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Abstract

The ability to handle exceptions, to perform iter-
ated belief revision and to integrate information
from multiple sources are essential skills for an in-
telligent agent. These important skills are related in
the sense that they all rely on resolving inconsistent
information. We develop a novel and useful strat-
egy for conflict resolution, and compare and con-
trast it with existing strategies. Ideally the process
of conflict resolution should conform with the prin-
ciple of Minimal Change and should result in the
minimal lossof information. Our approach to min-
imizing the loss of information is to weaken infor-
mation involved in conflicts rather than completely
removing it. We implemented and tested the rela-
tive performance of our new strategy in three differ-
ent ways. We show that it retains more information
than the existing Maxi-Adjustment strategy at no
extra computational cost. Surprisingly, we are able
to demonstrate that it provides a computationally
effective compilation of the lexicographical strat-
egy, a strategy which is known to have desirable
theoretical properties.

1 Introduction
Information modeling and management is a fundamental ac-
tivity of intelligent systems. Intelligent systems require ro-
bust and sophisticated information management capabilities
such as exception handling, iterated revision and the integra-
tion of information. In this paper we develop a novel and
useful strategy for conflict resolution which can be applied
to exception handling, iterated revision, and information in-
tegration. Throughout we assume that the available informa-
tion is given as ordered knowledge bases, i.e. a ranking of
information as logical sentences. Solving conflicts in our con-
text means computing a consistent knowledge base. One well
known system that can deal with conflicts in knowledge bases
is the so-calledAdjustmentprocedure[Williams, 1994]. In
essence, Adjustment propagates as many highly ranked for-
mulas as possible, and ignores information at and below the
highest rank where an inconsistency is found. The main ad-
vantage of this system is its computational efficiency. For
example, it only needs at mostLog2n calls to a SAT solver

to build the consistent knowledge base wheren is the number
of ranks in the knowledge base. The obvious disadvantage
of Adjustment, however, is that it can remove more formulae
than is necessary to restore the consistency of the knowledge
base if the independence of information is not made explicit.
In order to overcome this shortcoming another strategy called
Maxi-Adjustmentwas introduced[Williams, 1996] and im-
plemented[Williams and Sims, 2000]. Maxi-Adjustment has
proved to be a useful strategy for real world applications e.g.
software engineering[Williams, 1998], information filtering
[Lauet al., 2000] and intelligent payment systems[Wong and
Lau, 2000]. The main idea of Maxi-Adjustment is to solve
conflicts at each rank of priority in the knowledge base. This
is done, incremently, starting from the information with high-
est rank. When inconsistency is encountered in the knowl-
edge base, then all formulas in the rank responsible for the
conflicts are removed. The other formulas are kept, and the
process continues to the next rank.
Clearly Maxi-Adjustment keeps more information than Ad-
justment, since it does not stop at the first rank where incon-
sistency is met. Even though Maxi-Adjustment propagates
more information than Adjustment, one can still argue that
Maxi-Adjustment removes too much information because it
adopts a sceptical approach to the way it removes the conflict
sets at each rank.
The purpose of this paper is to describe a significant improve-
ment to Maxi-Adjustment. We call this systemDisjunctive
Maxi-Adjustment, and denote it by DMA. The idea is simi-
lar to Maxi-Adjustment, except that information is weakened
instead of being removed when conflicts are detected. So in-
stead of removing all formulas involved in conflicts, as it is
done in Maxi-Adjustment, DMA takes their disjunctions pair-
wise. If the result is consistent, then we move to the next rank.
If the result is still inconsistent, then we replace the formulas
in conflicts by all possible disjunctions involving3 formu-
las in the conflict sets and again if the result is consistent we
move to the next layer, and if it is inconsistent we consider
disjunctions of size4, 5, etc. The only case where all for-
mulas responsible for conflicts are removed is when the dis-
junction of all these formulas is inconsistent with the higher
priority information.
This paper focuses on the DMA strategy from the theoretical
and experimental perspectives. In particular,

• We show that DMA is equivalent to the well known



lexicographical strategy[Benferhat et al., 1993;
Lehmann, 1995]. More precisely, we show that for an
inconsistent baseK if δDMA(K) is the classical base
obtained using DMA, andδLex(K) is the set of all
lexicographically maximal consistent subbases ofK,
then:

∀ψ, δDMA(K) ` ψ iff ∀A ∈ δLex(K), A ` ψ.
In other words, we obtain the surprising and computa-
tionally useful result that DMA provides a “compila-
tion” of lexicographical systems.

• It is well known that computing conflicts is a hard task,
and we are able to show that DMA works even if the con-
flicts are not explicitly computed. For this, we propose
an alternative, but equivalent, approach to DMA called
whole-DMA where disjunctions are built on the whole
stratum when we meet inconsistency instead of only on
the conflicts.

• We also propose another equivalent alternative to DMA
called iterative-DMA where instead of considering dis-
junctions of size (3,4, etc) on the initial set of conflicts,
we only compute disjunctions of size 2 but on new sets
of conflicts.

• Lastly, we compare these different implementations of
DMA experimently, and contrast their applicability.

