
On Soft Foundations for Geometric Computation

Chee Yap

Courant Institute, NYU

26th Fall Workshop on Computational Geometry
Oct 27-28, 2016

1 / 32

Overview

I. Introduction

II. Roots

III. Motion Planning

IV. Conclusion

2 / 32

Next...

I. Introduction

II. Roots

III. Motion planning

IV. Conclusion

[Start] [End]

3 / 32

I

I. Introduction

4 / 32

Trouble with Computational Models

Ancient Greek Geometry

5 / 32

Trouble with Computational Models

Ancient Greek Geometry

– Ruler and Compass Model

5 / 32

Trouble with Computational Models

Ancient Greek Geometry

– Ruler and Compass Model

Logic of Computing

5 / 32

Trouble with Computational Models

Ancient Greek Geometry

– Ruler and Compass Model

Logic of Computing

– Turing Machine Model (Church’s Thesis)

5 / 32

Trouble with Computational Models

Ancient Greek Geometry

– Ruler and Compass Model

Logic of Computing

– Turing Machine Model (Church’s Thesis)

Geometric Computing

5 / 32

Trouble with Computational Models

Ancient Greek Geometry

– Ruler and Compass Model

Logic of Computing

– Turing Machine Model (Church’s Thesis)

Geometric Computing

– Real RAM model

5 / 32

Trouble with Computational Models

Ancient Greek Geometry

– Ruler and Compass Model

Logic of Computing

– Turing Machine Model (Church’s Thesis)

Geometric Computing

– Real RAM model (not Church Equivalent!)

... the trouble begins

5 / 32

The Numerical Nonrobustness Phenomenon

The trouble according to Numerical Analysts

6 / 32

The Numerical Nonrobustness Phenomenon

The trouble according to Numerical Analysts

– “Pitfalls of Numerical F.P. Computation”

6 / 32

The Numerical Nonrobustness Phenomenon

The trouble according to Numerical Analysts

– “Pitfalls of Numerical F.P. Computation”

The trouble according to Computational Geometers

6 / 32

The Numerical Nonrobustness Phenomenon

The trouble according to Numerical Analysts

The trouble according to Computational Geometers

– (crash, loop, inconsistency, etc)

– Geometric/topological roots

– “Bugbear” [Sedgewick], “Unsolvable problem” [Forrest]

6 / 32

The Numerical Nonrobustness Phenomenon

The trouble according to Numerical Analysts

The trouble according to Computational Geometers

Computational Geometry attacks (1980-2000)

6 / 32

The Numerical Nonrobustness Phenomenon

The trouble according to Numerical Analysts

The trouble according to Computational Geometers

Computational Geometry attacks (1980-2000)

– Many approaches: E.g., what is a Line?

pixelSet [graphics], polyLine [Hobby,Yao],

fatLine [Guibas], consistency [Fortune,Hopcroft],

bounded equations [Suigahara]

6 / 32

The Numerical Nonrobustness Phenomenon

The trouble according to Numerical Analysts

The trouble according to Computational Geometers

Computational Geometry attacks (1980-2000)

... but what about Exact Computation?

6 / 32

Exact Geometric Computation (EGC)

The EGC prescription

7 / 32

Exact Geometric Computation (EGC)

The EGC prescription

– Ensure all branches are error-free Rx

(The “Take Home Message”)

– Be exact, but only where needed!

7 / 32

Exact Geometric Computation (EGC)

The EGC prescription

– Ensure all branches are error-free Rx

7 / 32

Exact Geometric Computation (EGC)

The EGC prescription

– Ensure all branches are error-free Rx

Most general/successful solution

– So numerical approximations are allowed

– suffices to have an EGC number type

– Libraries: Core Library, LEDA, CGAL

7 / 32

Exact Geometric Computation (EGC)

The EGC prescription

– Ensure all branches are error-free Rx

Most general/successful solution

... therein lies the seed of our next challenge

7 / 32

Barriers to EGC

EGC algorithms may not be Turing computable

8 / 32

Barriers to EGC

EGC algorithms may not be Turing computable

– E.g., transcendental functions (log,sin,exp, . . .)

– The Zero Problem (Numerical Halting Problem!)

