),Place(ta,ob))]] .

A BoxWithLid relation between ob and ol can cease only if the lid is taken off or if the box is
tilted.

M.R.A.C Lt(ta,tb) ∧ ¬BoxWithLid(ta,ob,ol) ∧ BoxWithLid(tb,ob,ol) ⇒
∃tc,td,ra IntervalOverlap(tc,td,ta,tb) ∧ Occurs(tc,td,MoveTo(ol,ra)) .
A BoxWithLid relation between ob and ol can be created only by putting the lid on the box.

M.R.A.D Lt(ta,tb) ∧ ¬[Stable(ta,o) ⇔ Stable(tb,o)] ⇒ Moves(ta,tb,o).
The stability of object o changes only if o moves (not of course true in general in the real
world; a simplification in our microworld.) one or the other is moved.

M.R.A.E Falling(ta,tb,o) ∧ UContained(ta,ox,ob) ∧ Lt(ta,tm) ∧ Leq(tm,tb) ⇒
UContained(tm,ox,ob).

M.R.A.F PossiblyMovedBy(ta,ox,oc) ∧ [∀o o 6= Agent ⇒ Place(ta,o) = Place(tb,o)] ⇒
PossiblyMovedBy(tb,ox,oc).
The PossiblyMovedBy relation is determined by the positions of the objects other than the
agents. That is, if all objects other than the agent are in the same place at ta and tb, then
all PossiblyMovedBy relations are the same.

6.5 Feasibility of travelling

We give an incomplete theory of the feasibility of TravelTo.

The predicate Trajectory(ra,rb,rw) means that there is a feasible trajectory for the agent from
ra to rb remaining in rw. We give some necessary conditions for this (axiom M.F.A.B) and some
combinatorial axioms (M.F.A.D – .F ).

Axiom M.F.A.G and .H give conditions for the feasibility of travelling that are necessary and suf-
ficient if no other objects are moving.2 M.F.A.G states that, if TravelTo(rb) occurs from ta to
tb, then there exists a region rw such that Trajectory(Place(ta,Agent),rb,rw) and the agent
stays in rw during [ta,tb]. M.F.A.H states that, if Trajectory(Place(ta,Agent),rb,rw) and rw
is free of obstacles, then TravelTo(rb) is feasible at time ta.

Symbols:
NoObstacles(t:Time; r:Region).

No objects other than the agent are inside region r at time t.
Trajectory(ra,rb,rw:Region). Discussed above.
MiddlePos(ta,tb:Time: o:Object; r:Region).

Object o occupies region r some time between times ta and tb.
2If other objects are falling, then it would be difficult to give either necessary or sufficient conditions, since an

external object may either fall so as to block the path or fall so as to clear the path.
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StaysIn(ta,tb:Time; o:Object; r:Region).
Object o remains inside r throughout the interval [ta,tb].

Graspable(t:Time; o:Object).
At time t, the agent can move so as to grasp o.

Definitions:

M.F.D.A NoObstacles(t,r) ⇔
Time(t) ∧ ∀o:Object o 6= Agent ⇒ DR(Place(t,o),r).

M.F.D.C MiddlePos(ta,tb,o,r) ⇔
Object(o) ∧ ∃tx Leq3(ta,tx,tb) ∧ r=Place(tx,o).

M.F.D.D StaysIn(ta,tb,o,r) ⇔
∀rx MiddlePos(ta,tb,o,rx) ⇒ P(rx,r).

M.F.D.E Graspable(t,o) ⇔
∃tb,ra Occurs(t,tb,TravelTo(ra)) ∧ CanGrasp(tb,o).
Object o is graspable if the agent can travel to a place ra where he can grasp o.

Axioms:

M.F.A.A ∀ta,tb,o Lt(ta,tb) ∧ Object(o) ⇒ ∃rw StaysIn(ta,tb,o,rw).
In a more powerful spatio-temporal theory this would of course be a theorem rather than an
axiom.

M.F.A.B Trajectory(ra,rb,rw) ⇒
FeasiblePlace(Agent,ra) ∧ FeasiblePlace(Agent,rb) ∧

IntConn(rw) ∧ P(ra,rw) ∧ P(rb,rw).

