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Appendix B: Proof of correctness of plan

This document is appendix B to the paper, “A First-Order Theory of Communication and Multi-
Agent Plans” by E. Davis and L. Morgenstern, to appear in Journal of Logic and Computation. In
this section, we prove the correctness of plan el1. Not surprisingly, the proof, though long, is neither
difficult nor deep; it consists mainly of forward projections with some case splitting, combined with a
good deal of definition hunting. The value of the proof is that it gives some evidence by example that
the axiomatic theory is sufficient to support the kinds of inference we want out of it. In practice, the
exercise of constructing the proof led to substantial improvements of various kinds in the axiomatic
theory.

One particular lemmas of general interest are encountered on the way; namely, lemma B.32
proves that an agent can always follow our protocol.

Note: Axioms T.4 – T.15 define durations and clock-times to be isomorphic to the integers. We
will therefore use standard results of integer arithmetic without further justification.

Temporal lemmas

(Note: lemmas B.1 — B.7 are trivial and unoriginal. However, it is easier both for the authors and
for the reader to re-prove them here than to hunt them down in the literature; and their triviality
means that no substantive credit is being withheld from those who have proved them before.)

Definition BD.1: Situation S1 is a successor of S0, denoted “succ(S1, S0)” if S1 follows immedi-
ately after S0.

succ(S1, S0) ≡ S0 < S1 ∧ ¬∃S S0 < S < S1.

Lemma B.1: succ(S1, S0) ⇔ time(S1)=time(S0)+1 ∧ S1 > S0.

∗The research reported in this paper was supported in part by NSF grant IIS-0097537.
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Proof: Right to left: Suppose that time(S1)=time(S0)+1 and S1 > S0. By T.16, if S0 < SM < S1
then time(S0) < time(SM) < time(S1), but that is impossible. Since there can be no such SM it
follows from BD.1 that succ(S1, S0).

Left to right: Suppose that succ(S1, S0). By T.16, time(S1) > time(S0); since these are
integers, time(S1) ≥ time(S0)+1. By T.18, there exists SM such that ordered(SM, S1) and
time(SM)=time(S0)+1. By TD.2, T.2, T.3, T.16, S0 < SM . By T.16, SM ≤ S1. By defini-
tion BD.1, it cannot be the case that S0 < SM < S1. Hence, SM = S1.

Lemma B.2: ∀S0,SZ S0 < SZ ⇒ ∃S succ(S, S0) ∧ S ≤ SZ.

Proof: Using T.17 and T.18, let S1 be such that time(S1) = time(S0)+1 and ordered(S1, SZ). By
T.3, ordered(S1, S0). By T.16, TD.2, S0 < S1. By B.1, succ(S1, S0). By BD.1, S1 ≤ SZ,

Lemma B.3: [ordered(SA, SB) ∧ S0 < SB] ⇒ ordered(S0, SA).

Proof: By TD.2, either SA < SB, SA = SB or SA > SB. If SA < SB, the result follows from
T.3; if SA = SB, the result is immediate; if SA > SB, the result follows from T.2.

Lemma B.4: [time(S0) < T < time(S1) ∧ S0 < S1] ⇒
∃1

ST time(ST )=T ∧ S0 < ST < S1.

Proof: By T.18, there exists ST such that ordered(ST, S1) and time(ST )=T . By B.3 ordered(ST, S0).
By T.16, S0 < ST < S1. The uniqueness of ST follows from T.3, T.16.

Lemma B.5: (Induction from situations to intervals: Schema) Let φ(S) be a formula with an open
situation variable S. Assume that the variable SF does not appear free in φ. Then the closure of
the following formula holds:

[φ(S0) ∧ ∀Sφ(S) ⇒ ∃S1 succ(S1, S) ∧ φ(S1)] ⇒
∃I S0=start(I) ∧ ∀S elt(S, I) ⇒ φ(S).

Proof: Assume that the left hand of the implication holds for some s0. Let Γ(S) be the formula,
open in S, ∀S1 s0 ≤ S1 ≤ S ⇒ φ(S). Then by assumption Γ(s0) and ∀S Γ(S)⇒∃S1 S1 > S ∧Γ(S1).
From axiom I.5, it follows that there exists a u-interval i0 starting in s0 in which Γ holds infinitely
often; i.e.

s0=start(i0) ∧
∀S elt(S,i0) ⇒ ∃S2 S < S2 ∧ Γ(S2)∧ elt(S2,i0).

Now, lest sa be any situation in i0. We have shown that ∃S2 sa < S2 ∧ Γ(S2); but, by definition of
Γ, that means that φ(sa).

Lemma B.6: (Existence of a “first” situation after S0 satisfying φ.) (Schema) Let φ(S) be a
formula with an open situation variable S. Assume that the variable SF does not appear free in φ.
Then the closure of the following formula holds:

φ(S1) ∧ S0 < S1 ⇒

∃SF φ(SF ) ∧ S0 ≤ SF ∧ ∀S S0 ≤ S < SF⇒¬φ(S).

Proof: Assume that S0 < S1 and φ(S1). For any duration D, let Γ(D) be the formula,

∃SD time(SD) = time(S0)+D ∧ S0 ≤ SD ≤ S1 ∧ φ(SD)

By assumption Γ(D1) holds for D1=time(S1)−time(S). Hence there is some smallest positive value
DF such that Γ(DF ). By construction of Γ, there exists an SF such that time(SF )=DF , S0 ≤ SF
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and φ(SF ). Let S be any situation such that S0 ≤ S < SF , and let D=time(S)−time(S0). Since
D < DF , we must have ¬Γ(D). Since S0 ≤ S < S1, we must have ¬φ(SD).

Lemma B.7: T1 ≥time(start(I)) ⇒ ∃S1 elt(S1, I) ∧ T1=time(S1).

Proof: Let i0 be an interval, let s0=start(i0), and let t0=time(s0). Let Φ(D) be the formula
“∃S time(S)=t0+D ∧ elt(S,i0)”. Clearly, since elt(s0,i0), it follows that Φ(0). Suppose, induc-
tively, that D1 ≥ 0 and Φ(D1). Then there exists a situation SX such that time(SX)=t0+D1
and elt(SX ,i0). Let S1 be any successor to SX . By I.4, there exists a situation S2 such that
¬(S2 < S1) and elt(S2,i0). By T.18, there exists a situation SM such that time(SM)=t0+D+1
and ordered(SM, S2). Using T.16, it follows that in fact SX < SM ≤ S2, so by I.2, elt(SM ,i0).
Thus Φ(D1 + 1). Using induction on durations (T.15), it follows that Φ(D) for all D ≥ 0, which
gives the desired result. Uniqueness follows from I.1 and T.16.

Lemmas on actions and knowledge

Lemma B.8:

[action(E1, A) ∧ action(E2, A) ∧ leads toward(E1, S0, S1) ∧ leads toward(E2, S0, S2) ∧
ordered(S1, S2)] ⇒
E1 = E2.