2 Ordered information in Spohn’s OCF
framework

We consider a finite propositional language denoted byL. Let
Ω be the set of interpretations.̀denotes the classical conse-
quence relation, Greek lettersφ, ψ, ... represent formulas.
We use Spohn’s ordinal conditional function[Spohn, 1988]
framework, which is also known as the Kappa function
framework.
At the semantic level, the basic notion of Spohn’s ordinal con-
ditional function framework is a distribution called an OCF,
denoted byκ, which is a mapping fromΩ to N , such that
∃ω, κ(ω) = 0. N is the set of natural numbers.κ(ω) can be
viewed as the degree of impossibility ofω.
By convention,κ(ω) = 0 means that nothing preventsω from
being the real world, andκ(ω) = +∞ means thatω is cer-
tainly not the real world1. The lowerκ(ω) is, the more ex-
pected it is, i.e. ifκ(ω) < κ(ω′) thenω is said to be more
plausible thanω′.
In practice, OCF distributions over all possible worlds are not
available, however a ranked knowledge base provides a com-
pact representation of an OCF distribution[Williams, 1994].
Since we will be working with ranked knowledge bases
throughout, we define a knowledge base to be ranked. In par-
ticular, a knowledge base is a set of weighted formulas of the
form K = {(φi, ki) : i = 1, . . . , n} whereφi is a classical
formula andki is a positive number representing the level of
priority of φi. The higherki, the more important the formula
φi.
Given K, we can generate a unique OCF distribution, de-
noted byκK , such that all the interpretations satisfying all

1Note that the notion of impossible worlds (+∞) does not exist
in original works of Spohn.

the formulae inK will have the lowest value, namely0, and
the other interpretations will be ranked with respect to the
highest formulae that they falsify. Namely:

Definition 1 ∀ω ∈ Ω,

κK(ω) =
{

0 ∀(φi, ki) ∈ K,ω |= φi

max{ki : (φi, ki) ∈ K and ω 6|= φi} otherwise.

Then, givenκK associated with a knowledge baseK, the
models ofK are the interpretationsω s.t.κK(ω) = 0.

3 Adjustment and Maxi-Adjustment
3.1 Stratified vs ranked knowledge base
We have seen that ranked information is repre-
sented by means of knowledge bases of the form
K = {(φi, ki) : i = 1, . . . , n}. We sometimes also
represent this baseK in a stratified form as follows:
K = {S1, . . . , Sn} where Si (i = 1, . . . , n) contains
classical formulas ofK having the same rank and which are
more reliable than formulas ofSj for j > i. So the lower the
stratum, the higher the rank.
In this representation, subbases are also stratified. That
is, if A is a subbase ofK = {S1, . . . , Sn}, then
A = {A1, . . . , An} such thatAj ⊆ Sj , j = 1, . . . , n.
(Aj may be empty).
Conversely, we can represent a stratified base
K = {S1, . . . , Sn} using a weighted knowledge base
by associating formulas of each strataSi to the same rankki.
These ranks should be such thatk1 >. . .>kn.

Let us now introduce the notion of conflicts and kernel which
will prove useful in the subsequent discussion:

Definition 2 Let K = {S1, . . . , Sn} be a stratified base. A
conflict inK, denoted byC, is a subbase ofK such that:

• C `⊥ (inconsistency),

• ∀φ, φ ∈ C, C − {φ} 0⊥ (minimality).

Definition 3 Let C be the set of all possible conflicts inK.
We define the kernel ofK, denoted bykernel(K), as the set
of formulas ofK which are involved in at least one conflict in
C i.e.,kernel(K) is the union of all conflicts inK.

Formulas inK which are not involved in any conflict inK
are calledfreeformulas.

3.2 The problem
Our aim in this paper is to address the problem of iden-
tifying conflicts for the purposes of drawing plausible in-
ferences from inconsistent knowledge bases, iterated revi-
sion and information integration. Our technique for resolv-
ing conflicts can be used: (i) to build a transmutation for
iterated belief revision[Williams, 1994] where the new in-
formation can be incorporated into any rank, and (ii) for
theory extraction[Williams and Sims, 2000] which pro-
vides a natural and puissant mechanism for merging con-
flicting information. Without loss of generality we focus
on a particular case of revision where some new informa-
tion ϕ is added to some ranked knowledge baseK. Namely,



given a knowledge baseK, and a new formulaϕ we com-
pute δ(K ∪ {(ϕ, +∞)}), the classical (not stratified) con-
sistent subbase ofK ∪ {(ϕ, +∞)}. Then, ψ is said to
be a plausible consequence ofK ∪ {(ϕ,+∞)} iff δ(K ∪
{(ϕ,+∞)}) ` ψ. In the rest of this paper we simply write
Kϕ instead ofK ∪ {(ϕ, +∞)}. In a stratified form we write
{S0, S1, . . . , Sn} whereS0 = {ϕ}. We briefly recall two
important methods to computeδ(K ∪ {(ϕ,+∞)}): Adjust-
mentandMaxi-Adjustment. We will illustrate them using a
simple example. We point the reader to[Williams, 1994;
1996] for more details.

