Syntax of Predicate Calculus

The predicate calculus uses the following types of symbols:
Constants: A constant symbol denotes a particular entity. E.g. John, Muriel, 1.
Functions: A function symbol denotes a mapping from a number of entities to a single entities: E.g. FatherOf is a function with one argument. Plus is a function with two arguments. FatherOf (John) is some person. Plus $(2,7)$ is some number.
Predicates: A predicate denotes a relation on a number of entities. e.g. Married is a predicate with two arguments. Odd is a predicate with one argument. Married (John, Sue) is a sentence that is true if the relation of marriage holds between the people John and Sue. Odd (Plus $(2,7)$) is a true sentence.

Variables: These represent some undetermined entity. Examples: x, s1, etc.
Boolean operators: $\neg, \vee, \wedge, \Rightarrow, \Leftrightarrow$.
Quantifiers: The symbols \forall (for all) and \exists (there exists).
Grouping symbols: The open and close parentheses and the comma.
A term is either

1. A constant symbol; or
2. A variable symbol; or
3. A function symbol applied to terms.

Examples: John, x, FatherOf (John), Plus(x, Plus (1,3)).
An atomic formula is a predicate symbol applied to terms.
Examples: Odd(x). Odd(plus(2,2)). Married(Sue,FatherOf(John)).
A formula is either

1. An atomic formula; or
2. The application of a Boolean operator to formulas; or
3. A quantifier followed by a variable followed by a formula.

Examples: $\operatorname{Odd}(\mathrm{x}) . \operatorname{Odd}(\mathrm{x}) \vee \neg \operatorname{Odd}($ Plus $(\mathrm{x}, \mathrm{x})) . \exists_{\mathrm{x}} \operatorname{Odd}($ Plus $(\mathrm{x}, \mathrm{y}))$.
$\forall_{\mathrm{x}} \operatorname{Odd}(\mathrm{x}) \Rightarrow \neg \operatorname{Odd}($ Plus $(\mathrm{x}, 3))$.
A sentence is a formula with no free variables. (That is, every occurrence of every variable is associated with some quantifier.)

Clausal Form

A literal is either an atomic formula or the negation of an atomic formula.
Examples: Odd(3). $\neg \operatorname{Odd}($ Plus $(x, 3))$. Married(Sue, y).
A clause is the disjunction of literals. Variables in a clause are interpreted as universally quantified with the largest possible scope.

Example: Odd $(\mathrm{x}) \vee \operatorname{Odd}(\mathrm{y}) \vee \neg \operatorname{Odd}($ Plus $(\mathrm{x}, \mathrm{y}))$ is interpreted as $\forall_{\mathrm{x}, \mathrm{y}} \operatorname{Odd}(\mathrm{x}) \vee \operatorname{Odd}(\mathrm{y}) \vee \neg \operatorname{Odd}($ Plus $(\mathrm{X}, \mathrm{Y}))$.

Converting a sentence to clausal form

1. Replace every occurrence of $\alpha \Leftrightarrow \beta$ by $(\alpha \Rightarrow \beta) \wedge(\beta \Rightarrow \alpha)$. When this is complete, the sentence will have no occurrence of \Leftrightarrow.
2. Replace every occurrence of $\alpha \Rightarrow \beta$ by $\neg \alpha \vee \beta$. When this is complete, the only Boolean operators will be \vee, \neg, and \wedge.
3. Replace every occurrence of $\neg(\alpha \vee \beta)$ by $\neg \alpha \wedge \neg \beta$; every occurrence of $\neg(\alpha \wedge \beta)$ by $\neg \alpha \vee \neg \beta$; and every occurrence of $\neg \neg \alpha$ by α.
New step: Replace every occurrence of $\neg \exists_{\mu} \alpha$ by $\forall_{\mu} \neg \alpha$ and every occurrence of $\neg \forall_{\mu} \alpha$ by $\exists_{\mu} \neg \alpha$. Repeat as long as applicable. When this is done, all negations will be next to an atomic sentence.
4. (New Step: Skolemization). For every existential quantifier \exists_{μ} in the formula, do the following: If the existential quantifier is not inside the scope of any universal quantifiers, then
i. Create a new constant symbol γ.
ii. Replace every occurrence of the variable μ by γ.
iii. Drop the existential quantifier.