Proof: Immediate from A.1, EVD.1, AD.2, when time(S0) > 0t; from A.6, AD.3 when time(S0)=0t.

Lemma B.9: action(E, A) ∧ occurs(E, S1, S2) ⇒ choice(A, S2).

Proof: From A.2, AD.3.

Lemma B.10: S0 < S1 < S2 ∧ S1 < SX ∧ occurs(E, S0, S2) ∧ action(E, A) ⇒

∃SY ordered(SX, SY ) ∧ occurs(E, S0, SY ).
(If S1 is in the middle of the execution of E (between S0 and S2) then this execution is completed
along every time line that contains S1.)

Proof: By EVD.1 leads towards(E, S0, S1). By axiom A.1, ∃1

E1
action(E1, A) ∧ leads toward(E1, S0, SX).

By EVD.1, there exists SY such that occurs(E1, S0, SY ) and ordered(SY, SX). By lemma B.3,
ordered(SY, S1). By EVD.1, leads towards(E1, S0, S1). But by A.1, the action of A that leads from
S0 toward S1 is unique; hence E1 = E.

Lemma B.11:

∀A,S0,S2 S0 < S2 ⇒

∃SX,E,SY SX ≤ S0 < SY ∧ action(E, A) ∧ occurs(E, SX, SY ) ∧ ordered(SY, S2).
(Any situation S0 occurs either at the beginning or in the middle of an action E that starts in SX

before or at S0, and that continues along every time line (toward S2) containing S0.)

Proof: If choice(A, S0) then choose SX = S0. By axiom A.1 there exists an action E of A such
that leads toward(E, S0, S2); that is, by EVD.1, there exists SY such that ordered(SY, S2) and
occurs(E1, S0, SY ).

Otherwise, if not choice(A, S0), then by AD.3 and AD.1 there exists SX, SZ, E such that
action(E, A), SX < S0 < SZ and occurs(E, SX, SZ). The result then follows from lemma B.10.

Lemma B.12:

∀A,S0,S2 S0 < S2 ⇒

∃SY choice(A, SY ) ∧ S0 < SY ∧ ordered(SY, S2) ∧ time(SY ) ≤ time(S0) + max action time.
(On any time line, choice points for A occurs with a maximum gap of max action time.)

Proof: By lemma B.11, there exist E, SX, SY such that action(E, A), occurs(E, SX, SY ), SX ≤

S0 < SY and ordered(SY, S2). By M.1, time(SY ) ≤ time(SX)+max action time ≤ time(S0) +
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max action time.

Lemma B.13:

elt(S, I) ⇒

∃S1 S < S1 ∧ elt(S1, I) ∧ choice(A, S1) ∧ time(S1) ≤ time(S) + max action time.

Proof: By lemma B.7, there exists S2 in I such that time(S2) = time(S) + max action time. The
result then follows from B.12.

Lemma B.14: k acc(A, S0, S0A) ⇒ time(S0) = time(S0A).

Proof by contradiction. Suppose this is false. Since k acc is symmetric by axiom K.3, there exists
A, S0, S0A for which k acc(A, S0, S0A) and time(S0) < time(S0A). Let t1 be the earliest time for
which there exists a, s1, s1a such that k acc(a,s1,s1a) and t1=time(s1) < time(s1a). Using T.18,
choose an sa such that time(sa)=t1, sa < s1a. Using K.3, K.4 there exists a situation s such that
k acc(a,sa,s), s < s1. By T.16, time(s) < time(s1). But then, by K.3, we have k acc(a,s,sa) and
time(s) < time(sa) = t1, contradicting the assumption that t0 was the earliest time when this could
happen.

Lemma B.15: [k acc(A, SXA, SXB) ∧ occurs(E, SXA, SY A) ∧ action(E, A)] ⇒
∃SY B occurs(E, SXB, SY B).

Proof: By K.5, there exists S1B, S2B such that k acc(A, SXA, S1B), S1B ≤ SXB, and occurs(E, S1B, S2B).
(Bind S1A in K.5 to SXA here; S2A to SY A; SA to SXA and S2B to SXB.) By lemma B.14,
time(SXA) = time(SXB) = time(S1B). By TD.3, T.10, T.16, SXB = S1B.

Lemma B.16: choice(A, S1) ∧ k acc(A, S1, S1A) ⇒ choice(A, S1A).
(You know when you’re at a choice point.)

Proof: By AD.1 and AD.2, there exist E, S2 such that action(E, A) and occurs(E, S1, S2). By
lemma B.15 there exists S2A such that occurs(E, S1A, S2A). By AD.1, AD.2 choice(A, S1A).

Lemma B.17: [∀SA k acc(A, S, SA) ⇒ choice(A, SA)] ∨ [∀SA k acc(A, S, SA) ⇒ ¬choice(A, SA)].
(You know whether you’re at a choice point.)

Proof: Immediate from K.2 and lemma B.16.

Lemma B.18:

[action(E, A) ∧ k acc(A, S0, S0A) ∧ feasible(E, S0)] ⇒
feasible(E, S0A).

Proof: By EVD.2 there exists S1 such that occurs(E, S0, S1). By lemma B.15, there exists S1A

such that occurs(E, S0A, S1A). By EVD.2, feasible(E, S0A).

Lemma B.19:

[k acc(A, S, SA) ∧ action(E, A)] ⇒ [engaged(E, A, S) ⇔ engaged(E, A, SA)].
(You know whether you’re engaged in action E.)

Proof: From axioms AD.1 and K.5.

Definition BD.2: know whether(A, Q, S) ≡

[∀SA k acc(A, S, SA) ⇒ holds(SA, Q)] ∨ [∀SA k acc(A, S, SA) ⇒ ¬holds(SA, Q)]

(A knows whether Q holds in S means that either A knows in S that Q holds in S or A knows
in S that Q does not hold in S.)

Definition BD.3:

k acc int(A, S1, S2, S1A, S2A) ≡
k acc(A, S1, S1A) ∧ k acc(A, S2, S2A) ∧ S1 < S2 ∧ S1A < S2A.
(Interval [S1A, S2A] is knowledge accessible from [S1, S2].)
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Lemma B.20:

[∀S know whether(AC, Q, S)] ⇒
[∀S0A,S1A [k acc int(AC, S0, S1, S0A, S1A) ⇒ opportunity(S1A, AC, AR, Q)]] ∨
[∀S0A,S1A [k acc int(AC, S0, S1, S0A, S1A) ⇒ ¬opportunity(S1A, AC, AR, Q)]]
(If AC always knows whether Q is true, then he always know whether S1 is an opportunity to act
on Q.)

Proof: From MD.2, lemma B.17, and lemma B.14.

Lemma B.21:

[∀S know whether(AC, Q, S)] ⇒
[∀S0A,S1A [k acc int(AC, S0, S1, S0A, S1A) ⇒ first opportunity(S1A, AC, AR, S0A, Q)]] ∨
[∀S0A,S1A [k acc int(AC, S0, S1, S0A, S1A) ⇒ ¬first opportunity(S1A, AC, AR, S0A, Q)]]
(If AC always knows whether Q is true, then he always know whether S1 is the first opportunity to
act on Q.)