3.3 Adjustment
From a syntactical point of view, the idea of Adjustment is to
start with formulas having the highest rank inKϕ and to add
as many prioritized formulas as possible while maintaining
consistency. We stop at the highest rank (or the lowest stra-
tum) where we meet inconsistency called the inconsistency
rank ofKϕ, denoted byInc(Kϕ).
Note that a more efficient binary search based algorithm
which only needsLog2n consistency checks has been devel-
oped and implemented2 [Williams and Sims, 2000]. The se-
lected base will be denoted byδA(Kϕ). Note that the process
of selecting the consistent base using the Adjustment for new
pieces of information placed in the highest rank is identical
to that used in possibilistic logic[Duboiset al., 1994].
One can easily see that this is not a completely satisfactory
way to deal with the inconsistency since formulas with rank
lower thanInc(Kϕ) are ignored even if they are consistent
with the selected base.
A formula ψ is said to be an Adjustment consequence of
Kϕ, denoted byKϕ `A ψ, if δA(Kϕ) ` ψ. One important
property of Adjustment is that it is semantically well defined.
More precisely, we have the following soundness and com-
pleteness result:Kϕ `A ψ iff ∀ω ∈ Pref(κKϕ), ω |= ψ,
wherePref(κKϕ) is the set of interpretations which satisfy
ϕ and have minimal rank in the OCF distributionκKϕ given
by Definition 1.

Example 1 LetK = {S1, S2, S3} be such that
S1 = {(¬a ∨ ¬b ∨ c, 3), (¬d ∨ c, 3), (¬e ∨ c, 3)},
S2 = {(d, 2), (e, 2), (f, 2), (¬f ∨ ¬g ∨ c, 2)} and
S3 = {(a, 1), (b, 1), (g, 1), (h, 1)}. Letϕ = ¬c.
First, we haveδA(K¬c) = {¬c}.
There is no conflict inδA(K¬c) ∪ S1 then
δA(K¬c) ← {¬c,¬a ∨ ¬b ∨ c,¬d ∨ c,¬e ∨ c}.
Now, S2 contradictsδA(K¬c) due to the conflicts{d,¬d ∨
c,¬c} and{e,¬e ∨ c,¬c}. Then, we do not add the stratum
S2 and the computation ofδA(K¬c) is achieved, and we get
δA(K¬c) = {¬c,¬a ∨ ¬b ∨ c,¬d ∨ c,¬e ∨ c}.
Note thatδA(K¬c) 6` h, even ifh is not involved in any con-
flict in K¬c.

3.4 Maxi-Adjustment
Maxi-Adjustment[Williams, 1996] was developed to ad-
dress the problem of discarding too much information for
applications like software engineering[Williams, 1998] and
information filtering[Lauet al., 2000].

2http://cafe.newcastle.edu.au/systems/saten.html

The idea in Maxi-Adjustment also involves selecting one
consistent subbase fromK denoted byδMA(Kϕ). The
difference is that it does not stop at the first rank where it
meets inconsistency. Moreover, conflicts are solved rank by
rank. We start from the first rank and take the formulas ofS1

which do not belong to any conflict in{ϕ} ∪ S1. Let S′1 be
the set of these formulas. Then, we move to the next rank
and add all formulas which are not involved in any conflict
in S′1 ∪ S2, and so on. It is clear that Maxi-Adjustment keeps
more formulas than the Adjustment.

Example 1(using Maxi-Adjustment)
First, we haveδMA(K¬c) = {¬c}.
There is no conflict in δMA(K¬c) ∪ S1 then
δMA(K¬c) ← {¬c,¬a ∨ ¬b ∨ c,¬d ∨ c,¬e ∨ c}.
Now, S2 contradicts δMA(K¬c) due to the conflicts
{d,¬d ∨ c,¬c} and {e,¬e ∨ c,¬c}. Then, we do not
add the clauses fromS2 involved in these conflicts:
δMA(K¬c) ← δMA(K¬c) ∪ {f,¬f ∨ ¬g ∨ c}.
Now, S3 contradicts δMA(K¬c) due to the conflicts
{a, b,¬a ∨ ¬b ∨ c,¬c} and {f, g,¬f ∨ ¬g ∨ c,¬c}.
Since all the clauses, excepth, from the stra-
tum S3 are involved in one conflict, we only add
h to δMA(K¬c). Finally, we get: δMA(K¬c) =
{¬c,¬a ∨ ¬b ∨ c,¬d ∨ c,¬e ∨ c, f,¬f ∨ ¬g ∨ c, h}.
Note thatδMA(K¬c) ` h.

4 Disjunctive Maxi-Adjustment

Although Maxi-Adjustment retains more information than
Adjustment, it can still be argued that it is too cavalier in the
way it solves the conflicts.
In this section, we propose a new strategy which is a
significant improvement of Maxi-Adjustment. The com-
putation of the consistent base is essentially the same as
in Maxi-Adjustment, the only difference is when we meet
an inconsistency at some rank, instead of removing all the
formulas involved in the conflicts at this rank we weaken
them, by replacing them by their pairwise disjunctions. If the
result is consistent then we move to the next rank, else we
replace these formulas by their possible disjunctions of size
3. If the result is consistent then we move to the next rank,
else we add the disjunctions of size4 of these formulas, and
so on. We summarize this process in Algorithm 1:

Notation: dk(C) is the set of all possible disjunctions
of sizek between formulas ofC. If k >|C | thendk(C) = ∅.