If the existential quantifier is inside the scope of universal quantifiers with variables $\Delta_{1} \ldots \Delta_{k}$, then
i. Create a new function symbol γ.
ii. Replace every occurrence of the variable μ by the term $\gamma\left(\Delta_{1} \ldots \Delta_{k}\right)$
iii. Drop the existential quantifier.

Example. Change \exists_{x} Blue (x) to Blue (Sk1).
Change $\forall_{\mathrm{x}} \exists_{\mathrm{y}} \operatorname{Odd}($ Plus $(\mathrm{x}, \mathrm{y}))$ to $\forall_{\mathrm{x}} \operatorname{Odd}($ Plus $(\mathrm{x}, \operatorname{Sk} 2(\mathrm{x}))$.
Change $\forall_{x, y} \exists_{z} \forall_{a} \exists_{b} P(x, y, z, a, b)$ to $P(x, y, \operatorname{Sk} 3(x, y), a, \operatorname{Sk} 4(x, y, a))$.
5. New step: Elimination of universal quantifiers:

Part 1. Make sure that each universal quantifier in the formula uses a variable with a different name, by changing variable names if necessary.
Part 2. Drop all univeral quantifiers.
Example. Change $\left[\forall_{x} P(x)\right] \vee\left[\forall_{x} Q(x)\right]$ to $P(x) \vee Q(x 1)$.
6. (Same as step 4 of CNF conversion.) Replace every occurrence of $(\alpha \wedge \beta) \vee \gamma$
by $(\alpha \vee \gamma) \wedge(\beta \vee \gamma)$, and every occurrence of $\alpha \vee(\beta \wedge \gamma)$ by $(\alpha \vee \beta) \wedge(\alpha \vee \gamma)$. Repeat as long as applicable. When this is done, all conjunctions will be at top level.
7. (Same as step 5 of CNF conversion.) Break up the top-level conjunctions into separate sentences. That is, replace $\alpha \wedge \beta$ by the two sentences α and β. When this is done, the set will be in CNF.

Example:

```
Start. }\mp@subsup{\forall}{\textrm{x}}{}[\operatorname{Even}(\textrm{x})\Leftrightarrow[\mp@subsup{\forall}{\textrm{y}}{}\operatorname{Even}(Times(x,y))]
After Step 1: }\quad\mp@subsup{\forall}{x}{}[[\operatorname{Even}(\textrm{x})=>[\mp@subsup{\forall}{y}{}\operatorname{Even}(Times(x,y))]] 
    [[\forally Even(Times(x,y))] }=>\mathrm{ Even(x)]].
After step 2: }\quad\mp@subsup{\forall}{\textrm{x}}{}[[\neg\operatorname{Even}(\textrm{x})\vee[\mp@subsup{\forall}{\textrm{y}}{2}\operatorname{Even}(Times(x,y))]] 
    [\neg[\forally Even(Times(x,y))] V Even(x)]].
After step 3: }\quad\mp@subsup{\forall}{\textrm{x}}{}[[\neg\operatorname{Even}(\textrm{x})\vee[\mp@subsup{\forall}{\textrm{y}}{2}\operatorname{Even}(Times(x,y))]] 
    [[\existsy \negEven(Times(x,y))] V Even(x)]].
```

After step 4: $\quad \forall_{\mathrm{x}}\left[\left[\neg \operatorname{Even}(\mathrm{x}) \vee\left[\forall_{\mathrm{y}} \operatorname{Even}(\operatorname{Times}(\mathrm{x}, \mathrm{y}))\right]\right] \wedge\right.$
$[\neg \operatorname{Even}(T i m e s(x, \operatorname{Sk1}(x))) \vee$ Even(x)]].