M.F.A.C FeasiblePlace(Agent,ra) ⇒ Trajectory(ra,ra,ra).

M.F.A.D Trajectory(ra,rb,rw) ⇒ Trajectory(rb,ra,rw).

M.F.A.E Trajectory(ra,rb,rw) ∧ Trajectory(rb,rc,rx) ⇒
Trajectory(ra,rc,RUnion(rw,rx)).

M.F.A.F Trajectory(ra,rb,rw) ∧ P(rw,rx) ∧ IntConn(rx) ⇒
Trajectory(ra,rb,rx).

M.F.A.G EmptyHanded(ta) ∧ AllStable(ta) ∧ Occurs(t,tb,TravelTo(rb)) ⇒
∃rw:Region Trajectory(Place(ta,Agent),rb,rw) ∧ StaysIn(ta,tb,Agent,rw) ∧

NoObstacles(ta,rw).

M.F.A.H EmptyHanded(t) ∧ AllStable(t) ∧ NoObstacles(t,rw) ∧
Trajectory(Place(t,Agent),rb,rw) ⇒

∃tb Occurs(t,tb,TravelTo(rb)) ∧ StaysIn(t,tb,Agent,rw).

M.F.A.I ∀t:Time Feasible(t,StandStill).
The agent always has the option of standing still.
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Figure 4: Moving a small object upright

6.6 Feasibility of Manipulation

We state two approximate axioms (M.M.A.A and .B) with sufficient conditions for the feasibility
moving a small object. The axiom asserts that if a small object o can be grasped, and the agent
could move empty-handed to ra, and region ro adjoins ra, is empty and is SameVertical with
the current place of o, then the agent can execute UprightMoveTo(o,ro) (figure 4). Even in our
restricted microworld there are numerous exceptions to this (equivalently, the microworld would
need some quite fiddly tuning to make this absolutely true), so this would be better phrased as a
rule of plausible inference:

• This is only true if the agent’s hand can be made adjacent to ro; you cannot carry out fine
manipulations with the top of your head.

• There are cases where o fits in ro, but it is impossible to get o into ro because of a bottleneck.

Axiom M.M.A.B states that, if you move an object o safely into an open container then you do not
limit the agent’s travel outside the container unless the agent himself is entirely inside the container.

Axiom:

M.M.A.A ∀o:Object SmallObject(o) ∧ CanGrasp(t,o) ∧ Feasible(t,TravelTo(ra)) ∧
FaceConn(ra,ro) ∧ NoObstacles(t,ro) ∧ SameVertical(ro,Place(t,o)) ∧
AllStable(t) ∧ EmptyHanded(t) ∧ SafelyMovable(t,o) ⇒

Feasible(t,SafeMoveTo(o,ro)).

M.M.A.B Occurs(ta,tb,SafeMoveTo(o,r)) ∧ OpenContainer(ta,ob,rd) ∧ P(r,rd) ∧
Feasible(ta,TravelTo(rx)) ∧ DR(rx,rd) ∧ ¬P(Place(tb,Agent),rd) ⇒

Feasible(tb,TravelTo(rx)).

7 Histories

Some spatio-temporal axioms require the use of Histories, functions from time to regions.

A general theory of histories would require a powerful comprehension axiom, either a second-order
axiom or an axiom schema that asserts that any such function satisfying appropriate regularity
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conditions is indeed a History. Such an axiom is needed in order to prove the existence of a suitably
broad class of manipulations; examples of how they are formulated and used can be found in (Davis,
2008) and (Davis, 2011). However, they are not suitable for conversion into first-order format, and
they create an immense explosion of the search space in inference.3 Instead we have a number
of specialized axioms and function symbols that guarantee the existence of various histories. For
instance, the fact that HPlace(o) is a function guarantees that the trajectory of an object o is a
history (recall that all functions are total over their sorts). Axiom H.I.A.D guarantees the existence
of a constant history for each history.

Symbols:
Slice(t:Time, h:History) → Region. The slice of history h at time t (a region).
Continuous(ta,tb:Time; h:History) —

History h is continuous (with respect to the Hausdorff distance (Davis, 2001))
between times ta and tb.

HPlace(o:Object) → History. The place occupied by object o (a history).
HSPlace(s:ObjectSet) → History. The place occupied by object set s (a history)
WeaklyContinuous(ta,tb:Time; h:History). See below.
Constant(t1,t2:Time; h:History).