Example 1(using DMA)
First, we haveKB = {¬c}.
There is no conflict inKB ∪ S1 then
KB ← {¬c,¬a ∨ ¬b ∨ c,¬d ∨ c,¬e ∨ c}.
Now, S2 contradictsKB due to the conflicts{d,¬d ∨ c,¬c}
and {e,¬e ∨ c,¬c}. We do not add the clauses fromS2

involved in these conflicts:KB ← KB ∪ {f,¬f ∨ ¬g ∨ c}.
Now we create all the possible disjunctions of size2 with
C = {d, e}: d2(C) = {d ∨ e}. SinceKB ∪ d2(C) is
inconsistent, and we cannot create larger disjunctions, we do
not add anything fromS2 to KB.



Algorithm 1: DMA(K, ϕ)

Data: a stratified knowledge baseK = {S1, . . . , Sn} ;
a new sure formula:ϕ ;

Result: a consistent subbaseδDMA(Kϕ)
begin

KB ← {ϕ} ;
for i ← 1 to n do

if KB ∪ Si is consistentthen KB ← KB ∪ Si

else
Let C be the subset ofSi in kernel ofKB∪Si;
KB ← KB ∪ {φ : φ ∈ Si and φ 6∈ C};
k ← 2 ;
while k ≤ |C| andKB∪dk(C) is inconsistent
do

k ← k + 1;

if k ≤ |C| then KB ← KB ∪ dk(C) ;

return KB
end

Please note at this rank, we do not add more information than
Maxi-Adjustment.
Now, S3 contradicts KB due to the conflicts
{a, b,¬a ∨ ¬b ∨ c,¬c} and {f, g,¬f ∨ ¬g ∨ c,¬c}. h
is not involved in any conflict. Then,KB ← KB ∪ {h}.
We now create all the possible pairwise disjunctions with
C = {a, b, g}: d2(C) = {a ∨ b, a ∨ g, b ∨ g}. Since
KB ∪ d2(C) is inconsistent, we created3(C) = {a∨ b∨ g}.
SinceKB ∪ d3(C) is consistent, we addd3(C) to KB and
the algorithm stops.
ThenδDMA(Kϕ) = {¬c,¬a∨¬b∨c,¬d∨c,¬e∨c, f,¬f ∨
¬g ∨ c, h, a ∨ b ∨ g}
which is equivalent to{¬c,¬a∨¬b,¬d,¬e, f,¬g, h, a∨ b}.
DMA keeps more information from the last stratum than
Maxi-Adjustment does.

Definition 4 A formulaψ is said to be a DMA consequence
of K andϕ, denoted byKϕ `DMA ψ, if it is inferred from
δDMA(Kϕ). Namely,Kϕ `DMA ψ iff δDMA(Kϕ) ` ψ.

5 Two other implementations of DMA
In the previous section we have shown a way to com-
pute δDMA(Kϕ) using the computation of the kernel. In
this section, we propose two alternative ways to compute
δDMA(Kϕ). The first approach, called whole-DMA(K,ϕ),
does not compute the kernel. The main motivation for this al-
ternative is that computing the kernel is in general hard. For
the second approach, called iterative-DMA(K,ϕ), when in-
consistency is (again) met after weakening the kernel, then
rather than weakening the original kernel by considering its
disjunctions of size3, we only weaken the newly computed
kernel obtained by considering disjunctions of size2. The
motivation of this approach is to reduce the size of added (dis-
junctions) formulas.

5.1 Whole Disjunctive Maxi-Adjustment
We propose a slightly modified version of the DMA algo-
rithm. The idea is that whenKB ∪Si is inconsistent, instead

of considering all possible disjunctions of sizej of elements
of Si which are inkernel(KB∪Si), we consider all possible
disjunctions of sizej of Si without computing a kernel. This
is justified by the following proposition:

Proposition 1 Let KB ∪ S be inconsistent. LetC be the
subset ofS in kernel(KB ∪ S), andF = S − C be the set
of remaining formulas. Letdj(C) (resp.dj(S)) be the set of
all possible disjunctions of sizej fromC (resp.S). Then,

KB ∪ dj(C) ∪ F ≡ KB ∪ dj(S).

