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2ABSTRACT

Exact Geometric Computation (EGC) has been developed over the last decade by computational
geometers in response to the widespread problem of numerical non-robustness in geometric algorithms.
It is currently the most successful approach to nonrobustness, and its technology has been encoded
in libraries such as LEDA, CGAL and Core Library. The unique requirement of EGC is the necessity
to decide zero in its computation. The zero problem arises in many challenging problems such as
surface intersection in geometric modeling, meshing of implicit surfaces with guaranteed topology,
determination of singularity and automated geometric theorem proving. The complexity of such zero
problems ranges from easy to undecidable. We seek a theory of computation that properly accounts
for this phenomenon.
Standard computability (via Turing machines) is a theory of computation over countable domains
such as strings or natural numbers. Computing over uncountable domains such as real numbers turns
out to be much more subtle. There are two current approaches in the theory of real computation:
the analytic model going back to Turing (1936) and Grzegorcyzk (1955), and the algebraic model
represented by the Blum-Shub-Smale model and Real RAMs of theoretical computer science. Smale
and others have pointed out that such a theory amounts to a foundation for scientific computation
and numerical analysis. Unfortunately the zero problem is undecidable in the analytic model and
trivial in the algebraic model.
We propose a synthesis to resolve this discrepancy. First, we modify the analytic approach so that the
primary focus is on approximability rather than computability. The zero problem is embedded in the
problem of relative approximability of functions, and the central open questions revolves around the
composability of functions. We modify Schoenhage’s pointer machine model to capture geometric
computation, which is characterized by combinatorial structures implicitly defined by numerical data.
The algebraic model reappears in our synthesis as an abstract computation model for which the central
questions revolves around transfer theorems: when is algebraic computability imply approximability?
In this talk, we first give a brief introduction to EGC and survey some recent results on zero problems.
We outline the theory of real approximation and show its relation to analytic computability and
algebraic computability.
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3TALK OVERVIEW

• What is Exact Geometric Computation (EGC)?

• Why care about nothing (Zero)?

• What can be Solved in the EGC sense?

• A New Synthesis: Theory of Real Approximation
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PART I.
WHAT IS EGC?
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5Nonrobustness Phenomenon

• Software Loops, Crashes or Produces Inconsistent Output
∗ caused by numerical errors

∗ intermittent

• E.g., Mesh Generation
∗ Point Classification Problem

∗ Misclassification⇒ Dirty meshes

• E.g., Boolean Operations on Sets
∗ Example next

• Etc, etc.
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6Nonrobust Commercial CAD Software

• From Mehlhorn and Hart (2001)

SYSTEM n α TIME OUTPUT

ACIS 1000 1.0e-4 5 min correct

ACIS 1000 1.0e-5 4.5 min correct

ACIS 1000 1.0e-6 30 min too difficult!

Microstation95 100 1.0e-2 2 sec correct

Microstation95 100 0.5e-2 3 sec incorrect!

Rhino3D 200 1.0e-2 15 sec correct

Rhino3D 400 1.0e-2 – crash!

CGAL/LEDA 5000 6.175e-6 30 sec correct

CGAL/LEDA 5000 1.581e-9 34 sec correct

CGAL/LEDA 20000 9.88e-7 141 sec correct

∗ Last three rows, from the CGAL/LEDA software, are always correct.

∗ This last column shows 3 forms of failure.
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7Example of CFD in Aircraft Industry

Computational Fluid Dynamics (CFD) applications with 50 million elements
– quote from T. Peters and D. Ferguson (Boeing Company)

• 10-20 minutes for surface mesh generation

• 3-4 hours for volume meshing

• 1 hour for actual flow analysis

• 2-4 weeks for geometry repair

Techniques now exists to eliminate the repair stage...
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8The Economic Imperative: why we must solve this

• Negative Economic Impact
∗ Nonrobustness is barrier to full automation in industry

∗ Software bugs cost billions of $/year to US industries (NIST Report 2002)

• Scientific Productivity
∗ Wasted Programmers/researchers’ time

• Mission Critical Computation
∗ Patriot missile in Gulf War (1990)

∗ French Ariane Rocket failure (1995)

∗ North Sea Oil Platform Collapse (1996)

∗ · · ·
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9Paths to Robust Numerical Algorithms

• In practice: Epsilon-Tweaking
∗ Never compare against zero

∗ IF (x < |ε|) THEN ... ELSE ...

• Approaches in the Computational Geometry literature:
∗ Numerically Stable Algorithms (Fortune,...)