8 / 32

Barriers to EGC

EGC algorithms may not be Turing computable

EGC may be too inefficient

8 / 32

Barriers to EGC

EGC algorithms may not be Turing computable

EGC may be too inefficient

– E.g., Euclidean shortest path is exponential in
bit-complexity

8 / 32

Barriers to EGC

EGC algorithms may not be Turing computable

EGC may be too inefficient

EGC requires full degeneracy analysis

8 / 32

Barriers to EGC

EGC algorithms may not be Turing computable

EGC may be too inefficient

EGC requires full degeneracy analysis

– Vor diagram of polyhedral objects (Open Problem!)

8 / 32

Barriers to EGC

EGC algorithms may not be Turing computable

EGC may be too inefficient

EGC requires full degeneracy analysis

Exact computation is unnecessary/inappropriate

8 / 32

Barriers to EGC

EGC algorithms may not be Turing computable

EGC may be too inefficient

EGC requires full degeneracy analysis

Exact computation is unnecessary/inappropriate

– E.g., robot motion planning, Wireless problems

– No physical system is accurate to > 8 digits !

8 / 32

Barriers to EGC

EGC algorithms may not be Turing computable

EGC may be too inefficient

EGC requires full degeneracy analysis

Exact computation is unnecessary/inappropriate

...beyond EGC?

8 / 32

Towards Soft Alternative Models

...but which?

9 / 32

Towards Soft Alternative Models

...but which? – let us look at examples!

9 / 32

Towards Soft Alternative Models

...but which? – let us look at examples!

Subdivision Algorithms!!

A. Algebraic Problems – F(x) ∈ R[x] or C[x]

9 / 32

Towards Soft Alternative Models

...but which? – let us look at examples!

Subdivision Algorithms!!

A. Algebraic Problems – F(x) ∈ R[x] or C[x]

A.1 Root isolation and clustering

– [ISSAC’06,’09,’11,’12,’16, SNC’11, CiE’13]

A.2 Meshing (Isotopic approximation of surfaces)

– [ISSAC’08,SoCG’09,’12, SPM’12, ICMS’14]

9 / 32

Towards Soft Alternative Models

...but which? – let us look at examples!

Subdivision Algorithms!!

A. Algebraic Problems – F(x) ∈ R[x] or C[x]

B. Combinatorial Problems – polyhededral set Ω⊆ Rd

9 / 32

Towards Soft Alternative Models

...but which? – let us look at examples!

Subdivision Algorithms!!

A. Algebraic Problems – F(x) ∈ R[x] or C[x]

B. Combinatorial Problems – polyhededral set Ω⊆ Rd

B.1 Robot motion planning

– [SoCG’13, WAFR’14, FAW’15]

B.2 Voronoi diagrams

– [ISVD’13, SGP’16]

9 / 32

Towards Soft Alternative Models

...but which? – let us look at examples!

Subdivision Algorithms!!

A. Algebraic Problems – F(x) ∈ R[x] or C[x]

B. Combinatorial Problems – polyhededral set Ω⊆ Rd

WHAT TO LOOK OUT FOR:

– Avoiding the Zero Problem (What is this?)

– Replacing Algebraic Techniques by Numerical Ones

– Soft Concepts (What is this?) (i.e., numerical, but relative

to “hard” or Algebraic notions)

9 / 32

Next...

I. Introduction

II. Roots

III. Motion planning

IV. Conclusion

[Start] [End]

10 / 32

II

II. Roots

“The history of the zero recognition problem is somewhat confused by
the fact that many people do not recognize it as a problem at all.”

— DANIEL RICHARDSON (1996)

“Eventually, the topic [...of proving non-zeroness...] takes over the
whole subject [...of Transcendental Number Theory...]”

— DAVID MASSER (2000)

11 / 32

Introduction

Zero-dimensional geometry:

Fundamental Theorem of Algebra (FTA)

Every complex polynomial of degree n

has exactly n complex roots, counted with multiplicity

12 / 32

Introduction

Zero-dimensional geometry:

Fundamental Theorem of Algebra (FTA)

Every complex polynomial of degree n

has exactly n complex roots, counted with multiplicity

Real roots:

12 / 32

Introduction

Zero-dimensional geometry:

Fundamental Theorem of Algebra (FTA)

Every complex polynomial of degree n

has exactly n complex roots, counted with multiplicity

Complex roots:

12 / 32

Introduction

Numerical Analyst’s view:

– compute an ε-disc for each root

Computer Algebra’s view: (exact computation)

– Root Isolation: first compute disjoint discs

– Root Refinement: then make discs ε-small

12 / 32

Introduction

Numerical Analyst’s view:

– compute an ε-disc for each root

Computer Algebra’s view: (exact computation)

– Root Isolation: first compute disjoint discs

– Root Refinement: then make discs ε-small
(focus)

12 / 32

Classical History of FTA

Root Finding

has roots (no pun intended) in antiquity (Babylonians)

Associated with most of the “pantheon” of mathematicians
I Descartes, Newton, d’Alembert, Euler, Lagrange,

I Laplace, Gauss, Fourier, Sturm, Weierstrass,

I Vincent, Obreshkorff, Ostrowski, Brouwer, Weyl, Henrici, ...