Proof (sketch)
Let us assume thatdj−1(S) ∪ KB is inconsistent, and show that
dj(S) ∪KB ≡ dj(C) ∪KB ∪ F .
It is clear thatdj(C) ⊆ dj(S). Hence it is enough to show that
KB ∪ dj(S) ` F .
Let A be a conflict ofKB ∪ dj−1(S), and {ψ1, . . . , ψn} be a
subset ofA in dj−1(S). Let ϕ ∈ F .
Then{ϕ ∨ ψ1, . . . , ϕ ∨ ψn} ⊆ dj(S), with ψi 6= ϕ sinceϕ 6∈ A
(becauseϕ is free).
Now sinceKB ∪A is inconsistent thenKB ` ¬ψ1 ∨ · · · ∨ ¬ψn.
Applying successive resolutions between{ϕ ∨ ψ1, . . . , ϕ ∨ ψn}
and¬ψ1 ∨ · · · ∨ ¬ψn leads to entailϕ.
Hence there is no need to consider disjunctions containing free
formulas since they will be subsumed. �

With the help of this proposition, the “else” block in the
DMA algorithm is replaced by
else

k ← 2
while KB ∪ dk(Si) is inconsistent andk ≤| Si | do
k ← k + 1

if k ≤|Si | then KB ← KB ∪ dk(Si)
to obtain the whole DMA algorithm.

Example 1(using whole DMA)
First, we haveKB = {¬c}.
S1 is consistent withKB. Then,KB ← KB ∪ S1.
Now, S2 contradictsKB. We compute all possible pairwise
disjunctions withS2. d2(S2) = {d∨ e, d∨ f, d∨¬f ∨¬g ∨
c, e ∨ f, e ∨ ¬f ∨ ¬g ∨ c}.
Since,KB ∪ S2 is inconsistent, we compute all possible dis-
junctions of size3 between formulas ofS2. We getd3(S2) =
{d∨e∨f, d∨e∨¬f ∨¬g∨c} which is consistent withKB.
Then,KB ← KB ∪ d3(S2).
Now, S3 is inconsistent withKB. We compute all possible
pairwise disjunctions withS3. d2(S3) = {a ∨ b, a ∨ g, a ∨
h, b∨g, b∨h, g∨h} which is still inconsistent withKB. We
haved3(S3) = {a ∨ b ∨ g, a ∨ b ∨ h, b ∨ g ∨ h, a ∨ g ∨ h}
which is consistent withKB, thenKB ← KB ∪ d3(S3).
Hence,δWDMA(K¬c) = {¬c,¬a∨¬b∨c,¬d∨c,¬e∨ c, d∨
e∨f, d∨e∨¬f∨¬g∨c, a∨b∨g, a∨b∨h, b∨g∨h, a∨g∨h}
which is equivalent to{¬c,¬a∨¬b,¬d,¬e, f,¬g, a∨ b, h}.
Then, it is equivalent toδDMA(K¬c).

5.2 Iterative Disjunctive Maxi-Adjustment
The idea of this alternative implementation of DMA is as fol-
lows: let Si be inconsistent withKB. Let C andF be the
kernel and the remaining formulas ofSi.
Now assume thatKB ∪F ∪ d2(C) is still inconsistent. Then



rather than weakeningC again by considering disjunctions
of size3, we only weaken those formulas ind2(C) which are
still responsible for conflicts. Namely, we splitd2(C) into C ′
andF ′ which respectively represent the kernel and remaining
formulas ofd2(C). Then instead of takingKB ∪ F ∪ d3(C)
as in DMA, we takeKB ∪ F ∪ F ′ ∪ d2(C ′). The algorithm
becomes:

Algorithm 2: IDMA (K, ϕ)

Data: a stratified knowledge baseK = {S1, . . . , Sn} ;
a new sure formula:ϕ

Result: a consistent subbaseδIDMA(Kϕ)

begin
KB ← {ϕ}, i ← 1;
while i ≤ n do

if KB ∪ Si is consistentthen
KB ← KB ∪ Si ; i ← i + 1 ;

else
Let C ⊆ Si be inkernel(KB ∪ Si) ;
Si ← {φ : φ ∈ Si and φ 6∈ C} ;
if | C |= 1 then i ← i + 1 elseSi ← Si ∪ d2(C) ;

return KB
end

Proposition 2 LetKB ∪ F ∪ di(C) be inconsistent. Then,
KB ∪ F ∪ di(C) ≡ KB ∪ F ∪ F ′ ∪ d2(C ′),

whereF ′ andC ′ are kernels fromdi(C).
The proof is a corollary of Prop. 1 and the following lemma:

Lemma 1 Let A be a set of formulas. LetB = di(A) and
C = di+1(A) be the set of all possible disjunctions ofA of
sizei andi + 1 respectively. Then,C = d2(B).
This lemma means that taking all disjunctions of sizei, then
reconsidering all disjunctions of size2 again on the result is
the same as considering all disjunctions of sizei + 1.

