Syntax of Predicate Calculus

The predicate calculus uses the following types of symbols:
Constants: A constant symbol denotes a particular entity. E.g. John, Muriel, 1.

Functions: A function symbol denotes a mapping from a number of entities to a single entities: E.g.
FatherOf is a function with one argument. Plus is a function with two arguments. Father0f (John)
is some person. Plus(2,7) is some number.

Predicates: A predicate denotes a relation on a number of entities. e.g. Married is a predicate
with two arguments. 0dd is a predicate with one argument. Married(John, Sue) is a sentence that
is true if the relation of marriage holds between the people John and Sue. 0dd (P1lus(2,7)) is a true
sentence.

Variables: These represent some undetermined entity. Examples: x, s1, etc.
Boolean operators: =, V, A\, =, &.

Quantifiers: The symbols V (for all) and 3 (there exists).

Grouping symbols: The open and close parentheses and the comma.

A term is either
1. A constant symbol; or
2. A variable symbol; or
3. A function symbol applied to terms.
Examples: John, x, Father0f (John), Plus(x,Plus(1,3)).

An atomic formula is a predicate symbol applied to terms.
Examples: 0dd(x). 0dd(plus(2,2)). Married(Sue,Father0f (John)).

A formula is either
1. An atomic formula; or
2. The application of a Boolean operator to formulas; or
3. A quantifier followed by a variable followed by a formula.

Examples: 0dd(x). 0dd(x) V —0dd(Plus(x,x)). Jy 0dd(Plus(x,y)).
V, 0dd(x) = —0dd(Plus(x,3)).

A sentence is a formula with no free variables. (That is, every occurrence of every variable is
associated with some quantifier.)

Clausal Form

A literal is either an atomic formula or the negation of an atomic formula.
Examples: 0dd(3). —0dd(Plus(x,3)). Married(Sue,y).

A clause is the disjunction of literals. Variables in a clause are interpreted as universally quantified
with the largest possible scope.

Example: 0dd(x) V 0dd(y) V —0dd(Plus(x,y)) is interpreted as
Vyy 0dd(x) V 0dd(y) V —0dd(Plus(X,Y)).
Converting a sentence to clausal form

1. Replace every occurrence of a< g by
(a=p) A (f=a). When this is complete, the sentence will have no occurrence of <.



2. Replace every occurrence of a=-3 by maV 3. When this is complete, the only Boolean operators
will be V, =, and A.

3. Replace every occurrence of —(a V ) by —a A =8; every occurrence of =(a A 3) by —a V —f;
and every occurrence of -« by a.
New step: Replace every occurrence of -3, by V,—« and every occurrence of =V, a by 3,,—a.
Repeat as long as applicable. When this is done, all negations will be next to an atomic

sentence.

4. (New Step: Skolemization). For every existential quantifier 3,, in the formula, do the following:
If the existential quantifier is not inside the scope of any universal quantifiers, then
i. Create a new constant symbol .
ii. Replace every occurrence of the variable p by ~.

iii. Drop the existential quantifier.
If the existential quantifier is inside the scope of universal quantifiers with variables A; ... Ag,then

i. Create a new function symbol ~.
ii. Replace every occurrence of the variable p by the term y(A; ... Ag)
iii. Drop the existential quantifier.
Example. Change 3; Blue(x) to Blue(Sk1).

Change V,3, 0dd(Plus(x,y)) to Vyx 0dd(Plus(x,Sk2(x)).
Change VY, y3,V.T P(x,y,z,a,b) to P(x,y,Sk3(x,y),a,8ké4(x,y,a)).

5. New step: Elimination of universal quantifiers:
Part 1. Make sure that each universal quantifier in the formula uses a variable with a different
name, by changing variable names if necessary.
Part 2. Drop all univeral quantifiers.

Example. Change [Vy P(x)] V [Vx Q(x)] to P(x) V Q(x1).
6. (Same as step 4 of CNF conversion.) Replace every occurrence of (a A 8) V

by (aV~y) A (8V~), and every occurrence of a V (BA7Y) by (aV 3) A (aV+y). Repeat as long
as applicable. When this is done, all conjunctions will be at

top level.

7. (Same as step 5 of CNF conversion.) Break up the top-level conjunctions into separate sen-
tences. That is, replace aw A B by the two sentences a and 3. When this is done, the set will
be in CNF.

Example:

Start. Vy [Even(x) < [Vy Even(Times(x,y))]1]

After Step 1: Vy [[Even(x) = [V, Even(Times(x,y))]1] A
[[Vy Even(Times(x,y))] = Even(x)]].

After step 2: Vx [[-Even(x) V [Vy Even(Times(x,y))]] A
[-[Vy Even(Times(x,y))] V Even(x)1].

After step 3: Ve [[-Even(x) V [Vy Even(Times(x,y))1] A
[[dy —Even(Times(x,y))] V Even(x)]].



