
ID3 Algorithm

ID3(in T : table; C : classification attribute)
return decision tree

{ if (T is empty) then return(null); /* Base case 0 */
N := a new node;
if (there are no predictive attributes in T) /* Base case 1 */

then label N with most common value of C in T (deterministic tree)
or with frequencies of C in T (probabilistic tree)

else if (all instances in T have the same value V of C) /* Base case 2 */
then label N, “X.C=V with probability 1”

else { for each attribute A in T compute AVG ENTROPY(A,C,T);
AS := the attribute for which AVG ENTROPY(AS,C,T) is minimal;
if (AVG ENTROPY(AS,C,T) is not substantially smaller than ENTROPY(C,T)) /* Base case 3 */

then label N with most common value of C in T (deterministic tree)
or with frequencies of C in T (probabilistic tree).

else {
label N with AS;
for each value V of AS do {

N1 := ID3(SUBTABLE(T,A,V),C) /* Recursive call */
if (N1 != null) then make an arc from N to N1 labelled V;
}

} }
return N;

}

SUBTABLE(in T : table; A : predictive attribute; V : value) return table;
{ T1 := the set of instance X in T such that X.A = V;

T1 := delete column A from T1;
return T1

}

/* Note: in the textbook this is called I(p(v1) . . . p(vk)) */
ENTROPY(in C : classification attribute; T : table) return real number;
{ for each value V of C, let p(V) := FREQUENCY(C,V,T);

return −
∑

V
p(V ) log

2
(p(V )) /* By convention, we consider 0 · log2(0) to be 0. */

}

/* Note; In the textbook this is called “Remainder(A)” */
AVG ENTROPY(in A: predictive attribute; C : classification attribute; T : table)

return real number;
{ return

∑
V

FREQUENCY(A,V,T) · ENTROPY(C,SUBTABLE(T,A,V)) }

FREQUENCY(in B : attribute; V : value; T : table) return real number;
{ return #{ X in T | X.B=V } / size(T); }

1