Proof: From MD.3, lemma B.20, and K.4.

Lemmas about plans

Lemma B.22: begin plan(P, AC, AR, S0, S1) ∧ S0 ≤ SM < S1 ⇒ begin plan(P, AC, AR, S0, SM).

Proof: From QD.6

Lemma B.23:

attempt toward(P, AC, AR, S0, S1) ∧ S0 ≤ SM < S1 ⇒ attempt toward(P, AC, AR, S0, SM).

Proof: Assume that attempt toward(p,ac,ar,s0,s1) and that s0≤sm<s1. By QD.8, either
begin plan(p,ac,ar,s0,s1) or for some s2 between s0 and s1, begin plan(p,ac,ar,s0,s2) and
terminates plan(p,ac,ar,s0,s2). There are three cases to consider:

Case 1: begin plan(p,ac,ar,s0,s1). By lemma B.22, begin plan(p,ac,ar,s0,sm). By QD.8,
attempt toward(p,ac,ar,s0,sm).

Case 2: begin plan(p,ac,ar,s0,s2), terminates plan(p,ac,ar,s0,s2), and sm≥s2. Then, by QD.8,
attempt toward(p,ac,ar,s0,sm).

Case 3: begin plan(p,ac,ar,s0,s2), terminates plan(p,ac,ar,s0,s2), and sm<s2. Then, by lemma B.22,
begin plan(p,ac,ar,s0,sm), so by QD.8, attempt toward(p,ac,ar,s0,sm).

Lemma B.24:

[begin plan(P, AC, AR, S0, S1) ∧ choice(AC, S1) ∧ ¬terminates(P, AC, AR, S0, S1)∧
know next step(E, P, AC, S0, S1) ∧ leads towards(E, S1, S2) ∧ succ(S2, S1)] ⇒
begin plan(P, AC, AR, S0, S2)

Proof: This together with lemma B.25 are, so to speak, the recursive restatement of definition QD.6.
That is, these two lemmas define begin plan(P . . . S2) recursively in terms of begin plan(P . . . S1)
where S1 is the predecessor of S2.

Assume that the left-hand side of the above implication holds. By QD.6, since begin plan(P, AC, AR, S0, S1)
we have S0 ≤ S1. Since succ(S2, S1) it follows that S0 < S2.

For any intermediate situation SM and for a final situation SZ either equal to S1 or S2, let us
abbreviate the condition

¬terminates(P, AC, AR, S0, SM) ∧
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[choice(AC, SM) ⇒

∃E know next step(E, P, AC, S0, SM) ∧ leads towards(E, SM, SZ)]

on the right-hand side of QD.6 as ΦP,AC,AR,S0(SM, SZ). By QD.6, we know that Φ(SM, S1)
holds for all SM such that S0 ≤ SM < S1. Also by QD.6, if we can establish that Φ(SM, S2)
holds for all SM such that S0 ≤ SM < S2, then we have established the desired result be-
gin plan(P, AC, AR, S0, S2). There are three cases:

Case 1: S0 ≤ SM < S1 and choice(AC, SM). Since Φ(SM, S1), there exists E such that
know next step(E, P, AC, S1, SM) and leads toward(E, SM, S1). By assumption, we have
choice(AC, S1). Therefore the condition leads toward(E, SM, S1) implies that occurs(E, SM, SN)
for some SN ≤ S1 < S2, so we have leads toward(E, SM, S2). Thus we have established all
parts of Φ(SM, S2).

Case 2: S0 ≤ SM < S1 and ¬choice(AC, SM). Thus, in this case Φ(SM, S2) requires only that
¬terminates(P, AC, AR, S0, SM), which we know from Φ(SM, S1).

Case 3: SM = S1. Φ(S1, S2) is explicitly stated on the left side of the implication in the statement of
our lemma.

Lemma B.25:

[begin plan(P, AC, AR, S0, S1) ∧ ¬choice(AC, S1) ∧

¬know succeeds(P, AC, S0, S1) ∧ succ(S2, S1)] ⇒
begin plan(P, AC, AR, S0, S2).

Proof: By QD.3, QD.4, QD.5, P can only terminate in S1 if either choice(AC, S1) or
know succeeds(P, AC, S0, S1). The result then follows from QD.6.

Lemma B.26:

[begin plan(P, AC, AR, S0, S1) ∧ S0 ≤ SM < S1 ∧ leads towards(E, SM, S1) ∧ action(E, AC)] ⇒
know next step(E, P, AC, S0, SM).

Proof: By EVD.1, AD.2, and AD.3, choice(AC, SM). By QD.6, there is an action E1 in SM which
A knows to be a next step of P and which leads toward S1. By P.1, E1 is an action of AC. By A.1,
E1 = E. Hence, AC knows in SM that E is a next step of P .

Lemma B.26.A: ∀S1,S2 S1 < S2 ∧ soc poss(S2) ⇒ soc poss(S1).

Proof: From QD.9 and lemma B.23.

Lemma B.27:

[D1 ≥ 0 ∧ D2 ≥ 0 ∧ T ≤ T2 ≤ T + D1 ∧ reserved block(T, AC, AR, D1 + D2)] ⇒
reserved block(T2, AC, AR, D2)

Proof: From QD.1 with arithmetic.

Lemma B.28: [working on(P, AC, AR, S0, S1) ∧ S0 ≤ SB ≤ S1] ⇒ working on(P, AC, AR, S0, SB).

Proof: From Q.5, QD.6, and lemma B.22.

Lemma B.29:

[working on(PX, AC, AR, SX, S) ∧ working on(PY, AC, AR, SY, S)] ⇒
PY = PX ∧ SY = SX .
Agent AC works on at most one plan of agent AR’s at a time.

Proof: From Q.5, we have SX ≤ S, accepts req(PX, AC, AR, SX), SY ≤ S, accepts req(PY, AC, AR, SY ).
By T.3, either SX ≤ SY or SY ≤ SX . Assume without loss of generality that SX ≤ SY . By
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lemma B.28, working on(PX, AC, AR, SX, SY ). By Q.6 since accepts req(PY, AC, AR, SY ), it fol-
lows that ∀PQ,SQ working on(PQ, AC, AR, SQ, SY ) ⇒ PQ = PY , SQ = SX . Hence PX = PY ,
SX = SY .

Lemma B.30

[working on(P, AC, AR, S0, S1) ∧ action(E, AC) ∧ S0 ≤ SM ∧ leads toward(E, SM, S1)] ⇒
know next step(E, P, AC, S0, SM).

Proof: Immediate from Q.5 and lemma B.26.

Lemma B.31

[¬∃S0working on(P, AC, AR, S0, S1)] ∧ working on(P, AC, AR, S2, S3) ∧ S1 < S3 ⇒

S1 < S2 ∧ ∃SX occurs(request(AC, AR, P ),SX, S2).
(If AC goes from not working on P in S1 to working on P from S2 to S3, then a request to do P

must have completed at S2.)