– Weierstrass (1891) (basis of Durand-Kerner-Aberth)

– Weyl (1924) (subdivision approach)

13 / 32

Modern History of FTA

Modern FTA research can be dated to 1981

14 / 32

Modern History of FTA

Modern FTA research can be dated to 1981

* Arnold Schönhage (1982):

FTA in Terms of Computational Complexity

– Unpublished

* Steve Smale (1981):

FTA and Complexity Theory

– Bulletin (N.S.) of the AMS.

14 / 32

Modern History of FTA

Modern FTA research can be dated to 1981

– Smale and Schönhage

Each paper initiated a line of research, active to this day!

14 / 32

Modern History of FTA

Modern FTA research can be dated to 1981

– Smale and Schönhage

Each paper initiated a line of research, active to this day!

Terminology:

– Benchmark Problem : isolate all roots of integer polynomial

– Near-Optimal Bound : Õ(n2L) for Benchmark problem

(where n=degree, L=coefficient bitsize)

– Global vs. Local root isolation

14 / 32

Modern History of FTA

Modern FTA research can be dated to 1981

– Smale and Schönhage

Each paper initiated a line of research, active to this day!

Terminology:

The Schönhage-Pan Near-Optimal Bound was known for 25 years

– But never implemented.

“Our algorithms are quite involved, ... implementation would require a

non-trivial work, incorporating numerous known implementation

techniques and tricks.” – [Pan 2002]

– Basically, we cannot implement a Real RAM algorithm

(like many algorithms of CG)

14 / 32

Modern History of FTA

So, WHAT is implemented in computer algebra systems?

– Subdivision algorithms! (Sturm, Descartes, Eval, ...)

– lagged behind the theoretical best bounds

– recent progress in complexity of subdivision

(tree-size & bit complexity)

14 / 32

EVAL for Real Roots

Algorithm Real Roots of f (x) in I = [a,b]

Start with Q = {I}
While Q 6= /0

Remove J from Q
If 0 /∈ f (J) discard J
Elif 0 /∈ f ′(J) output J
Elif bisect J and put into Q

15 / 32

EVAL for Real Roots

– I call this the EVAL algorithm

– Simple and easy to implement

– Applicable even for analytic f

– Catch: simple roots only (HINT: it is numerical)

15 / 32

EVAL for Real Roots

How good is it?

– Depends on how you implement the predicates!

Exclusion, C0(J) : 0 /∈ f (J)

Inclusion, C1(J) : 0 /∈ f ′(J)

– Remark: numerical heuristics might skip Inclusion test

(e.g., Yakoubsohn 2005)

15 / 32

EVAL for Real Roots

How good is it?

– Depends on how you implement the predicates!

Exclusion, C0(J) : 0 /∈ f (J)

Inclusion, C1(J) : 0 /∈ f ′(J)

– Remark: numerical heuristics might skip Inclusion test

(e.g., Yakoubsohn 2005)

THEOREM [Sharma-Y, ISSAC 2012]

If f (J) is implemented in “centered form” then

EVAL tree size is O(n(L + r + logn) for Benchmark Problem

15 / 32

EVAL for Real Roots

THEOREM [Sharma-Y, ISSAC 2012]

If f (J) is implemented in “centered form” then

EVAL tree size is O(n(L + r + logn) for Benchmark Problem

Optimal for L≥ n (matching Sturm!)

– Else, incomparable with [Burr-Krahmer 2012] or [Sagraloff-Y 2011]

– Analysis based on Continuous Amortization

TAKE AWAY: Numerical Methods may be surprisingly good if done right

15 / 32

EVAL for Real Roots

Bit complexity was tougher story:

– lagged behind by factor of Õ(n)

– breakthrough in Descartes method [Sagraloff 2012]

15 / 32

Near-Optimal Subdivision for Complex Roots

THEOREM [Ruben-Sagraloff-Sharma-Y, 2015]

There is a subdivision algorithm with near-optimal bit

complexity Õ(n2(L + n)) for Benchmark Problem.