Example 1(using iterative DMA)
First, we haveKB = {¬c}.
There is no conflict inKB ∪ S1. Then,KB ← KB ∪ S1.
S2 is inconsistent withKB due to the conflicts{¬c,¬d∨c, d}
and{¬c,¬e ∨ c, e}. We add{f,¬f ∨ ¬g ∨ c} to KB. The
disjunctiond∨ e is still inconsistent withKB, then we move
to S3.
S3 contradictsKB due to the conflicts{a, b,¬a∨¬b∨c,¬c}
and{f, g,¬f ∨¬g∨ c,¬c}. h is not involved in any conflict.
Then,KB ← KB ∪ {h}.
We now create all the possible pairwise disjunctions with
C = {a, b, g}: d2(C) = {a ∨ b, a ∨ g, b ∨ g}.
KB∪d2(C) is inconsistent due to the conflict{¬c,¬a∨¬b∨
c, f,¬f ∨¬g∨ c, a∨ g, b∨ g}. a∨ b in d2(C) is not involved
in the conflict, thenKB ← KB ∪ {a ∨ b}.
Now, we take the pairwise disjunctions withC = {a ∨
g, b ∨ g}. d2(C) = {a ∨ b ∨ g}. KB ∪ d2(C) is con-
sistent. However, there is no need to adda ∨ b ∨ g to KB
sincea ∨ b already belongs toKB. Hence,δIDMA(K¬c) =
{¬c,¬a ∨ ¬b ∨ c,¬d ∨ c,¬e ∨ c, f,¬f ∨ ¬g ∨ c, a ∨ b, h}
which is equivalent to{¬c,¬a∨¬b,¬d,¬e, f,¬g, a∨ b, h}.
Hence, it is equivalent toδDMA(K¬c).

6 DMA: Compilation of lexicographical
inferences

The aim of this section is to show thatDMA is a compila-
tion of the lexicographical system, hence it satisfies the AGM
postulates[Alchourrón et al., 1985]. First let us recall the
lexicographical inference.

6.1 Lexicographical inference
The lexicographical system[Benferhat et al., 1993;
Lehmann, 1995] is a coherence-based approach where an in-
consistent knowledge base is replaced by a set of maximally
preferred consistent subbases. The preference relation be-
tween subbases is defined as follows:

Definition 5 Let A = {A1, . . . , An} and B =
{B1, . . . , Bn} be two consistent subbases ofK.
A is said to be lexicographically preferred toB, denoted by
A >Lex B, iff

∃k s.t. |Ak |>|Bk | and∀j < k, |Aj |=|Bj |.
Let δLex(Kϕ) denotes the set of all lexicographically pre-
ferred subbases ofKϕ, those which are maximal w.r.t.>Lex.
Then, the lexicographical inference is defined by:

Definition 6 A formulaψ is said to be a lexicographical con-
sequence ofKϕ, denoted byKϕ `Lex ψ, if it is a classical
consequence of all the elements ofδLex(Kϕ), namely

∀A ∈ δLex(Kϕ), A ` ψ.

Example 1(continued)
We haveδLex(K¬c) = {A,B} whereA = {¬c,¬a ∨ ¬b ∨
c,¬d ∨ c,¬e ∨ c, f,¬f ∨ ¬g ∨ c, a, h} andB = {¬c,¬a ∨
¬b ∨ c,¬d ∨ c,¬e ∨ c, f,¬f ∨ ¬g ∨ c, b, h}.
For example, we have
K¬c `Lex a ∨ b sinceA ` a ∨ b andB ` a ∨ b.

6.2 Basic steps of the compilation
The aim of this section is to show that DMA is equivalent
to the lexicographical system. DMA offers a clear advantage
over the lexicographical system because it obviates the need
to explicitly computeδLex(Kϕ) which may be exponential in
size. Formally, we will show the following equivalence:

Kϕ `Lex ψ ⇔ Kϕ `DMA ψ (1)

Note thatδDMA(Kϕ) is a classical consistent base.

Example 1(continued)
Let us first show that applying the lexicographical system on
K¬c gives the same results as applying DMA onK¬c.
Indeed,K¬c `Lex ψ iff A ` ψ andB ` ψ
iff A ∨ B ` ψ iff {¬c,¬a ∨ ¬b,¬d,¬e, f,¬g, a ∨ b, h} ` ψ
(after removing subsumed formulas inA ∨B)
iff δDMA(K¬c) ` ψ iff K¬c `DMA ψ.

To show (1) we follow the following steps:
Step 1:we construct a new baseK ′ from K s.t.

Kϕ `Lex ψ ⇔ K ′
ϕ `A ψ (2)

Namely, applying lexicographical system onKϕ is equiva-
lent to applying Adjustment toK ′

ϕ.



Step 2:in the second step we show that

K ′
ϕ `A ψ ⇔ Kϕ `DMA ψ (3)

Namely, applying Adjustment toK ′
ϕ is equivalent to applying

DMA to Kϕ.

Step 1: ConstructingK ′

In order to show the proof of (2), we need to rewrite the lexi-
cographical system at the semantic level, which is immediate:

Definition 7 LetK = {S1, . . . , Sn}. Letω andω′ be two in-
terpretations, andAω, Aω′ be the subbases composed of all
formulas ofK satisfied byω andω′ respectively.
Then,ω is said to be lexicographically preferred toω′ w.r.t.
K, denoted byω >Lex,K ω′, iff Aω >Lex Aω′ (using Defini-
tion 5).

Proposition 3 LetδLex(K) be the set of lexicographical pre-
ferred consistent subbases ofK.
LetAω be the set of formulas inK satisfied byω. Then,
i. If ω is minimal w.r.t.>Lex,K thenAω ∈ δLex(K)
ii. ∀A ∈ δLex(K), ∃ω |= A s.t.ω is minimal w.r.t.>Lex,K .