Proof: Since working on(P, AC, AR, S2, S3), by Q.5 accepts req(P, AC, AR, S2). By lemma B.28,
for all SB between S2 and S3, working on(P, AC, AR, S2, SB). Hence S1 is not between S2 and
S3, so S1 < S2. By Q.6 there exists an SX such that occurs(request(P, AC, AR),SX, S2).

Definition BD.4.:

good action(E, AC, S1) ≡

choice(AC, S1) ∧ ∀P,AR,S0 [working on(P, AC, AR, S0, S1) ⇒ know next step(E, P, AC, AR, S0, S1)].
Action E is a good action for AC in S1 if it is a continuation of every plan P that AC is currently
working on.

Lemma B.32: ∀AC,S choice(AC, S) ⇒ ∃E good action(E, AC, S).

“There is one thing, Emma, that a man can always do if he chooses, and that is, his duty.”
(Jane Austen)

Proof: A hierarchical case analysis

Case 1. Suppose there exist AR, P, S0 such that AC reserves time(S) for AR and working on(P, AC, AR, S0, S).

By axiom Q.1 and lemma B.29 there is at most one such AR, P , and S0.

Case 1.1 : Suppose there is an action E such that exec cont(E, P, AC, AR, S0, S).

By QD.2, know next step(E, P, AC, AR, S0, S). Let PX 6= P, ARX, S0X be any values
such that working on(PX, AC, ARX, S0X, S). By lemma B.29, ARX 6= AR, so by Q.1,
¬reserved(time(S), AC, ARX). By QD.2 ¬governs(ARX, E) and by PD.1 feasible(E, S).

Since working on(PX, AC, ARX, S0X, S), by Q.5 ¬terminates(PX, AC, ARX, S0X, S).
By QD.5 ¬abandon2(P, AC, ARX, S0X, S). By QD.4, for any action E1, if action(E1, AC)
and ¬governs(ARX, E1) then know next step(E1, P, AC, S0X, S). In particular
know next step(E, P, AC, S0X, S).

Since the implication “working on(PX, AC, ARX, S0X, S)⇒ know next step(E, PX, AC, S0X, S)”
holds for all PX, ARX, S0X , we have good action(E, AC, S) (definition BD.4).

Case 1.2 Suppose that there is no action E such that exec cont(E, P, AC, AR, S0, S). By QD.3,
abandon1(P, AC, AR, S0, S). By QD.5, terminates(P, AC, AR, S0, S). But by Q.5 this
contradicts the assumption that working on(P, AC, AR, S0, S).

Case 2. Suppose that reserved(time(S),AC, AR) and choice(AC, S), but there is no plan P and situa-
tion S0 such that working on(P, AC, AR, S0, S). Let E=do(AC,wait), so E is not governed by
any agent (Q.4). Let PX, ARX, S0X be any values such that working on(PX, AC, ARX, S0X, S).
Then we can prove that know next step(E, PX, AC, S0X, S) using exactly the same argument
as in case 1.1.
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Case 3. Suppose that time(S) is not reserved for any agent AR. Let E=do(AC,wait), so E is not gov-
erned by any agent (Q.4). Let PX, ARX, S0X be any values such that working on(PX, AC, ARX, S0X, S).
Then, again, we can prove that know next step(E, PX, AC, ARX, S0X, S) using exactly the
same argument as in the second part of case 1.1.

Lemma B.33: soc poss(S1) ∧ S < S1 ∧ leads towards(E, S, S1) ∧ action(E, AC) ⇒

good action(E, AC, S).
(In a “socially possible” history, all actions are good.)

Proof: Assume that the left-hand side of the implication is satisfied, We need to prove that
good action(E, AC, S); that is, by definition BD.4,

choice(AC, S) ∧ ∀P,AR,S0 working on(P, AC, AR, S0, S) ⇒

know next step(E, P, AC, S0, S)

It is immediate from AD.2, EVD.2 that choice(AC, S) Assume that working on(P, AC, AR, S0, S)
Clearly S0 ≤ S < S1. By Q.5 we have accepts req(P, AC, AR, S0), begin plan(P, AC, AR, S0, S)
and ¬terminates(P, AC, AR, S0, S). By QD.8, attempt toward(P, AC, AR, S0, S). Since begin plan(P, AC, AR, S0, S),
by QD.6 ∀SM S0 ≤ SM < S ⇒ ¬terminates(P, AC, AR, S0, SM). Since leads towards(E, S, S1)
there exists S2 such that occurs(E, S, S2) and ordered(S2, S1). Let S4 be such that succ(S4, S) and
S4 ≤ S2. Clearly S4 ≤ S1. By lemma B.26.A, soc poss(S4). By QD.9 attempt toward(P, AR, AC, S0, S4).
But we have, for all SM such that S0 ≤ SM ≤ S, ¬terminates(P, AC, AR, S0, SM). Hence by QD.8,
begin plan(P, AC, AR, S0, S4). Since E is the unique action such that leads toward(E, S0, S4), it
follows from QD.6 that know next step(E, P, AC, S0, S).

Lemma B.34:

[∀S,AC,E [S < S1 ∧ action(E, AC) ∧ leads towards(E, S, S1)] ⇒ good action(E, AC, S)]] ⇒
soc poss(S1).
(If all actions before S1 are good, then S1 is socially possible.)

Proof of the contrapositive: Suppose that ¬soc poss(S1). By QD.9, there exist S0, P, AC, AR

such that S0 < S1, accepts req(P, AC, AR, S0) and ¬attempt toward(P, AC, AR, S0, S1). By QD.8
¬begin plan(P, AC, AR, S0, S1). By QD.6 begin plan(P, AC, AR, S0, S0). Let S3 be the last situa-
tion such that S0 ≤ S3 < S1 and begin plan(P, AC, AR, S0, S3). Since ¬attempt toward(P, AC, AR, S0, S1),
it follows from QD.8 that ¬terminates(P, AC, AR, S0, S3); and from QD.5 that ¬know succeeds(P, AC, S0, S3).
From lemma B.25 it follows that choice(AC, S3). From Q.5 we have working on(P, AC, AR, S0, S3).
Let event E be such that leads toward(E, S3, S1), and suppose that occurs(E, S3, S4), where ordered(S4, S1).
Let S5 be the earlier of S1 and S4; then S3 < S5 ≤ S1.

Since we defined S3 to be the last situation such that S0 ≤ S3 < S1 and begin plan(P, AC, AR, S0, S3),
it follows that ¬begin plan(P, AC, AR, S0, S5). By the contrapositive to lemma B.24, E must not
be a continuation of P in S3; hence, by definition BD.4, E is not a good action in S3. Thus, we have
established that if ¬soc poss(S1) then there exist E, S3, P, AC, such that S3 < S1, action(E, AC),
leads towards(E, S3, S1), and ¬good action(E, AC, S3), which is just the contrapositive of the state-
ment of the lemma.

Lemma B.35: soc poss(S1) ⇔

∀S,AC,E [S < S1 ∧ action(E, AC) ∧ leads towards(E, S, S1)] ⇒ good action(E, AC, S).
(S1 is socially possible if and only if all actions before S1 are good.)