– independent of Schönhage’s Circle Splitting method

– local method

– implementable (explicit error bounds)

16 / 32

Near-Optimal Subdivision for Complex Roots

SOFT INGREDIENTS:

16 / 32

Near-Optimal Subdivision for Complex Roots

SOFT INGREDIENTS:

Soft comparison E : F

Outcomes: E > F or E < F or 1
2 < |E/F |< 2

16 / 32

Near-Optimal Subdivision for Complex Roots

SOFT INGREDIENTS:

Soft comparison E : F

Pellet Test (1881)

Let ∆ = Disc(r ,m) and k = 0, . . . ,n.

Tk (∆) :
∣∣∣fk (m)

∣∣∣rm > ∑
i 6=k

∣∣∣fi(m)
∣∣∣r i

implies #(∆) = k .

WHAT conclusion if the test fails?

16 / 32

Near-Optimal Subdivision for Complex Roots

SOFT INGREDIENTS:

Soft comparison E : F

Soft Converse to Pellet:

THEOREM [Ruben-Sagraloff-Sharma-Y]

If k = #(∆ = #(Kn4∆) then Tk (∆) holds

16 / 32

Near-Optimal Subdivision for Complex Roots

SOFT INGREDIENTS:

Soft comparison E : F

Soft Converse to Pellet:

THEOREM [Ruben-Sagraloff-Sharma-Y]

If k = #(∆ = #(Kn4∆) then Tk (∆) holds

– Tools: Graeffe and Newton iterations

– Newton-Bisection technique (Sagraloff-Abbot)

– Planned implementation

16 / 32

Payoffs of Soft Approach

Adaptive complexity bounds

based on local geometric parameters

instead of global synthetic parameters

17 / 32

Payoffs of Soft Approach

Beyond the Benchmark Problem

Analytic Roots [CiE 2013]

Polynomials in C[z] [ISSAC 2016]

Key Issue:

how to avoid the Zero Problem?

17 / 32

Payoffs of Soft Approach

The ε-Root Clustering Problem

Must output multiplicity per disc

This avoids the Zero problem,

but arbitrariness of clusters?

17 / 32

Payoffs of Soft Approach

On Natural Clusters

Natural clusters are disjoint or has inclusion relation

– at most 2n natural clusters, forming a tree!

– NOW: we can address analytic roots, bit-stream polynomials,
etc

17 / 32

Next...

I. Introduction

II. Roots

III. Motion planning

IV. Conclusion

[Start] [End]

18 / 32

III

III. Motion planning

19 / 32

Motion Planning

Youtube video from SoCG’2016.

20 / 32

https://www.youtube.com/watch?v=YYbzUEXy2Sk&feature=youtu.be

Motion Planning

Youtube video from SoCG’2016.

20 / 32

https://www.youtube.com/watch?v=YYbzUEXy2Sk&feature=youtu.be

Introduction

Modern Robots

Sci-Fi robot (Karel Capek, 1921)

Industrial robot (1980s)

21 / 32

Introduction

Domestic robot (2000s):

21 / 32

Introduction

Fun robots (Drones – 2010s):

21 / 32

Introduction

Basic Motion Planning Problem :

How do you move from A to B, avoiding obstacles?

Assuming you have a map and know your location

21 / 32

Introduction

Basic Motion Planning Problem :

How do you move from A to B, avoiding obstacles?

Assuming you have a map and know your location

(safest)

(smoothest)

(fastest)

A B

Robot R0 is fixed; input is (A,B,map)

21 / 32

Introduction

Kinematics only! (a.k.a. “path planning”)

What we leave out:

Dynamics, non-holonomic constraints, optimality, SLAM

Why? Partly because of lack of softness

21 / 32

3 Approaches

3 Approaches to Path Planning

Basic Problem in Robotics for over 40 years

We mention 3 basic approaches:

22 / 32

3 Approaches

(I) Subdivision Approach

“A subdivision algorithm in configuration

space for findpath with rotation”

— Brooks and Lozano-Perez (8th IJCAI, 1983)

22 / 32

3 Approaches

(I) Subdivision Approach

(II) Exact Approach

“On the piano mover’s problem: II.