History h has a constant value between times t1 and t2 (inclusive).

Definitions:

H.I.D.A WeaklyContinuous(ta,tb,h) ⇔
Lt(ta,tb) ∧ History(h) ∧

∀tm Lt(ta,tm) ∧ Lt(tm,tb) ⇒
∃tc,td,r Lt(tc,tm) ∧ Lt(tm,td) ∧

∀t Leq3(tc,t,td) ⇒ P(r, Slice(tm,h)).
A history h is weakly continuous if it never jumps from one region to a disconnected region.
Intuitively, a small marble that can knows in advance how h will develop can succeed in
staying inside h. Formally, h is weakly continuous at time tm if there is an open interval
(tc,td) containing t and a region r such that, for any time t in (tc,td), the slice of h at t
contains r.

H.I.D.B Constant(t1,t2,h) ⇔
History(h) ∧ Lt(t1,t2) ∧ ∀t Leq3(t1,t,t2) ⇒ Slice(t,h) = Slice(t1,h).

Axioms:

H.I.A.A Object(o) ∧ Lt(ta,tb) ⇒ Continuous(ta,tb,HPlace(o)).
An object occupies a constant region.

H.I.A.B ∀t:Time;o:Object Place(t,o) = Slice(t,HPlace(o)).
Place can be defined in terms of Slice and HPlace.

H.I.A.C ∀t:Time;s:ObjectSet OSPlace(t,s) = Slice(t,HSPlace(o)).
OSPlace can be defined in terms of Slice and HSPlace.

H.I.A.D ∀r,t1,t2 Region(r) ∧ Lt(t1,t2) ⇒
∃h Constant(t1,t2,h) ∧ Slice(t1,h)=r.

For any region r there is a history that is constantly equal to r.

H.I.A.E Constant(ta,tb,h) ⇒ Continuous(ta,tb,h).
A constant history is continuous.

3Ramanchandran, Reagan and Goolsbey (2005) claim that the higher-order axioms of ResearchCyc can mostly be
translated into first-order, but that there is a loss of efficiency in inference. That almost certainly does not apply here.
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C is a no-exit cavity.
D is a no-entrance cavity.

Figure 5: No-exit and no-entrance cavities

H.I.A.F Continuous(ta,tb,h) ⇒ WeaklyContinuous(ta,tb,h).
A continuous history is weakly continuous.

7.1 Dynamic containers and cavities

In a container made of flexible material, cavities can split and merge, like bubbles in liquid; they
can open up to the outside world, or close themselves off from the outside world.

A history hc is a dynamic cavity of container ho over interval [ta, tb] if hc is weakly continuous and,
at every time in [ta, tb], hc is a cavity of ho. We distinguish three kinds of dynamic cavities.

• HC is a no-exit cavity of HO if there is no way to escape from HC, except by going through the
material of HO itself.

• HC is a no-entrance cavity of HO if there is no way to enter HC, except by going through the
material of HO itself.

• HC is a persistent cavity of HO if it is both a no-exit and a no-entrance cavity.

Definition H.C.D.A defines persistent cavity in terms of no-exit and no-entrance cavities. H.C.A.A
and .C state that no-exit and no-entrance cavities are dynamic cavities. H.C.A.B asserts that if
hc is a no-exit cavity of hb and hs is a continuous history that starts inside hc at time ta and is
outside hc at a later time tb, then hs overlaps with hb at some intermediate time. H.C.A.D makes
the corresponding assertion for no-entrance cavities.

Symbols:
NoExitCavity(t1,t2:Time; hc,ho:History)
NoEntranceCavity(t1,t2:Time; hc,ho:History)
PersistentCavity(t1,t2:Time; hc,ho:History)

Definition:
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H.C.D.A PersistentCavity(t1,t2,hc,hb) ⇔
NoExitCavity(t1,t2,hc,hb) ∧ NoEntranceCavity(t1,t2,hc,hb).

Axioms:

H.C.A.A NoExitCavity(t1,t2,hc,ho) ⇒
Lt(t1,t2) ∧ WeaklyContinuous(t1,t2,hc) ∧

∀t Leq3(t1,t,t2) ⇒ Cavity(Slice(t,hc),Slice(t,ho)).