Proof: From B.33 and B.34.

Lemma B.36:

[accepts req(P, AC, AR, S0) ∧ S1 > S0 ∧ soc poss(S1)] ⇒
[working on(P, AC, AR, S0, S1) ∨
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[∃SM S0 ≤ SM ≤ S1 ∧ begin plan(P, AC, AR, S0, SM) ∧ terminates(P, AC, AR, S0, SM)]].

Proof: Assume that the left-hand side of the implication holds. By QD.9,
attempt toward(P, AC, AR, S0, S1). By QD.8, either P begins over the interval [S0, S1] or it finishes
over some initial segment [S0, SM ]. The second possibility is the second disjunct of the right-hand
side of our lemma. If P does not finish over [S0, S1] initial segment and P begins over [S0, S1] then
by Q.5 AC is working on P in S1.

Lemma B.37: soc poss(S0) ⇒ ∃S1 succ(S1, S0) ∧ soc poss(S1).

Proof: Assume that soc poss(S0). If S0 is a choice point for agent A, then using lemma B.32, let E

be an action such that good action(E, A, S) and let S1 be a situation such that leads towards(E, S, S1)
and succ(S1, S). If S is not a choice point for any agent A, let S1 be any situation such that
succ(S1, S). By B.35, since soc poss(S0), all actions before S0 are good actions; by the above con-
structions, the action, if any, at S0 is a good action. Thus, all actions before S1 are good actions,
so by lemma B.35, soc poss(S1).

Lemma B.38 soc poss(S) ⇒ ∃I S=start(I) ∧ soc poss int(I).
(Any soc poss situation S can be extended to an unbounded soc poss interval I .)

Proof: From lemmas B.37 and B.5.

Validation of plan el2

Lemma B.39:

k acc(A, S1, S1A) ∧ T0 < time(S1) ⇒ holds(S1,loaded since(B, A, T0)) ⇔ holds(S1A,loaded since(B, A, T0)).

Proof: From XD.10, E.19, E.21, K.4, and lemma B.19.

Lemma B.40:

[∀S0A,SA k acc int(A, S0, S, S0A, SA) ⇒ Φ(A, SA, S0A)] ∨
[∀S0A.SA k acc int(A, S0, S, S0A, SA) ⇒ ¬Φ(A, SA, S0A)]
where Φ is any of “el2 q1f”, “el2 q1”, “el2 q2f”, “el2 q2”, and “el2 q3”.
(Agent A always knows whether any of the above conditions hold.)

Proof: From lemma B.21, B.14 together with E.20, E.21, and XD.6 through XD.11.

Lemma B.41:

[AZ 6= hero ∧ el2 q1(AZ, S2, S1)] ⇒
[know next step(E,el2(AZ),AZ,S2, S1) ⇔ E=do(AZ,call)].

Proof: By X.6, the only next step of el2(AZ) in S2 is do(AZ,call). By E.15, this action is possible.
By lemmas B.40 and B.18 and axiom E.19, AZ knows that this is the only next step and knows
that it is possible.

Lemma B.42:

[AZ 6= hero ∧ el2 q2(AZ, S2, S1)] ⇒
[know next step(E,el2(AZ),AZ,S2, S1) ⇔ E=do(AZ,load(b1))].

Proof: Analogous to lemma B.41.

Lemma B.43:

[holds(S1,has(AZ, B)) ∧ ¬holds(S2,has(AZ, B)) ∧ S1 < S2] ⇒
holds(S2, loaded since(B, AZ,time(S1)))

Proof: By E.17 there exist S3, S4 such that S3 < S2, S1 < S4, ordered(S2, S4) and occurs(do(AZ,load(B)),S3, S4).
By E.5 there exists SM < S4 such that throughout(SM, S4,on elevator(B)). Let SA be the earlier
of SM, S2; thus SA < S4 and SA ≤ S2. By E.9, holds(SA,elevator at(AZ)). Hence, by XD.10,
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holds(S2, loaded since(B, AZ,time(S1))

Lemma B.44:

[AZ 6= hero ∧ el2 q3(AZ, S2, S1)] ⇒
[know next step(E,el2(AZ),AZ,S2, S1) ⇔
instance(E,inform(AZ, robots, loaded since(b1,AZ,time(S1))),S2)]

Proof: Analogous to lemma B.41.

Lemma B.44.A:

el2 q3(AZ, S2, S1) ⇒
∃E instance(E,inform(AZ, robots, loaded since(b1,AZ,time(S1))),S2) ∧ feasible(E, S2).

Proof: Let QL be the fluent loaded since(b1,AZ,time(S1)). By axiom E.16, it is feasible for AZ to
communicate to robots. By lemma B.39, AZ knows in S2 that QL. By C.1, inform(AZ,robots,QL)
is feasible in S2. By C.4, know how(AZ,inform(AZ,robots,QL),S2). The result follows from MD.1
and KHD.1.

Lemma B.45:

[AZ 6= hero ∧ choice(AZ, S1) ∧
¬el2 q1(AZ, S2, S1) ∧ ¬el2 q2(AZ, S2, S1) ∧ ¬el2 q3(AZ, S2, S1)] ⇒
[next step(E,el2(AZ),S1, S2) ⇔ [action(E, AZ) ∧ E 6=do(AZ,unload(b1))]].

Proof: From X.6.

Lemma B.46:

[AZ 6= hero ∧ choice(AZ, S1) ∧
¬el2 q1(AZ, S2, S1) ∧ ¬el2 q2(AZ, S2, S1) ∧ ¬el2 q3(AZ, S2, S1)] ⇒
[know next step(E,el2(AZ),AZ,S1, S2) ⇔
[action(E, AZ) ∧ E 6=do(AZ,unload(b1)) ∧ feasible(E, S2)]

Proof: By lemma B.45, any action of AZ other than unload(b1) is a next step of el2(AZ). By
lemmas B.17 and B.40, AZ knows that the conditions on the left-hand side of the implication hold,
and (using lemma B.45) therefore knows that any action other than unload(b1) is next step of
el2(AZ).

Lemma B.47: ¬abandon2(el2(AZ),AZ,hero,S1, S2)

Proof: By QD.4, if reserved(time(S2),AZ,hero), then ¬abandon2(el2(AZ),AZ,hero,S1, S2). Sup-
pose that ¬reserved(time(S2),AZ,hero). By MD.2, MD.3, XD.7, XD.9, XD.11, none of the condi-
tions el2 q1(AZ, S1, S2), el2 q2(AZ, S1, S2), el2 q3(AZ, S1, S2) hold. Let S1A and S2A be knowl-
edge accessible from S1 and S2 respectively. By lemma B.40, none of the conditions el2 q1(AZ, S1A, S2A),
el2 q2(AZ, S1A, S2A), el2 q3(AZ, S1A, S2A) hold. By X.6, any action other than “unload(b1)” is
a next step of el2(AZ) in S2A. By E.22, X.9, this includes every action not governed by hero. The
result follows from QD.4, PD.1.