General techniques for computing topological

properties of real algebraic manifolds”

— Schwartz and Sharir (Advances Appl.Math., 1983)

22 / 32

3 Approaches

(I) Subdivision Approach

(II) Exact Approach

(III) Sampling Approach (PRM)

“Probabilistic roadmaps for path planning in

high-dimensional configuration spaces”

— Kavraki, Svestka, Latombe, and Overmars

(IEEE Trans. Robotics and Automation, 1996)

22 / 32

3 Approaches

State-of-Art today (challenges):

(I) Subdivision Approach
I still popular

I Cannot scale beyond medium DOF’s (4 or 5 DOF’s)

(II) Exact Approach
I connectivity of semi-algebraic sets

I Not practical beyond 3DOF

(III) Sampling Approach (PRM)
I dominated the field in the last 2 decades

I Very weak guarantees

I Grapples with the narrow passage problem

22 / 32

3 Approaches

Our goal:

reconsider the foundations for subdivision method

22 / 32

Subdivision

Subdivision Approach

What do we subdivide?

Configuration space Cspace = Cspace(R0)

E.g.,

Cspace = R2 (Disc)

Cspace = SE(3) = R3×SO(2) (Rigid planar robot)

Cspace = R3×SO(3) (Rigid spatial robot)

Cspace = R2×T 2 (2-link robot)

23 / 32

Subdivision

Classify every box B ⊆ Cspace as

FREE (GREEN),

STUCK (RED),

MIXED (YELLOW),

ε-small (GREY).

What is B when Cspace is non-Euclidean?

23 / 32

Subdivision

Classify every box B ⊆ Cspace as

FREE (GREEN),

STUCK (RED),

MIXED (YELLOW),

ε-small (GREY).

What is B when Cspace is non-Euclidean?

Youtube video from SoCG’2016.

23 / 32

https://www.youtube.com/watch?v=YYbzUEXy2Sk&feature=youtu.be

Resolution Exactness

3 Notions of Correctness:

Exact Approach:

(Path) If there is a path, must output one

(NoPath) If there is no path, must output NO-PATH

24 / 32

Resolution Exactness

3 Notions of Correctness:

Exact Approach:

Subdivision Approach: “Resolution Complete”

(εPath) If there is a path,

must return one if resolution ε is fine enough

24 / 32

Resolution Exactness

3 Notions of Correctness:

Exact Approach:

Subdivision Approach:

Sampling Approach: “Probabilistic Complete”

(PPath) If there is a path,

must “probably” return one if enough samples N are taken

24 / 32

Resolution Exactness

What is wrong with Exactness?

Exactness does not make sense for robotics
I Sensors, environments, actuators, robot dimensions are all approximate

I Physical constants are known to 8 digits

Zero problem, efficiency, degeneracy

Non-adaptive

24 / 32

Resolution Exactness

What is wrong with Resolution/Probabilistic Completeness?

They are silent about the “NoPath” case!

This leads to a Halting Problem

disguised as the Narrow Passage Problem

(the central problem of Sampling Approach for 20 years)

24 / 32

Resolution Exactness

Given a resolution parameter, ε > 0.

How to use it?

Conventional answer:

(εPath) If there is a path of clearance ε ,

must return one

(εNoPath) If there is no path of clearance ε ,

must return NO-PATH

No improvement over exact approach!

“exact planning with ε-fattened robot or obstacles”

“No soft enough”

24 / 32

Resolution Exactness

Our solution [Wang-Chang-Y, SoCG’2013]:

a planner is resolution-exact

if it has a constant K > 1 such that

(εPath) If there is a path of clearance K ε ,

will return one

(εNoPath) If there is no path of clearance ε/K ,

will return NO-PATH

24 / 32

Resolution Exactness

What does the output tell us?

Contra-positive view:

If planner returns NO-PATH,

then the optimal clearance is < K ε

If planner returns a path,

then the optimal clearance is > ε/K

Indeterminacy (!!) when optimal clearance lies in gap (ε/K ,K ε)

Big Payoff: we escaped the Zero Problem

24 / 32

Searching

Subdivision Search

How to exploit resolution-exactness?

Subdivision (of course)!

25 / 32

Searching

Soft Subdivision Search (SSS):

While Q is non-empty:

if (Find(Box(α)) = Find(Box(β)) return PATH.

B← Q.getNext()

Expand(B) into children

Classify new boxes as FREE, STUCK, MIXED.

