Propositional Calculus

Atomic sentence: p, q, r ...

Boolean operators:

$$\label{eq:product} \begin{split} \neg p & - \text{not } p. \\ p \wedge q & - p \text{ and } q. \\ p \vee q & - p \text{ or } q. \\ p \Rightarrow q & - \text{ if } p \text{ then } q \\ p \Leftrightarrow q & - p \text{ if and only if } q. \end{split}$$

Sentence: Either an atomic sentence or a Boolean operator applied to sentences. Examples:

 $\begin{array}{l} p. \\ p \lor q \\ \neg p \Leftrightarrow (q \lor p). \end{array}$

A *literal* is either an atomic sentence or the negation of an atomic sentence. Examples: p, q, $\neg p$, $\neg q$.

A sentence is in *conjunctive normal form* (CNF) if it is the disjunction of literals. A set of sentences is in CNF if each sentence is in CNF.

Example: The following set of sentences is in CNF.

 $\begin{array}{l} p. \\ \neg p \lor q \lor r. \\ q \lor \neg r. \end{array}$

Converting a sentence to CNF:

- 1. Replace every occurrence of $\alpha \Leftrightarrow \beta$ by $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$. When this is complete, the sentence will have no occurrence of \Leftrightarrow .
- 2. Replace every occurrence of $\alpha \Rightarrow \beta$ by $\neg \alpha \lor \beta$. When this is complete, the only Boolean operators will be \lor , \neg , and \land .
- 3. Replace every occurrence of $\neg(\alpha \lor \beta)$ by $\neg \alpha \land \neg \beta$; every occurrence of $\neg(\alpha \land \beta)$ by $\neg \alpha \lor \neg \beta$; and every occurrence of $\neg \neg \alpha$ by α . Repeat as long as applicable. When this is done, all negations will be next to an atomic sentence.
- 4. Replace every occurrence of $(\alpha \land \beta) \lor \gamma$ by $(\alpha \lor \gamma) \land (\beta \lor \gamma)$, and every occurrence of $\alpha \lor (\beta \land \gamma)$ by $(\alpha \lor \beta) \land (\alpha \lor \gamma)$. Repeat as long as applicable. When this is done, all conjunctions will be at top level.
- 5. Break up the top-level conjunctions into separate sentences. That is, replace $\alpha \wedge \beta$ by the two sentences α and β . When this is done, the set will be in CNF.

Example:

 $\begin{array}{l} \mbox{Start: } (p \Rightarrow q) \Leftrightarrow r. \\ \mbox{After step 1: } ((p \Rightarrow q) \Rightarrow r) \land (r \Rightarrow (p \Rightarrow q)). \\ \mbox{After step 2: } (\neg(\neg p \lor q) \lor r) \land (\neg r \lor (\neg p \lor q)). \\ \mbox{Step 3(a): } ((\neg \neg p \land \neg q) \lor r) \land (\neg r \lor (\neg p \lor q)). \\ \mbox{After step 3: } ((p \land \neg q) \lor r) \land (\neg r \lor (\neg p \lor q)). \\ \mbox{After step 3: } ((p \lor r) \land (\neg q \lor r)) \land (\neg r \lor (\neg p \lor q)). \\ \mbox{After step 5: } \{ p \lor r. \\ \qquad \neg q \lor r. \\ \qquad \neg r \lor \neg p \lor q. \} \end{array}$