Lemma B.48:

terminates(el2(AZ),AZ,hero,S1, S2) ⇔ S2 > S1 ∧ time(S2) ≥ time(S1) + max el2b time.

Proof: By QD.5, el2(AZ) terminates in S2 iff it is known to succeed or it is abandoned. From
lemmas B.41, B.42, B.44, B.45, B.46, with definition QD.3, it follows that el2(AZ) is not abandoned
type 1 in S2. Lemma B.47 states that el2(AZ) is not abandoned type 2 in S2. From X.5 and lemma
B.14, el2(AZ) is known to succeed if time(S2) ≥ time(S1) + max el2b time.

Lemma B.49:

[AZ 6=hero ∧ working on(el2(AZ),AZ,hero,S0, S1)] ⇒
¬∃S2 S0 ≤ S2 < S1 ∧ leads toward(do(AZ,unload(b1)), S2, S1).
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Proof: By X.6 do(AZ,unload(b1)) is never a next step of el2(AZ). The result follows from lemma
B.30, PD.1, and K.1.

Lemma B.50:

[holds(S1, loaded since(b1,A2,time(S0))) ∧

[∀AZ AZ 6=hero ⇒ working on(el2(AZ),AZ,hero,S0, S1)]] ⇒
holds(S1,on elevator(b1)) ∨ holds(S1,has(hero,b1)).

Proof: By E.12, in S1, either b1 is on the elevator or some agent has b1. By XD.10 there exists a
situation SA between S0 and S1 such that in SA, b1 is on the elevator, the elevator is at A2, and A2
is not engaged in unloading b1. By E.18, an agent other than hero can come to have b1 between SA

and S1 only if an action “unload(b1)” occurs in an interval intersecting [SA, S1]. By lemma B.49,
no action “do(AZ,unload(b1)” begins at an interval between S0 and S1; and by construction of SA,
any action “do(AZ,unload(b1))” begun before S0 must be completed no later than SA. Hence, no
such action occurs in an interval intersecting [SA, S1].

Lemma B.51:

[AZ 6=hero ∧ accepts req(el2(AZ),AZ,hero,S1) ∧ S2 ≥ S1 ∧

soc poss(S2) ∧ time(S2) < time(S1) + max el2b time] ⇒
working on(el2(AZ),AZ,hero,S1, S2).

Proof: Let SM be any situation such that S1 ≤ SM ≤ S2. Then by T.16, time(SM) ≤ time(S2)
< time(S1) + max el2b time. By lemma B.48, ¬terminates(el2(AZ),AZ,hero,S1, SM).

By QD.9, attempt toward(el2(AZ),AZ,hero,S1, S2). By QD.8, since ¬terminates(el2(AZ),AZ,hero,S1, SM)
for any SM between S1 and S2, it follows that begin plan(el2(AZ),AZ,hero,S1, S2). By Q.5, work-
ing on(el2(AZ),AZ, AR, S1, S2).

Lemma B.52:

[AZ 6=hero ∧ accepts req(el2(AZ),AZ,hero,S1) ∧ S2 ≥ S1 ∧ soc poss(S2)] ⇒
[working on(el2(AZ),AZ,hero,S1, S2) ⇔ time(S2) < time(S1) + max el2b time].

Proof: The implication “working on(el2(AZ),AZ,hero,S1, S2)⇒ time(S2) < time(S1) + max el2b time”
follows directly from Q.5 and Lemma B.48. The full result thus follows from B.51.

Definition BD.5: leads towards1(E, S, I) ≡ ∃S2 occurs(E, S, S2) ∧ [S2 <start(I) ∨ elt(S2, I)].
(There is an occurrence of event E starting in S on the same time line as u-interval I .)

Lemma B.53:

[soc poss int(I) ∧ elt(S1, I) ∧ working on(P, AC, AR, S0, S1) ∧ choice(A, S1)] ⇒
∃E know next step(E, P, AC, S0, S1) ∧ leads towards1(E, S1, I).

Proof: From B.32, BD.4, BD.5.

Lemma B.54:

[AZ 6= hero ∧ working on(el2(AZ), AZ, hero, S0, S1) ∧ el2 q1(AZ, S1, S0) ∧ elt(S1, I) ∧ soc poss int(I)]
⇒

leads towards1(do(AZ,call),S1, I)

Proof: From B.53, B.41.

Lemma B.55:

[AZ 6= hero ∧ working on(el2(AZ), AZ, hero, S0, S1) ∧ el2 q2(AZ, S1, S0) ∧
elt(S1, I) ∧ soc poss int(I)] ⇒
leads towards1(do(AZ,load(b1)),S1, I)

Proof: From B.54, B.42.

Lemma B.56:
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[AZ 6= hero ∧ working on(el2(AZ), AZ, hero, S0, S1) ∧ el2 q3(AZ, S1, S0) ∧
elt(S1, I) ∧ soc poss int(I)] ⇒
leads towards1(inform(AZ,robots,loaded since(b1, time(S0))),S1, I)

Proof: From B.53, B.44.A.

Lemma B.57:

[AZ 6=hero ∧ accepts req(el2(AZ),AZ,hero,S0) ∧ el2 q2(AZ, S1, S0) ∧
reserved block(time(S1),AZ,hero,max action time) ∧

time(S1) + max action time ≤ time(S0) + max el2b time ∧

soc poss int(I) ∧ elt(S0, I) ∧ elt(S1, I)] ⇒
∃S3,S4 elt(S4, I) ∧ time(S3) ≤ time(S1) + max action time ∧

leads towards1(inform(AZ,robots,loaded since(b1, time(S0))),S1, I)

Proof: By lemma B.52, working on(el2(AZ),AZ,hero,S0, S1). By lemma B.55 there exists S2 in
I such that occurs(do(AZ,load(b1)),S1, S2). By M.1, time(S2) ≤ time(S1) + max action time
≤ time(S0) + max el2b time. By lemma B.51, working on(el2(AZ),AZ,hero,S0, S2). By E.5
and E.9 there exists SM such that S1 < SM < S2, holds(SM ,on elevator(b1)), and by E.8,
holds(SM ,elevator at(AZ)). Thus by XD.12, holds(S2,loaded since(b1,AZ,time(S0))). By lemma
B.9, choice(AZ, S2). By QD.1, reserved(time(S2),AZ,hero). Let S3 be the earliest time between S0
and S2 such that holds(S3,loaded since(b1,AZ,time(S0))), choice(AZ, S3), and reserved(time(S3),AZ,hero)).
Then el2 q3(AZ, S3, S0). The result then follows from lemma B.56.

Lemma B.58:

[AZ 6=hero ∧ accepts req(el2(AZ), AZ, hero,S1) ∧ holds(S1,has(AZ,b1)) ∧ soc poss int(I1) ∧

elt(S1, I1)] ⇒
∃S2,S3,Z elt(S3, I1) ∧ time(S3) ≤ time(S1) + delay time + min reserve block ∧

leads towards1(inform(AZ,robots,loaded since(b1, time(S0))),S1, I).