Using Prop. 3, at the semantic level, (2) is equivalent to:

κK′
ϕ
(ω) < κK′

ϕ
(ω′) iff ω >Lex,Kϕ ω′ (4)

where κK′
ϕ

is the OCF associated toK ′
ϕ obtained from

Definition 1.
Let us now show how to constructK ′ from K such that it
satisfies (4). For this, we use two intuitive ideas.

The first idea is that Adjustment is insensitive to the number
of equally reliable formulas falsified while lexicographical
system is not (i.e. cardinality of conflict sets). Assume that
we have a baseK = {(φ, i), (ψ, i)} which contains two
formulas with a same rank. Then, the rank (using Def. 1)
associated with an interpretationω falsifying one formula
has a same rank as an interpretation falsifying two formulas.
However, if we use the lexicographical system, an interpre-
tation falsifying one formula is preferred to an interpretation
falsifying two formulas. Now one can check that if we
construct a knowledge baseK ′ = {(φ, i), (ψ, i), (φ∨ψ, 2i)}
from K by adding the disjunctionφ ∨ ψ with a higher
rank, then equation (4) is satisfied. So the first idea is to
add disjunctions with the rank equal to the sum of ranks of
formulas composing the disjunctions.

The second idea is related to the notion of compensation. To
illustrate this idea, let us now considerK = {S1, S2} such
that S1 = {φ1} andS2 = {φ2, φ3, φ4}. The intuition be-
hind this example is to show that ranks associated with the
formulas should satisfy some constraints in order to recover
the lexicographical inference. Indeed, let us for instance as-
sociate the rank2 with φ1, and the rank1 with φ2, φ3, φ4. Let
ω andω′ be two interpretations such thatAω = {{φ1}, {}}
andAω′ = {{}, {φ2, φ3, φ4}}. Aω means thatω satisfies all
formulas ofS1 but falsifies all formulas ofS2. Aω′ means
thatω′ satisfies all the formulas ofS2 but falsifies all the for-
mulas ofS1. Following the suggestion of the first idea, let us
add all possible disjunctions. We obtain:

K ′ = {{(φ1∨φ2∨φ3∨φ4, 5)}; {(φ1∨φ3∨φ4, 4); (φ1∨φ2∨
φ4, 4); (φ1 ∨ φ2 ∨ φ3, 4)}; {(φ1 ∨ φ2, 3); (φ1 ∨ φ3, 3); (φ1 ∨
φ4, 3); (φ2∨φ3∨φ4, 3)}; {(φ1, 2); (φ2∨φ3, 2); (φ2∨φ4, 2);
(φ3 ∨ φ4, 2)}; {(φ2, 1); (φ3, 1); (φ4, 1)}}.
We can easily check thatκK′(ω) = 3 andκK′(ω′) = 2 while
Aω >Lex,K Aω′ . This is due to the fact that the disjunction
φ2 ∨ φ3 ∨ φ4 has a rank higher thanφ1. Hence, there is a
compensation effect. So, in order to recover the lexicographi-
cal order,φ1 must have a rank strictly greater than the rank of
φ2 ∨φ3 ∨φ4. A way to do this is to significantly differentiate
the different ranks associated with strata. For this, we asso-
ciate to each formula(φij , ki) ∈ Si the rankNki whereN is
very large.N should be s.t.∀i, Nki > Σj>iN

kj . Such anN
always exists. It means that the rank given to a stratum must
be greater than the sum of all the ranks of the less reliable
strata.
Following these two ideas,K ′ is formally constructed as fol-
lows:
Let K = {S1, . . . , Sn}, andϕ a new sure information:

1. We define a new baseB:
B = {(φij , N

ki) : i = 1, n and φij ∈ Si}.
2. K ′ = {(Dj(B), aj)} whereDj(B) is the set of all pos-

sible disjunctions of sizej between formulas ofB, and
aj is the sum of ranks of formulas inDj(B).

Then we have:

Proposition 4 K ′
ϕ `A ψ iff Kϕ `Lex ψ.

Step 2: Adjustment onK ′
ϕ ≡ DMA on Kϕ

The following proposition shows that the baseK ′ constructed
in Step 1 allows us to recover the lexicographical system.

Proposition 5 Let K = {S1, . . . , Sn} be a stratified base,
and ϕ be a sure formula. LetK ′ be a base constructed in
Step 1. Then,

K ′
ϕ `A ψ ⇔ Kϕ `DMA ψ.

Due to the lack of space, we skip the proof of Prop. 5 and
illustrate its main ideas by an example. The idea is to simplify
the computation ofδA(K ′

ϕ) until recoveringδDMA(Kϕ).