After step 5: $\quad[\neg \operatorname{Even}(x) \vee \operatorname{Even}(T i m e s(x, y))] \wedge$
$[\neg \operatorname{Even}(T i m e s(x, \operatorname{Sk1}(x))) \vee$ Even(x)].
Step 6 has no effect.
After step 7: $\quad \neg$ Even $(x) \vee$ Even (Times (x, y)).
\neg Even(Times $(x, \operatorname{Sk} 1(x))) \vee$ Even(x).

Resolution

A substitution is an association of variables with terms;
Example: $\sigma=\{\mathrm{x} \rightarrow \mathrm{A}, \mathrm{y} \rightarrow \mathrm{F}(\mathrm{z})\}$ is a substitution.
The application of a substitution σ to a clause ϕ, written $\phi \sigma$, is the clause that is obtained when each occurrence in ϕ of a variable in σ is replaced by the associated term.

Example: If ϕ is the clause $\mathrm{P}(\mathrm{x}, \mathrm{y}) \vee \neg \mathrm{Q}(\mathrm{y}, \mathrm{z})$, and σ is the substution above, then $\phi \sigma$ is $\mathrm{P}(\mathrm{A}, \mathrm{F}(\mathrm{z}))$ $\vee Q(F(z), z)$.

Fact: If ϕ is true, then $\phi \sigma$ is true.
Let α and β be atomic formulas. α and β are unifiable if there are substutions σ_{A} and σ_{B} such that $\alpha \sigma_{A}=\beta \sigma_{B}$.

Examples. $\mathrm{P}(\mathrm{A}, \mathrm{B})$ is unifiable with $\mathrm{P}(\mathrm{x}, \mathrm{y})$ under the substitution $\sigma_{B}=\{\mathrm{x} \rightarrow \mathrm{A}, \mathrm{y} \rightarrow \mathrm{B}\}$
$P(A, B)$ is not unifiable with $P(x, x)$.
$\mathrm{P}(\mathrm{A}, \mathrm{z})$ is unifiable with $\mathrm{P}(\mathrm{z}, \mathrm{B})$ under the substitutions $\sigma_{A}=\{\mathrm{z} \rightarrow \mathrm{B}\}, \sigma_{B}=\{\mathrm{z} \rightarrow \mathrm{A}\}$.
$\mathrm{P}(\mathrm{F}(\mathrm{x}), \mathrm{w})$ is unifiable with $\mathrm{P}(\mathrm{z}, \mathrm{z})$ under the substitutions $\sigma_{A}=\{\mathrm{w} \rightarrow \mathrm{F}(\mathrm{x})\}, \sigma_{B}=\{\mathrm{z} \rightarrow$ $F(x)\}$.
$P(F(x), x)$ is not unifiable with $P(z, z)$.
There may be more than one set of substitutions that unifies two formulas. For example $P(A, F(A), x)$ can be unified with $P(A, F(A), y)$ by substituting x for y, or by substituting A for both X and y, or by substituting $\mathrm{F}(\mathrm{A})$ for both x and y , or by substituting $\mathrm{F}(\mathrm{w})$ for both x and y etc. However, the best way to unify them is to substitute x for y (or vice versa), because all the other substitutions can be derived by further substitutions from it. It is called the most general unifier (mgu).

Resolution: Rules of Inference

1. (Factoring) Let ϕ be the clause $\alpha_{1} \vee \alpha_{2} \vee \ldots \vee \alpha_{k}$. Let α_{i} and α_{j} be two literals that are either both positive or both negative, and let σ be a single substitution that unifies α_{i} and α_{j}. Then infer $\left(\phi-\alpha_{j}\right) \sigma$.
Example: From $P(A, x) \vee P(y, B) \vee Q(x, y, C)$ infer $P(A, B) \vee Q(B, A, C)$.
2. (Resolution) Let ϕ be the clause $\alpha_{1} \vee \alpha_{2} \vee \ldots \vee \alpha_{k}$, and let ψ be the clause $\beta_{1} \vee \beta_{2} \vee \ldots \vee \beta_{m}$. Suppose that $\alpha_{i}=\gamma$ and $\beta_{j}=\neg \delta$, where γ and δ are atomic and where γ unifies with δ under the substitutions σ_{A} and σ_{B} Then infer $\left(\phi-\alpha_{i}\right) \sigma_{A} \vee\left(\psi-\beta_{j}\right) \sigma_{B}$.
Examples: From $P(A, B) \vee Q(B, C)$ and $\neg P(x, y) \vee R(x, y)$ infer $Q(B, C) \vee R(A, B)$.
From Man(Socrates) and $\neg \operatorname{Man}(x) \vee \operatorname{Mortal}(x)$, infer Mortal (Socrates).