(If, in situation S1, AZ has the package and AZ accepts the request el2 broadcast by the hero, then
within the time max el2 time, AZ will inform the hero that the package has been on the elevator at
some time later than the broadcast.)

Proof: Let az, s1, i1 satisfy the left-hand side of the above implication.

Let t5 be the first time such that t5 ≥ time(s1) and
reserved block(t5,az,hero,4*max action time + max elevator wait). (The notation “4*max action time”
here and similar notations below should be taken as syntactic sugar for “max action time + max action time
+ max action time + max action time”. We do not have to introduce a general multiplication op-
erator.) By Q.2 and X.7, such a t5 exists and t5 ≤ t1 + delay time. Using lemma B.7, let s5 be a
situation such that elt(s5,i1) and time(s5)=t5. Let s6 be the first situation after s5 in i1 such that
choice(az,s6) (lemma B.13). By M.1, time(s6) ≤ time(s5) + max action time, so by lemma B.27
reserved block(time(s6),az,hero,3*max action time + max elevator wait).

We now have a hierarchical case analysis

Case 1: Suppose that holds(s6,has(az,b1)) and ¬holds(s6, elevator at(az)). Then by XD.8,
holds(s6,el2 q1 f(az)), and by XD.9, el2 q1(az,s6,s6). By lemma B.54, there is a situation s7 in i1
such that occurs(do(az,call),s6,s7). Using lemma B.7, let s8 be the situation in i1 such that time(s8)
= time(s7) + max elevator wait. Note that, by lemma B.27 and axiom M.1,
reserved block(time(s8),az,hero,2*max action time).

By E.4 and FD.6, there is a situation s9 in i1 such that that s7 ≤ s9 ≤ s8 and holds(s9,elevator at(az)).
We have reserved block(time(s9),az,hero,2*max action time). By lemma B.13 there is a situation
s10 in i1 such that choice(az,s10) within time max action time of time(s9). By lemma B.27 re-
served block(time(s10),az,hero,max action time).
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Let s11 be the first situation such that s1 ≤ s11 ≤ s10, holds(s11,elevator at(az)), choice(az,s11)
and reserved block(time(s11),az,hero,max action time).

There are now two cases to consider:

Case 1.1: Suppose that holds(s11,has(az,b1)). Then el2 q2(az,s11,s0), so the result follows
from lemma B.57.

Case 1.2: Suppose that ¬holds(s11,has(az,b1)). Then by lemma B.43,
holds(s11,loaded since(b1,az,time(s1))). Let s12 be the first situation such that s1 < s12 ≤ s11,
holds(s12,loaded since(b1,az,time(s1))), choice(az,s12), and reserved(time(s12),az,hero). Then el2 q3(az,s12,s1).
The result then follows from lemma B.56.

Case 2: Suppose that holds(s6,has(az,b1)) and holds(s6, elevator at(az)). The proof continues
in the same way as in case 1 from situation s9 onward.

Case 3: Suppose that ¬holds(s6,has(az,b1)). The proof continues in the same way as in case
1.2.

Lemma B.59:

[AZ 6=hero ∧ accepts req(el2(AZ), AZ, hero,S1) ∧ holds(S1,elevator at(AZ)) ∧ holds(S1,on elevator(b1))
∧ elt(S1, I) ∧ soc poss int(I)] ⇒
∃S2,S3,Z S1 < S2 < S3 ∧ elt(S3, I) ∧ time(S3) ≤ time(S1) + delay time + min reserve block ∧

occurs(inform(AZ,robots,loaded since(b1, time(S0))),S2, S3).

Proof: Let az,s1,i1,s5,s6 be the same as in the proof of B.58. By XC.11,
holds(s6,loaded since(b1,az,time(s1)). The proof then continues as in Case 1.2 of lemma B.52.

Validation of Plan el1

Lemma B.60:

∀S0,S S0 < S ⇒

[[∀S0A,SA [k acc int(hero,S0, S, S0A, SA) ⇒ Φ(SA, S0A)] ∨
[∀S0A,SA [k acc int(hero,S0, S, S0A, SA) ⇒ ¬Φ(SA, S0A)]]
where Φ is any of the relations “el1 q1”, “el1 q2a”, “el1 q3”, or “el1 q2”.
(The hero always knows whether any of the above conditions hold.)

Proof: From lemmas B.14, B.21 together with K.3, E.19, E.21, FD.3, XD.1 through XD.5.

Lemma B.61:

el1 q1(S1, S0) ⇒
[know next step(E,el1,hero,S1, S0) ⇔ instance(E,broadcast req(hero,robots,r2),S1)] ∧
[exec cont(E,el1,hero,hero,S1, S0) ⇔ instance(E,broadcast req(hero,robots,r2),S1)]

Proof: By XD.2, MD.2, MD.3, S1 is a choice point for hero. By X.2, the only next steps of el1
in S1 are the instances of broadcast req(hero,robots,r2). By lemma B.60 the hero knows that these
are the only next steps for el1 in S1. By E.22 and Q.3, no one else governs these actions. Hence by
QD.2 these are is the only executable continuation of el1 in S1.

Lemma B.62:

el1 q2(S1, S0) ⇒
[know next step(E,el1,hero,S0, S0) ⇔ E=do(hero,call)] ∧
[exec cont(E,el1,hero,hero,S1, S0) ⇔ E=do(hero,call)].

Proof: Analogous to lemma B.61.

Lemma B.63:
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el1 q3(S1, S0) ⇒
[know next step(E,el1,hero,S0, S0) ⇔ E=do(hero,unload(b1))] ∧
[exec cont(E,el1,hero,hero,S1, S0) ⇔ E=do(hero,unload(b1))].

Proof: Analogous to lemma B.61.

Lemma B.64:

[working on(el1,hero,hero,S0, S1) ∧ elt(S1, I) ∧ soc poss int(I) ∧ el1 q1(S1, S0)] ⇒
leads towards1(broadcast req(hero,robots,r2),S1, I).

Proof: From B.53, B.61.

Lemma B.65:

[working on(el1,hero,hero,S0, S1) ∧ elt(S1, I) ∧ soc poss int(I) ∧ el1 q2(S1, S0)] ⇒
leads towards1(do(hero,call),S1, I).

Proof: From B.53, B.62.

Lemma B.66:

[working on(el1,hero,hero,S0, S1) ∧ elt(S1, I) ∧ soc poss int(I) ∧ el1 q3(S1, S0)] ⇒
leads towards1(do(hero,unload(b1)),S1, I).

Proof: From B.53, B.63.

Lemma B.67:

begin plan(el1,hero,hero,S0, S1) ∧ terminates(el1,hero,hero,S0, S1) ⇒
know succeeds(el1,hero,S0, S1).
(Plan el1 can only terminates with success.)