H.C.A.B NoExitCavity(t1,t2,hc,hb) ∧ Continuous(t1,t2,hs) ∧
P(Slice(t1,hs),Slice(t1,hc)) ∧ ¬P(Slice(t2,hs),Slice(t2,hc)) ⇒

∃tm Lt(t1,tm) ∧ Lt(tm,t2) ∧ O(Slice(tm,hs),Slice(tm,hb)).
Let hb be the history of a container (box or bottle or bag); let hs be the history of some stuff;
and let hc be a no-exit cavity in hb. If hs is inside hc at time t1 and is not inside hc at time
t2, then it must overlap with hb at some time in between.

H.C.A.C NoEntranceCavity(t1,t2,hc,ho) ⇒
Lt(t1,t2) ∧ WeaklyContinuous(t1,t2,hc) ∧

∀t Leq3(t1,t,t2) ⇒ Cavity(Slice(t,hc),Slice(t,ho)).

H.C.A.D NoEntranceCavity(t1,t2,hc,hb) ∧ Continuous(t1,t2,hs) ∧
¬P(Slice(t1,hs),Slice(t2,hc)) ∧ P(Slice(t2,hs),Slice(t2,hc)) ⇒

∃tm Lt(t1,tm) ∧ Lt(tm,t2) ∧ O(Slice(tm,hs),Slice(tm,hb)).
Time reversed version of C.2. hc is a no-entrance cavity and hs goes from outside hb to inside
hc.

H.C.A.E Constant(t1,t2,hc) ∧ Constant(t1,t2,ho) ∧ Cavity(Slice(t1,hc), Slice(t1,ho)) ⇒
PersistentCavity(t1,t2,hc,ho).

8 Rigid Objects

Rigid objects maintain their shape over time; they are a particularly important and well-behaved
kind of object. For our purposes, the only property that we use is that any cavity of a rigid object
is a persistent cavity (axiom R.G.A.B)

Symbols:
RigidObject(o: Object). — o is a rigid solid object.
RigidHistory(h: History) — h is a rigid history.

Axioms:

R.G.A.A RigidObject(o) ⇒ RigidHistory(HPlace(o)).

R.G.A.B ∀h:History,r:Cavity,t1,t2:Time RigidHistory(h) ∧ Cavity(r,Slice(t1,h)) ∧ Lt(t1,t2) ⇒
∃hc:History RigidHistory(hc) ∧ PersistentCavity(t1,t2,hc,h) ∧ r = Slice(t1,hc).

Cavities inside rigid histories are persistent.
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9 Actions

9.1 Simple Actions

We here define a collection of specific actions in our domain, for which it is possible to state much
stronger physical axioms (causal axioms, frame axioms, and preconditions) in qualitative terms than
for unconstrained manipulation. We illustrate with one example: If a container is carried upright,
then the contents remain inside.

CarrySimple(o:Object; r:Region).
CarryClosed(o:Object; s:ObjectSet; r:Region).
CarryUpright(o:Object; r:Region).
CarryBoxWithLid(ob,ol:Object: r:Region).
PutLidOnBox(ob,ol:Object: r:Region).
TakeLidOffBox(ob,ol:Object: r:Region).
CloseBag(o:Object; r,rc:Region).
OpenBag(o:Object; r,rc:Region).

Definitions:

A.S.D.A Occurs(ta,tb,CarrySimple(o,r)) ⇔
Occurs(ta,tb,MoveTo(o,r)) ∧ UContents(ta,o) = Null ∧ CContents(ta,o) = Null.
Carry object o to region r, bringing nothing along with it.

A.S.D.B Occurs(ta,tb,CarryClosed(o,s,r)) ⇔
Occurs(ta,tb,MoveTo(o,r)) ∧ CContents(ta,o) 6= Null ∧

∀rc ClosedContainer(t,Singleton(o),rc) ⇒
∃hc:History Slice(ta,hc) = rc ∧ PersistentCavity(ta,tb,hc,HPlace(ol)).

Carry closed container o to region r, maintaining all internal cavities. The object set s is the
set of objects inside.