From Man(Socrates) and \neg Man(x) infer the empty clause.
Fact: Δ is an inconsistent set of clauses if and only if there is a derivation of the empty clause from Δ using the rules of resolution and of factoring.

Resolution: Proof Technique

To prove sentence ϕ from a set of axioms Γ :
Step 1. Set $\Delta=\Gamma \cup\{\neg \phi\} ;$
Step 2. Convert Δ to clausal form.
Step 3. Keep applying rules 1 and 2 to derive new sentences. If you succeed in deriving the empty clause, then ϕ is provable from Γ. If there is no way to derive the empty clause, then ϕ is not provable.

Example:

Given: 1. $\forall_{\mathrm{s} 1, \mathrm{~s} 2} \operatorname{Subset}(\mathrm{~s} 1, \mathrm{~s} 2) \Leftrightarrow\left[\forall_{\mathrm{x}} \operatorname{Member}(\mathrm{x}, \mathrm{s} 1) \Rightarrow \operatorname{Member}(\mathrm{x}, \mathrm{s} 2)\right]$.
Prove: H. $\forall_{\mathrm{s} 1, \mathrm{~s} 2, \mathrm{~s} 3}[\operatorname{Subset}(\mathrm{~s} 1, \mathrm{~s} 2) \wedge \operatorname{Subset}(\mathrm{s} 2, \mathrm{~s} 3)] \Rightarrow \operatorname{Subset}(\mathrm{s} 1, \mathrm{~s} 3)$.

Negation of H: 2. $\neg\left[\forall_{\mathrm{s} 1, \mathrm{~s} 2, \mathrm{~s} 3}[\operatorname{Subset}(\mathrm{~s} 1, \mathrm{~s} 2) \wedge \operatorname{Subset}(\mathrm{s} 2, \mathrm{~s} 3)] \Rightarrow \operatorname{Subset}(\mathrm{s} 1, \mathrm{~s} 3)\right]$.
Converted to clausal form:
1a. $\neg \operatorname{Subset}(\mathrm{s} 1, \mathrm{~s} 2) \vee \neg \operatorname{Member}(\mathrm{x}, \mathrm{s} 1) \vee \operatorname{Member}(\mathrm{x}, \mathrm{s} 2)$.
1b. Member (Sk0 (s1,s2),s1) V Subset (s1,s2).
1c. \neg Member (Sk0 $(\mathrm{s} 1, \mathrm{~s} 2), \mathrm{s} 2) \vee \operatorname{Subset}(\mathrm{s} 1, \mathrm{~s} 2)$.
2a. Subset (Sk1,Sk2).
2b. Subset (Sk2,Sk3).
2c. $ᄀ$ Subset (Sk1,Sk3).

From 2a and 1a, infer
From 2b and 1a, infer
From 3 and 4, infer
From 2c and 1 b infer
From 2c and 1c infer
From 6 and 5 infer
From 7 and 8 infer
3. \neg Member $(x, S k 1) \vee \operatorname{Member}(x, S k 2)$.
4. \neg Member ($\mathrm{x}, \mathrm{Sk} 2$) $\vee \operatorname{Member}(\mathrm{x}, \mathrm{Sk} 3)$.
5. \neg Member ($\mathrm{x}, \mathrm{Sk} 1$) $\vee \operatorname{Member}(\mathrm{x}, \mathrm{Sk} 3)$.
6. Member (Sk0 (Sk1, Sk3) , Sk1).
7. \neg Member (Sk0 (Sk1, Sk3) , Sk3).
8. Member (Sk0 (Sk1, Sk3), Sk3).
9. The empty clause.

