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Abstract

The famous Halting Problem is the ”representative problem” for what any conceivable physical
computer can compute. We briefly introduce Computability Theory by using the elegant formula-
tion of Turing Machines of Alan Turing (1937). Turing computability addresses computation over
countable sets (like strings). But many computational problems in Mathematics involve real num-
bers. The set of real numbers is uncountable, and this causes a real strain on Turing Machines!!
In fact, current theories of computation over real numbers are not satisfactory (we briefly mention
two competing approaches). The source of this mystery is what we call the ”numerical halting
problem”. Come hear why this problem s so central.

1 Introduction

• HANDOUT (This sheet)

• CLASS SURVEY: What is R? Kinds of ∞? Know Turing Machines?

• Are there problems that a computer cannot do?

• Are there problems that we STILL do not know whether a computer can do?

2 What can be computed by a Computer? (ca. 1930)

• Notations: Natural numbers N = {0, 1, 2, . . .}, and strings S∗ where S is any set of symbols. E.g.,
if S = {0, 1}, S∗ is the set of binary strings.

• Finite Automata M (see Figure 1).
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Figure 1: Finite Automata for Parity, Mod-2 and Mod-3 counters: try these for w = 0110

• EXERCISE: build M5 to count Mod-5. Mom, can I
buy an M23?• So M has a set Q of states, a set S of symbols, and a set of transition rules (q, b, q′) ∈ Q×S×Q.

(q, b, q′): “if in state q and you see b, go to q′”

(Oh, also start state q0 and final state qf .)

1



· · ·· · ·

Finite Automata

inside
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Figure 2: Turing Machine reading/writing an infinite roll of paper (tape)
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Figure 3: Turing Machine for duplicates: try it for w = 10#10.

• Turing Machines (TM) is a finite automata that has an an infinite roll of paper (tape). See
Figure 2 and Figure 3. OK, you may

call it toilet
paper• EXERCISE: build a TM to recognize “palindromes”, w#wrev where wrev is the reverse of w.

• A TM is a finite automata, but has transitions has the form:

(q, b, q′, b′,±1): “if in state q and you see b, go to q′, write b′ and move ±1”

• How does a TM computation end? Halts or Loops! Great, TM
never crashes!

• A Turing machine M accepts the set L(M) of strings which leads to the final state. (M may not
have to halt on inputs it does not accept.) A set L is recursive if it is accepted by a TM that
halts on all inputs.

• (Gödel Numbers) Each TM’s description can be viewed as a natural number N = {0, 1, 2, . . .}.
Let TMn be the TM whose description is n.

• The Halting Problem is to accept the set: H = {n ∈ N : TMn(n) halts}. The Halting
Problem!

• THEOREM: The set H is not recursive.
(Sketch: Suppose TM2008 accepts H. We construct another TM which imitates TM2008 but does the opposite outcome.

This is TM
n
′ for some n′. What will TM2008 do with n′? Get contradiction!)

• THEOREM: The set H is accepted by some non-halting TM. (Sketch: Easy – on input n, just simulated Great, a conso-
lation prizethe TMn

• CONCLUSION: In a certain sense, accepting H is the hardest problem for TMs. Any problem
you can solve on a TM, you can “reduced” it to H.
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3 What about computing over Reals? (ca. 2008)

• Most problems in scientific computing and engineering involve real numbers.
Problem: R is uncountable. Finite strings are insufficient as TM inputs.

• Two current approaches:
(Analytic Approach) Allow the TM to read infinite input sequences (going back to Turing).
(Algebraic Approach) View real numbers as “atomic” and we have the capability to directly
perform arithmetic operations on them, including testing its sign.

• Many computations reduce to decisions which is dependent on knowing if a number is 0. The ZERO
Problem!• E.g., in computational geometry, we want to know if a point is on a line, or to the left or right of

the line.

• Numbers have canonical names (e.g., 0, 1/2, π,
√

2). But we are not given canonical names, but
expressions! Is there a prob-

lem?Are the following expressions zero?
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• Try using a hand calculator on the above (they all appear as zero)

• Precision: if x, x̃ are real numbers, and |x − x̃| < 10−n then x̃ is an approximation of x with
precision n. E.g., 3.142 is an approximation of π to precision 3.

• Assume we can approximate constants like π, and do operations like +,−,×,÷,
√·, log, . . . to any

precision we choose. There are software for doing this. Using such software, can we decide if an

expression E is zero? If E 6= 0, we will halt; but if E 6= 0, we can never halt! Ahh, I see why
you call it the
the numer-
ical halting
problem!

• Problems with current approaches:
(Analytic Approach) It is impossible to decide zero.
(Algebraic Approach) Deciding zero is trivial (but it shouldn’t be).

• CONCLUSION: So what do we know here? Not much more than the algebraic case (like
√·)! If the

answer is NO (like the HALTING problem), it means that many of our continuous computations
can never be guaranteed.

4 Conclusion

We talked about real numbers as a surrogate for continuous computation. Similarly, computing with
finite strings is a surrogate for discrete computation.

Fundamental questions about the nature of discrete computation have been answered from the 1930’s
by logicians such as Turing, Church, Gödel, Kleene, etc.

But even a suitable computational model for continuous computation is unsettled in 2008. We invite
you (who have a long career ahead) to think about such basic questions.

To learn further: http://cs.nyu.edu/exact/.
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