A.S.D.C Occurs(ta, tb, CarryUpright(o, s, r))⇔
Occurs(ta, tb, MoveTo(o, r)) ∧
∃rc,hc UprightContainer(ta, o, rc) ∧ s = UContents(ta, rc) ∧

Continuous(ta, tb, hc) ∧
∀tm Leq3(ta, tm, tb)⇒

UprightContainer(tm, o, Slice(tm, hc)) ∧
Fits(s, Slice(tm, hc)).

Carry open container o to region r, keeping it upright, and keeping the cavity large enough to
contain object set s, which is initially inside.

A.S.D.D Occurs(ta,tb,CarryBoxWithLid(ob,ol,r)) ⇔
Occurs(ta,tb,MoveTo(ob,r)) ∧
∀tm Leq3(ta,tm,tb) ⇒ m∃rc BoxWithLid(tm,ob,ol,rc).
Carry box ob to region r, maintaining ol as a lid.

A.S.D.E Occurs(ta,tb,PutLidOnBox(ob,ol,r)) ⇔
Occurs(ta,tb,MoveTo(ol,r)) ∧ ∃rc BoxWithLid(tb,ob,ol,rc).
Put lid ol on box ob.

A.S.D.F Occurs(ta,tb,TakeLidOffBox(ob,ol,r)) ⇔
Occurs(ta,tb,MoveTo(ol,r)) ∧
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[∃rc BoxWithLid(ta,ob,ol,rc)] ∧ [¬∃rc BoxWithLid(tb,ob,ol,rc)].
Take lid ol off box ob.

A.S.D.G Occurs(ta,tb,CloseBag(o,r,rc)) ⇔
Occurs(ta,tb,MoveTo(o,r)) ∧ Outside(Place(tb,Agent),Place(tb,o)) ∧

∃hc:History;tm:Time Slice(ta,hc)=rc ∧ WeaklyContinuous(ta,tb,hc) ∧
Leq3(ta,tm,tb) ∧
[∀t Leq(ta,t) ∧ Lt(t,tm) ⇒

UprightContainer(t,o,Slice(t,hc))] ∧
[∀t Lt(tm,t) ∧ Leq(t,tb) ⇒

ClosedContainer(t,Singleton(o),Slice(t,hc))].
Change object o from a upright open container to a closed container, keeping it upright until
it is closed.

A.S.D.H Occurs(ta,tb,OpenBag(o,r,rc)) ⇔
Occurs(ta,tb,MoveTo(o,r)) ∧ Outside(Place(tb,Agent),Place(tb,o)) ∧

∃hc:History;tm:Time Slice(ta,hc)=rc ∧ WeaklyContinuous(ta,tb,hc) ∧
Leq3(ta,tm,tb) ∧
[∀t Leq(ta,t) ∧ Lt(t,tm) ⇒

ClosedContainer(t,Singleton(o),Slice(t,hc))] ∧
[∀t Lt(tm,t) ∧ Leq(t,tb) ⇒

UprightContainer(t,o,Slice(t,hc))].
Change object o from a closed container to a open upright container, keeping it upright after
it has been opened.

Axiom:

A.S.A.A Occurs(ta,tb,CarryUpright(o,s,r)) ∧ Leq3(ta,t,tb) ⇒
UContents(tm,o) = UContents(ta,o).

9.2 Compound Actions

We also define specific compound actions; again, it may be possible to give stronger qualitative
characterizations of these. We give a single example of loading an object ox into an open upright
container ob.

Symbols:
Reachable(t:Time; r:Region) Sequence(e1,e2:Event) → Event.
PutInUC(ox,ob:Object) → Event.
LoadUprightContainer(ox,ob:Object) → Event

Definitions:

A.C.D.A ∀ta,tb:Time;e1,e2:Event Occurs(ta,tb,Sequence(e1,e2)) ⇔
∃tx Occurs(ta,tx,e1) ∧ Occurs(tx,tb,e2).

General sequence operator; Execute e1 then e2.

A.C.D.C ∀ta,tb:Time;ox,ob:Object Occurs(ta,tb,PutInUC(ox,ob)) ⇔
∃rc,rx UprightContainer(ta,ob,rc) ∧ P(rx,rc) ∧

Occurs(ta,tb,SafeMoveTo(ox,rx)) ∧ OV(Place(tb,Agent),rc).