Proof: Suppose that begin(el1,hero,hero,S0, S1) and ¬know succeeds(el1,hero,hero,S0, S1). We
wish to show that el1 does not terminate in S1. There are two cases to consider:

Case 1: S1 = S0 or el1 q2(S1, S0) or el1 q3(S1, S0). By lemmas B.61, B.62, B.63 there is an
executable continuation for el1 in S1; hence by QD.2, QD.3, QD.5, el1 does not terminate in S1.

Case 2: S1 6= S0 and ¬el1 q2(S1, S0) and ¬el1 q3(S1, S0). If S1 is not a choice point for
the hero, then el1 does not terminate in S1 (QD.3, QD.4, QD.5), so assume that S1 is a choice
point. By X.2, any action E of the hero is a next step of el1. By lemma B.60 the hero knows that
S1 6= S0, ¬el1 q2(S1, S0), and ¬el1 q3(S1, S0). so he knows that any action of his is a next step.
In particular, as “wait” is always possible, he knows that “wait” is a possible next step (axioms
A.7 and PD.1). Therefore, if time(s1) is reserved for hero by hero, then “Wait” is an executable
continuation of el1, so abandon1 is not satisfied (QD.2, QD.3). If time(s1) is not reserved for hero by
hero, then abandon2 is not satisfied (QD.4). Since, by assumption, know succeeds is not satisfied,
it follows from QD.5 that the plan does not terminate.

Lemma B.68:

el1 q1(AZ, S2, S1) ⇒
∃E instance(E,broadcast req(AZ, robots, r2), S2) ∧ feasible(E, S2).

Proof: By axiom E.16, it is feasible for AZ to communicate to robots. By C.5, broadcast(AZ,robots,r2)
is feasible in S2. By C.6, know how(AZ,broadcast(AZ,robots,r2),S2). The result follows from MD.1
and KHD.1.

Lemma B.69:

[working on(el1,hero,hero,S0, S0) ∧ elt(S0, I0) ∧ soc poss int(I0) ∧

∀AZ,P2 AZ 6=hero ⇒ ¬working on(P2, AZ,hero,S0, S0)] ⇒
∃SZ SZ ≥ S0 ∧ elt(SZ, I) ∧ completes(el1,hero,hero,S0, SZ).

Proof:
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Assume that s0 and i0 satisfy the left hand of the implication. Let s1 be the first situation after
s0 in i0 such that reserved(time(s1),hero,hero) and choice(hero,s1). By Q.2, QD.1, X.7, such an s1
will occur in i0 within time at most delay time + max action time of s0. By XD.3, el1 q1(s1,s0). By
lemma B.68, there is a situation s2 in i0 such that occurs(broadcast req(hero,robots,r2),s1,s2). By
S.6, the event request(hero,A2 assignment(r2,A2)) occurs from s1 to s2 for every agent A2 6=hero.

By lemma B.67 and B.36, either el1 has completed before s2 or hero is still working on el1 in
s2. If el1 has completed, then that completes the proof, so assume that el1 has not completed. By
X.2 and lemma B.33, hero does not issue any broadcasts other than r2 between s0 and s2. By S.7,
hero does not make any requests of A2 between s0 and s2. By Q.6, A2 has not accepted any other
requests of hero between s0 and s2. By Q.5, A2 is not working on any plans of hero at s2. By Q.6,
A2 accepts the request assignment(r2,A2) = el2(A2) in s2.

By E.12, E.13 there is an agent az such that, in s2, either az has b1 or [the elevator is at az
and b1 is loaded on the elevator]. By lemmas B.58, B.59 there exist situations s3, s4 in ia such
that occurs(inform(az, robots, loaded since(b1,az,time(s0))),s3,s4), and s4 in i0. By C.2, CK.1, the
hero knows in s4 that a2 has informed him of this fact; that is, in every situation S4B accessible
from s4, it is the case that there exists an S4B accessible from s4a and S3B < S4B such that
occurs(inform(az, robots, loaded since(b1,az,time(s0))),S3B, S4B) By C.1, K.1, in any such S3B it
is the case that loaded since(b1,az,time(s0)).

Let s5 be the first situation after s4 in i0 such that reserved block(time(s5), hero, hero, 3*max action time
+ max elevator wait). By Q.2, X.7, time(s5) ≤ time(s4) + delay time. Suppose that k acc(hero,s5,S5B)
accessible from s5. By K.4, there exists S4B ≤ S5B such that k acc(hero,s4,S4B). By lemma B.50,
b1 is on the elevator in S5B. Thus by XD.1 holds(s5, know loaded(hero,b1)). Let s6 be the first
opportunity after s0 in which know loaded(hero,b1); then time(s6) ≤ time(s5) + max action time
and reserved block(time(s6), hero, hero, 2*max action time + max elevator wait).

There are now two cases to consider:

Case 1: Suppose that el1 q3(S,s0) does not hold for any S between s0 and s6. Then el1 q2(s6,s0)
(XD.4, XD.5). By lemma B.62 there exists s7 in i0 such that occurs(do(hero,call),s6,s7). Using E.4,
FD.6, let s8 be the first situation in i0 such that time(s8) ≤ time(s7) + max elevator wait ≤ time(s6)
+ max action time + max elevator wait and holds(s8, elevator at(hero)). Let s9 be the first choice
point for hero in i0 after s8; thus time(s9) ≤ time(s8) + max action time. By E.7, E.1, the ele-
vator is still at the hero in s9; by B.50 package b1 is still on the elevator in s9; and time(s9) is
still reserved by the hero for himself. Let s10 be the first choice point in i0 after s0 such that in
s10 the elevator is at the hero, the package is on the elevator and the time is reserved by the hero
for himself. Then el1 q3(s10,s0). By Q.2, time(s10) ≤ time(s9) + delay time. By lemma B.66,
occurs(do(hero,unload(b1)),s10,s11) for some s11 in i0. Thus s11 satisfies the right hand side of the
implication.

Case 2: Suppose that el1 q3(S,s0) holds for some S between s0 and s6. Then the proof
continues as in Case 1, from s10 on.

Lemma B.70: k acc(hero,s0,S0A) ⇒ executable(el1,hero,S0A)

Proof: Assume that k acc(hero,s0,s0a), occurs(do(hero,commit(hero,el1)),s0a,s1a), elt(s1a,i0), and
soc poss int(i0). By X.13 ¬∃P,AC,SX working on(P, AC,hero,SX ,s0a); that is, in s0a no one includ-
ing hero is working on any plans of hero’s. Since no other commit or broadcast actions occur between
s0a and s1a (axioms A.1, A.2), no other requests occur (S.7) or are accepted (Q.6); hence, in s1a
still no one is working on any plans of hero’s (lemma B.31). By lemma B.69, el1 completes in i0.
Therefore, el1 is executable in s0a (Q.11).
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Theorem B.71: know achievable(has(hero,b1),el1,hero,s0).

Proof: From lemma B.70 we have k acc(hero,s0,S0A) ⇒ executable(el1,hero,S0A). From X.1,
QD.8, PD.2, K.1, we have completes(el1,hero,hero,S0A, S1A) ⇒ holds(S1A,has(hero,b1)). The
result follows from QD.16.
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