FREE-boxes are put into a union-find

structure, and unioned with neighbors

MIXED-boxes are put in Q
ε-small boxes discarded

Return NO-PATH

25 / 32

Searching

Plug-and-play Framework:

3 data structures

Subdivision tree

Priority Queue Q

Union-Find Data Structure D

3 subroutines

Q.getNext()

Expand(B)

Classify(B)

25 / 32

Softness

Subdivision Search + Soft Predicates

The classification C(B) could be done exactly

In fact, all authors seems to assume this!

This does not exploit the full power of subdivision

The new ingredient is... softness

26 / 32

Softness

Exact classification: C(B) ∈ {FREE,STUCK,MIXED}:

Soft Classification: C̃(B) ∈ {FREE,STUCK,MIXED}:

(1) Conservative

C̃(B) 6= MIXED implies C̃(B) = C(B)

(2) Convergent

p = limi→∞ Bi implies C(p) = limi→∞ C̃(B)

Call C̃ a soft version of C.

26 / 32

Softness

Compared to “PRM Framework”:

C̃(B) ≡ Collision Detector

Adjacency ≡ Connect(u,v)

26 / 32

Softness

Power of SSS (shared with PRM, not Exact Approach):

– Flexible (plug-n-play subroutines)

– Easy to extend/generalize (fattened robot/obstacles)

– Adaptive complexity (cf. exact methods)

– One basic algorithmic framework

(cf. Machine Learning “field with ONE algorithm”)

26 / 32

Softness

Design of Soft Predicates

Can be implemented using only numerical approximations

Our technique is based on feature sets

LaValle calls it

“opening up the blackbox of collision detection”

26 / 32

Softness

Search Strategy

– Has no impact on correctness for us

– In PRM, all the effort is done here

Split Strategy

– T/R Splitting

– Critical for the success of our 2-Link Robot

26 / 32

Subdivision in SO(3)

Subdivision in SO(3)

ISSUE : How to do subdivision in non-Euclidean Space?

IDEA : borrow idea of charts from differential geometry

Consider SO(3) or SO3

3×3 real orthogonal matrices with determinant 1

27 / 32

Subdivision in SO(3)

Can view SO3 as unit quaternions

q = (a,b,c,d) = a + ib + jc + kd

where

i2 = j2 = k2 = ijk =−1

Unit means N(q) := a2 + b2 + c2 + d1 = 1

27 / 32

Subdivision in SO(3)

The 3-Sphere S3 ⊆ R4

Thus S3/∼ is a model of SO3

where q ∼−q

Consider the 4-cube I4 ⊆ R4 where

where I = [−1,1] W

O

Y

Z
X

27 / 32

Subdivision in SO(3)

Z
X

W

(a) Cw

O

Y

O

Y

Z
X

W

O

Y

Z
X

W

O

Y

Z

W

X

(c) Cz (d) Cy

(b) Cx

The boundary ∂ I4

is composed of eight 3-cubes

27 / 32

Subdivision in SO(3)

Represent SO3 as the union of four 3-cubes:

Cw = cube defined by corners O,X ,Y ,Z ,−

Cx = cube defined by corners O,−,Y ,Z ,W

Cy = cube defined by corners O,X ,−,Z ,W

Cz = cube defined by corners O,X ,Y ,−,W

Let H3 := Cw ∪Cx ∪Cy ∪Cz be the cubic hemisphere
representation of SO3, with suitable identifications

27 / 32

Subdivision in SO(3)

Use language of chart/atlas of differential geometry:

Each Ci ⊆ H3 has a chart

µi : Ci → SO(3)

where µi(q) = q/‖q‖.

The set {µi : i = w ,x ,y ,z} is a subdivision atlas of SO(3)

The transition map between these charts are trivial.

Get global homeomorphism µ : H3→ SO(3) after
identifications.

UPSHOT: can now do subdivision on the domain of each chart µi .

27 / 32

SSS theory

What Makes SSS Work? SSS Theory

The trick in axiomatization is not be too general

(to avoid general nonsense),

but enough to capture useful applications with interesting
properties.

28 / 32

SSS theory

The Abstract View:

Replace Cspace by a metric space (X ,dX)

Replace Cfree by an open subset Y ⊆ X .

We write X = XT ×XR

where XT is translational, Euclidean

XR is rotational, non-Euclidean, compact

28 / 32

SSS theory

Obstacles live in physical space Rk (k = 2,3)

ISSUE: relate dX (·, ·) to the separation in Rk

Footprint function : Fprint : Cspace→ 2R
k

where Fprint(γ) = physical space occupied by the robot

Fix the obstacle set Ω⊆ Rk .