A.C.D.B Occurs(ta,tb,LoadUprightContainer(ox,ob)) ⇔
∃r1,r3 OutsideContainer(r3,Place(ta,ob)) ∧
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Occurs(ta,tb,Sequence(TravelTo(r1),Sequence(PutInUC(ox,ob), TravelTo(r3))).

Loading object ox into open upright container ob is the sequence of travelling to a place
where ox can be grasped, moving ox inside ob and then withdrawing the manipulator out of
ob. The container ob remains motionless throughout.

A.C.D.D Reachable(ta,r) ⇔
∃rx IntConn(RUnion(rx,r)) ∧ Feasible(t,TravelTo(rx)).
Region r is reachable at time t if it is feasible for the agent to travel to a position rx such
that r ∪ rx is interior connected.

Axioms:

A.C.A.A UprightContainer(ta,ob,rc) ∧ CanGrasp(ta,ox) ∧
SmallSet(Union(UContents(ta,ob),Singleton(ox)), rc) ∧ Reachable(ta,rc) ⇒

Feasible(ta,PutInUC(ox,ob)).
Feasibility axiom: If ob is an upright container with cavity rc, the agent can grasp ox, ox
together with the current contents of rc is small as compared to rc, and the agent can reach
inside rc, then the agent can load ox into rc.

10 Inferences

We come at last to our example inferences. Complete proofs of Scenarios 1-4 in a natural-deduction
format may be found in the external documents

10.1 Scenario 1

Qualitative prediction. If Ob1 is a rigid object and it is a closed container container object Ox1, then
Ox1 remains inside Ob1.

Symbols:
Ox1 → Object — Some stuff.
Ob1 → Object — A box.
Ta1,Tb1 → Time — Times.

Given:

C.1.A.A RigidObject(Ob1).

C.1.A.B CContained(Ta1,Ox1,Singleton(Ob1)).

C.1.A.C Lt(Ta1,Tb1).

C.1.A.D Ob1 6= Ox1.

Infer: CContained(Tb1,Ox1,Singleton(Ob1)).

Depends On: S.B.D.B, O.C.D.A, O.R.D.A, O.T.A.B, O.T.A.F, H.I.A.A, H.I.A.B, H.C.D.A, H.C.A.A,
H.C.A.B, R.G.A.A, R.G.A.B, C.1.A.A, C.1.A.B, C.1.A.C, C.1.A.D,
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10.2 Scenario 2

Infer object characteristics from behavior. If the stuff Os2 is contained in Ob2 at one time and
outside at another, then Ob is not a rigid object. Note: the order of Ta2,Tb2 is not specified.

Symbols:
Os2 → Object — Some stuff.
Ob2 → Object — A container.
Ta2,Tb2 → Time — Times.

C.2.A.A CContained(Ta2,Os2,Singleton(Ob2)).

C.2.A.B Outside(Place(Tb2,Os2),Place(Tb2,Ob2)).

C.2.A.C Ordered(Ta2,Tb2).

Infer: ¬RigidObject(Ob2).

Depends On: T.I.D.B, S.B.D.A, S.B.D.B, S.B.A.C, S.C.D.C, S.C.D.D, O.C.D.A, O.R.D.A, O.T.A.B,
O.T.A.F, H.I.A.A, H.I.A.B, H.C.D.A, H.C.A.A, H.C.A.B, H.C.A.C, H.C.A.D, R.G.A.A, R.G.A.B,
C.2.A.A, C.2.A.B, C.2.A.C.

10.3 Scenario 3

Qualitative prediction. If Ob3b is a rigid object and a closed container containing Ob3a, and Ob3a is
a closed container (not necessarily rigid) containing object Os3, then Os3 will remain inside Ob3b.

Symbols:
Os3 → Object — Some stuff.
Ob3a → Object — Inner container.
Ob3b → Object — Outer box.
Ta3,Tb3 → Time — Times.

C.3.A.A RigidObject(Ob3b).

C.3.A.B CContained(Ta3,Os3,Singleton(Ob3a)).

C.3.A.C CContained(Ta3,Ob3a,Singleton(Ob3b)).

Infer: CContained(Tb3,Os3a,Singleton(Ob3a)).