Example 2 Let K = {S1, S2} whereS1 = {¬a ∨ ¬b ∨ c}
andS2 = {a, b, g}. Letϕ = ¬c.
First it can be checked that
δDMA(K¬c) = {¬c,¬a ∨ ¬b ∨ c, a ∨ b, g}.
LetN be a large number. Using Step 1, we have:
B = {(¬a ∨ ¬b ∨ c,N2), (a,N), (b,N), (g,N)}.
The baseK ′ obtained from Step 1 (after removing tau-
tologies): K ′ = {(¬a ∨ ¬b ∨ c ∨ g,N2 + N), (¬a ∨
¬b ∨ c,N2), (a ∨ b ∨ g, 3N), (a ∨ b, 2N), (a ∨ g, 2N), (b ∨
g, 2N), (a,N), (b,N), (g,N)}.
Since we apply Adjustment onK ′

¬c, the first idea is to ignore
formulas inK ′

¬c under the inconsistency level (see Section
3.3). We can check thatInc(K ′

¬c) = N . Then,δA(K ′
¬c)

is the classical base (obtained by ignoring the ranks) associ-
ated with{(¬c,+∞), (¬a∨¬b∨ c∨g, N2 +N), (¬a∨¬b∨
c,N2), (a∨b∨g, 3N), (a∨b, 2N), (a∨g, 2N), (b∨g, 2N)}.
The second idea is that subsumed disjunctions are not added.
In this example, since¬a∨¬b∨ c anda∨ b, a∨ g, b∨ g will



belong toδA(K ′
¬c) then there is no need to keep the disjunc-

tions¬a ∨ ¬b ∨ c ∨ g anda ∨ b ∨ g.
Lastly, the other disjunctions can be refined. SinceC =
{¬c,¬a ∨ ¬b ∨ c, a, b} is inconsistent, then all disjunctions
constructed fromg and this conflictC are reduced tog.
Therefore, we haveδA(K ′

¬c) ≡ {¬c,¬a ∨ ¬b ∨ c, a ∨ b, g}
which is equivalent toδDMA(K¬c).

7 Experimental results
We now present some experimental results which illus-
trate the different behaviour of each strategy. We used a
propositional logic implementation of the strategies3. We
chose 8 inconsistent bases at random from the DIMACS
challenge (aim-50-no) containing 50 variables each and 80
clauses for the first 4, 100 clauses for the others. Then we
stratified the bases with 20 clauses per strata, keeping the
clauses in their original order. It appeared that each time the
conflicts were discovered and weaken in the second strata,
no more appeared in the remaining strata. The following
table gives the number of clauses in the second strata after
applying a given strategy. WDMA (resp. IDMA) stands for
whole-DMA (resp. iterative DMA).

#clauses t1 t2 t3 t4 t5 t6 t7 t8
Adj. 0 0 0 0 0 0 0 0
MA 17 7 8 18 13 7 10 17
DMA 17 54 49 18 21 60 35 18
WDMA 168 149 153 161 161 155 152 160
IDMA 17 54 49 18 21 60 35 18

There are no differences between DMA and IDMA because
on these examples consistency was either restored using
d2(C) (t2,t3,t5,t6,t7) or all the clauses involved in a conflict
have to were removed. Whole-DMA clearly hides the
information contained in the knowledge base by generating
a large number of clauses but timewise its fast. Let us now
take a look at the time spent computing each strategy.

time (s) t1 t2 t3 t4 t5 t6 t7 t8
Adj. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MA 137 0.6 2.0 332 6.1 0.3 1.2 304
DMA 136 0.6 2.1 329 6.2 0.3 1.2 302
WDMA 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
IDMA 139 0.6 2.1 329 6.0 0.3 1.2 306

These results can be interpreted as follows: computing the
set of clauses involved in conflicts (kernel) is costly, so all
methods relying on this information will require small KB’s
to revise. This can be achieved for instance using modular
KB’s, a common practice in knowledge engineering.
Interestingly, since the three DMA approaches we introduced
are logically equivalent, we can propose one way to effi-
ciently compute the DMA policy: whole DMA, only based
on satisfiability testing. This method can be used for instance
if the knowledge base is hidden to the final user, and that only
the queries are important. On the other hand, if the knowledge
base itself is important for the user, such that the revised base
must be as “close” as possible to the original one, an IDMA
approach should be used (only necessary information will be

3ADS: http://cafe.newcastle.edu.au/daniel/ADS/

weakened), but a computational cost must be paid. DMA is a
tradeoff between these two policies.

8 Conclusion
We introduced a new family of computationally effective
strategies for conflict resolution which can be used for ex-
ception handling, iterated belief revision and merging infor-
mation from multiple sources. The most important feature of
our strategy is that it relies on weakening conflicting infor-
mation rather than removing conflicts completely, and hence
is retains at least as much, and in most cases more, informa-
tion than all other known strategies. Furthermore, it achieves
this higher retention of information at no extra computational
cost. We compared and contrasted three implementations of
our new strategy with existing ones from a theoretical stand-
point and by measuring their relative performance. We were
also able to show the surprising result that the DMA policy
provides a compilation of the lexicographical system which
is known to have desirable theoretical properties. DMA of-
fers the clear advantage of obviating the need to explicitly
compute the set of all preferred subbases which can be hard.
Another pleasing result is that the DMA strategy can be im-
plemented as whole-DMA where the need to explicitly com-
pute the culprits responsible for the conflicts is not required.
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