Clearance function : C` : Cspace→ R≥0

is defined as

Sep(Fprint(γ),Ω).

28 / 32

SSS theory

Subdivision in X :

test cells : full-dimensional compact convex polytopes in Rd

Let X be a set of test cells,

and Expand(B) : X → 2 X return a (nondeterministic)
subdivision of B.

E.g., X is the set of simplices,

and Expand(B) returns a bisection at some edge of B.

28 / 32

SSS theory

Cover XR by a subdivision atlas , {µ1, . . . ,µt}

µi : Bi → Xi (homeomorphism)

X1, . . . ,Xt is a subdivision of XR

Atlas is good if it has a chart constant C0 > 0

if (∀q,q′ ∈ Bi)

1/C0 ≤ dX (µ(q),µ(q′))
‖q−q′‖ ≤ C0

28 / 32

SSS theory

So far: no discussion of rate of convergence of C̃(B)

We need it for “resolution exactness”

Define: C̃(B) is σ - effective (σ > 1) if

C(B) = FREE implies C̃(B/σ) = FREE.

28 / 32

SSS theory

THEOREM: SSS is resolution-exact under these five axioms:

I (A0: softness) C̃ is a σ -effective soft version of C
I (A1: expansion) There is D0 > 2 such that Expand returns a

subdivision of size ≤ D0, each cell with at most D0 vertices and
ratio `(B)/w(B)≤ D0.

I (A2: Lipschitz) There is L0 > 0 such that for all γ,γ ′ ∈ Y ,
|C`(γ)−C`(γ ′)|< L0dX (γ,γ ′).

I (A3: Good Atlas) The subdivision atlas has an atlas constant
C0 ≥ 1.

I (A4: Translational Cell) There is a constant K0 > 0 such that if
B ∈ X is free, then the inner center c0 = c0(B) has clearance
C`(c0)≥ K0r0(B).

28 / 32

SSS theory

Remarks:

Constants in these axioms:

σ ,D0,C0,L0,K0.

The resolution-exact constant is

K := C0D0ε(1 + σ)L0.

Proof is quite involved because of axiom (A4).

28 / 32

Next...

I. Introduction

II. Roots

III. Motion planning

IV. Conclusion

[Start] [End]

29 / 32

IV

IV. Conclusion

30 / 32

Conclusion

Recap:

– we wanted an alternative to Real RAM

– plan was to look at concrete examples

i.e., Root Isolation and Motion Planning

“Saw that soft solutions are superior to hard ones”

31 / 32

Conclusion

Recap:

Recall:

A. Algebraic Problems – F(x) ∈ R[x] or C[x]

A.1 Root isolation and clustering

– [ISSAC’06,’09,’11,’12,’16, SNC’11, CiE’13]

A.2 Meshing (Isotopic approximation of surfaces)

– [ISSAC’08,SoCG’09,’12, SPM’12, ICMS’14]

31 / 32

Conclusion

Recap:

Recall:

A. Algebraic Problems

B. Combinatorial Problems – polyhededral set Ω⊆ Rd

B.1 Robot motion planning

– [SoCG’13, WAFR’14, FAW’15]

B.2 Voronoi diagrams

– [ISVD’13, SGP’16]

31 / 32

Conclusion

Recap:

Recall:

A. Algebraic Problems

B. Combinatorial Problems

Upshot:

– main algorithmic paradigm is subdivision/iteration

– what emerges is a numerical computation model

Quote from Nick Trefethan in ICMS 2014...

31 / 32

Conclusion

Recap:

Recall:

Upshot:

Outlook:

– Scope of computational geometry vastly broadened

– Some unsolvable problems is now in play

– Produces implementable and practical algorithms

– New algorithms for old CG problems

– Numerical CG is wide open (esp. complexity analysis)

31 / 32

Thanks for Listening!

“Algebra is generous,
she often gives more than is asked of her.”

— JEAN LE ROND D’ALEMBERT (1717-83)

“To Generalize is to be an Idiot. To Particularize is the Alone
Distinction of Merit – General Knowledges are those Knowledges that

Idiots possess.”

— William Blake (1757 – 1827)

Annotations to Sir Joshua Reynolds’s Discourses, pp. xvii – xcviii

32 / 32

	I. Introduction
	II. Roots
	III. Motion planning
	IV. Conclusion