Depends On: S.B.D.B, O.C.D.A, O.R.D.A, O.T.A.B, O.T.A.F, H.I.A.A, H.I.A.B, H.C.D.A, H.C.A.A,
H.C.A.B, H.C.A.C, H.C.A.D, R.G.A.A, R.G.A.B, C.3.A.A, C.3.A.B, C.3.A.C

10.4 Scenario 4

If the situation depicted in figure 6 (from Smith, Dechter, Tenenbaum, and Vul, 2013) is modified so
that the red region is flush against the green region, then the ball must reach the red region before
it can reach the green region.
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Figure 6: Reasoning about a bouncing ball (from (Smith, Dechter, Tenenbaum, and Vul, 2013))

Symbols:
Os4 → Object. Movable object.
Ob4 → Object. Fixed object.
RRed, RGreen, RInside → Region. Two target regions.
Ta4, Tb4 → Time.

C.4.A.A ∀t Place(t,Ob4) = Place(Ta,Ob4). Ob4 is fixed.

C.4.A.B CombinedContainer(Place(Ta,Ob4), RRed, RInside)

C.4.A.C P(Place(Ta4,Os4),RInside).

C.4.A.D Outside(RGreen, RUnion(Place(Ta,Ob4),RRed)).

C.4.A.E P(Place(Tb4,Os4),RGreen).

C.4.A.F Lt(Ta4,Tb4).

Infer: ∃tm Lt(Ta4,tm) ∧ Lt(tm,Tb4) ∧ O(Place(tm,Os4),TRed).

Depends On: S.B.D.A, S.B.D.B, S.B.A.A, S.B.A.H, S.C.D.E, O.T.A.B, H.I.D.B, H.I.A.A, H.I.A.B,
H.I.A.D, H.C.D.A, H.C.A.B, H.C.A.E, C.4.A.A, C.4.A.B, C.4.A.C, C.4.A.D, C.4.A.E, C.4.A.F.

10.5 Scenario 5

If Ox5 is outside upright container Ob5, and the current contents of Ob5 together with Ox5 are
much smaller than the interior of Ob5, and the agent can reach and move Ox5 and can reach into
Ob5, then

a. The agent can load Ox5 into Ob5; and

b. If the agent does load Ox5 into Ob5, then Ox5 will be contained in Ob5.

C.5.A.A UprightContainer(Ta5,Ob5,Rc5).
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C.5.A.B DC(Place(Ta5,Ox5),Rc5).

C.5.A.C SmallSet(Union(Contents(Ta5,Rc5),Singleton(Ox5),Rc5)).

C.5.A.D AllStable(Ta5).

C.5.A.E EmptyHanded(Ta5).

C.5.A.F Graspable(Ta5,Ox5).

C.5.A.G Reachable(Ta5,Rc5).

C.5.A.H Ox5 6= Agent 6= Ob5.

C.5.A.I OutsideContainer(Place(Ta5,Agent),Place(Ta5,Ob5)).

C.5.A.J SafelyMovable(Ta5,Ox5).

C.5.A.K SmallObject(Ox5).

Infer: Feasible(Ta5,Tb5,LoadUprightContainer(Ox5,Ob5).

DependsOn:
T.I.D.A, T.I.D.D, T.I.A.B, T.E.A.A,
S.B.D.B, S.B.D.C, S.B.D.D, S.B.D.F, S.B.A.B, S.B.A.H, S.B.A.I, S.C.D.A, S.C.D.F, S.C.D.H, S.C.A.C,
O.S.D.C, O.S.D.F, O.R.D.A, O.R.D.C, O.R.D.D, O.C.D.C, O.C.D.E,
M.G.D.A, M.G.D.B, M.G.D.C, M.G.D.D, M.G.A,B, M.O.D.D, M.O.D.E, M.O.D.F, M.O.D.G, M.O.D.J,
M.O.A.A, M.R.A.A, M.R.D.A, M.R.A.C, M.F.D.A, M.F.D.B, M.F.D.D, M.F.A.D, M.F.A.E, M.F.A.G,
M.F.A.H, M.F.A.I, M.M.A.B,
A.C.D.A, A.C.D.B, A.C.D.C, A.C.D.D, A.C.A.A,
C.5.A.A–.K
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