After step 4: Ve [[-Even(x) V [Vy Even(Times(x,y))1] A
[-Even(Times(x,Sk1(x))) V Even(x)]].

After step 5: [-Even(x) V Even(Times(x,y))] A
[-Even(Times(x,Sk1(x))) V Even(x)].

Step 6 has no effect.

After step 7: —Even(x) V Even(Times(x,y)).
—Even(Times(x,Sk1(x))) V Even(x).

Resolution

A substitution is an association of variables with terms;
Example: 0 = { x — A, y — F(2) } is a substitution.

The application of a substitution o to a clause ¢, written ¢o, is the clause that is obtained when
each occurrence in ¢ of a variable in ¢ is replaced by the associated term.

Example: If ¢ is the clause P(x,y) V —Q(y,z), and o is the substution above, then ¢o is P(A,F(z))
vV Q(F(2),2).

Fact: If ¢ is true, then ¢o is true.

Let « and 8 be atomic formulas. « and § are unifiable if there are substutions o 4 and o such that
aca = Bop.

Examples. P(A,B) is unifiable with P(x,y) under the substitution o = { x —A, y —B }
P(A,B) is not unifiable with P(x,x).
P(A,z) is unifiable with P(z,B) under the substitutions o4 = {z - B }, op = {z — A }.

P(F(x),w) is unifiable with P(z,z) under the substitutions 04 = { w —» F(x) }, op = { z —
F(x) }.

P(F(x),x) is not unifiable with P(z,z).

There may be more than one set of substitutions that unifies two formulas. For example P(A,F(A),x)
can be unified with P(A,F(A),y) by substituting x for y, or by substituting A for both X and y, or
by substituting F(A) for both x and y, or by substituting F(w) for both x and y etc. However, the

best way to unify them is to substitute x for y (or vice versa), because all the other substitutions
can be derived by further substitutions from it. It is called the most general unifier (mgu).

Resolution: Rules of Inference

1. (Factoring) Let ¢ be the clause a1 V aga V ... V . Let o; and «y; be two literals that are either
both positive or both negative, and let o be a single substitution that unifies a; and «;. Then infer

(¢ — aj)o.
Example: From P(A,x) V P(y,B) V Q(x,y,C) infer P(A,B) V Q(B,A,C).

2. (Resolution) Let ¢ be the clause ay V as V ... V ag, and let ¢ be the clause 51V f2 V ... V Bp.
Suppose that a; = v and 3; = =, where v and § are atomic and where y unifies with § under the
substitutions o4 and op Then infer (¢ — a;)oa V (¥ — B;)oB.

Examples: From P(A,B) VvV Q(B,C) and —=P(x,y) V R(x,y) infer Q(B,C) V R(A,B).

From Man(Socrates) and —Man(x) V Mortal (x), infer Mortal (Socrates).



From Man(Socrates) and —Man(x) infer the empty clause.

Fact: A is an inconsistent set of clauses if and only if there is a derivation of the empty clause from
A using the rules of resolution and of factoring.

Resolution: Proof Technique

To prove sentence ¢ from a set of axioms I':
Step 1. Set A =T U {—¢};
Step 2. Convert A to clausal form.

Step 3. Keep applying rules 1 and 2 to derive new sentences. If you succeed in deriving the empty
clause, then ¢ is provable from I'. If there is no way to derive the empty clause, then ¢ is not
provable.

Example:

Given: 1. Vg1 ¢o Subset(sl,s2) & [Vy Member(x,sl1) = Member(x,s2)].
Prove: H.Vg1 5253 [Subset(sl,s2) A Subset(s2,s3)] = Subset(sl,s3).

Negation of H: 2. =[Vg1 5253 [Subset(s1,s2) A Subset(s2,s3)] = Subset(sl,s3)].

Converted to clausal form:

la. —Subset(s1,s2) V —Member(x,sl) V Member(x,s2).
1b. Member (Sk0(s1,s2),s1) V Subset(sl,s2).

lc. —Member (Sk0(s1,s2),s2) V Subset(sl,s2).

2a. Subset (Sk1,S8k2).

2b. Subset (Sk2,Sk3).

2c¢. —Subset (Sk1,8k3).

. —Member (x,Sk1) V Member (x,Sk2).
. —Member (x,Sk2) V Member (x,Sk3).
—Member (x,Skl1) V Member(x,Sk3).
. Member (Sk0(Sk1,Sk3),Sk1).

. —Member (Sk0(Sk1,Sk3),Sk3) .

. Member (Sk0(Sk1,Sk3), Sk3).

. The empty clause.

From 2a and 1a, infer
From 2b and 1la, infer
From 3 and 4, infer
From 2c and 1b infer
From 2c¢ and 1c infer
From 6 and 5 infer
From 7 and 8 infer