∗ Finite Precision Geometry (Yao-Greene, Sugihara,...)

∗ Topological Approach (Sugihara-Iri, Milenkovic,...)

∗ Consistency Approach (Hopcroft-Hoffman-Karasick, Fortune,...)

∗ Interval Geometry Approach (Guibas, Sequin-Segal,...)

∗ Exact Geometric Computation
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10Again, What is Geometry?

• Euclid, Descartes, Klein, Hilbert, Tarski, Dieudonné, ...
∗ Alexandrov, Toth, Atiyah, Chern, ...

• Computational Perspective: Geometry is about discrete relations
∗ Is a point on a line?

∗ Does a plane intersect a sphere?

• “Geometry = Combinatorics + Numerics”
∗ E.g., 2-D Convex Hull = circular graph + point labels
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11• Implicit Consistency Requirement
∗ E.g., Points of convex hull in convex position

∗ If not, we get a “qualitative” error
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12How to Compute Exactly, in the Geometric Sense

• Algorithm Execution = Sequence of Steps

• Step = either Construction Step or Test Step
∗ Construction Step: x := x + 2

∗ Test Step: IF (x = 0) THEN . . . ELSE . . .

• Test Step = determines the path in computation tree

• Combinatorial relations are determined by the path taken

• THEREFORE, if all comparisons are correct, we take the correct path
∗ HENCE, the geometry will be correct

∗ This is the take home slide!
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13Features of EGC

• “Exactness” is in the geometry, NOT the arithmetic

• Approximate numbers CAN/MUST be exploited
∗ Floating point filters

• ECG uses standard geometry (!)

• ECG is “algorithm-neutral”
∗ Any correct algorithm can be used (even “unstable ones”)

∗ No need to design special “robust algorithms”

• Running time has adaptive complexity
∗ Related to condition numbers

• Practical experience from LEDA and CGAL
∗ Factor of 2-10 for basic 2-D and 3-D problems

∗ Significant user base, including industrial partners

• Most successful approach to nonrobustness
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14Mini-summary, Part I

• Solving numerical nonrobustness is an economic imperative
∗ “Our little closet secret” – no one talks about it, but everyone knows it is there

• Exact Geometric Computation provides a systematic solution
∗ Widely applicable through EGC number libraries
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PART II. Why Care about Nothing (Zero)?

“The history of the zero recognition problem is somewhat confused by
the fact that many people do not recognize it as a problem at all.”

— Daniel Richardson (1996)
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16Why Care About Exactness?

• My input is inexact
∗ Treat input as (nominally) exact

∗ Reformulate inexact problem as an exact one – back to EGC

• What about Consistency without Exactness?
∗ Too hard [Hopcroft-Hoffman-Karasick, Fortune]

∗ EGC is the simplest way to achieve consistency!

• Backward Error Analysis
∗ Numerical Analysis Paradigm for Inexact Problems

∗ Breaks down for Seminumerical Problems

∗ Inexact solution may be no easier than EGC

• Deciding Zero may be inevitable
∗ Needs no convincing in this audience?
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17An Object Lesson

• But is it REALLY zero?

√
2 +
√

3−
q

5 + 2
√

6 = 1.4142 + 1.7320−
√

5 + 2× 2.4494

= 3.1462−
√

9.8989

= 3.1462− 3.1462

= 0?

• Paper of Ed Scheinerman, “How Close is Close enough?”
∗ Amer.Math.Monthly, 107(2000)489–499.

• Core Demo
∗ What was the lesson the Teacher was trying to convey?

∗ Is the Teacher right?
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18What Appears to be the Problem?

• Is a number equal to zero?
∗ Decision Problem – YES/NO answers

• Why is any effort needed at all?
∗ Numbers have canonical names

∗ E.g., zero, one, two, half, negative ten, square-root two, pi, etc

∗ In symbols, 0, 1, 2, 1
2, −10,

√
2, π, . . .

• Numerical Expressions (non-canonical)
∗ 1− 1 + 1− 1,

∗ 22 + 5− 32,

∗ 1−
P∞

n=1 2−n,

∗
√

2 +
√

3−
p

5 + 2
√

6

∗ These are all 0
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19Apparent Zeros

• Folklore:
∗ 3 · log(640320)/

√
163− π < 10−15

• Graham:
∗ “√

1000001 +
√

1000025 +
√

1000031 +
√

1000084 +
√

1000087

+
√

1000134 +
√

1000158 +
√

1000182 +
√

1000198
”

−
“√

1000002 +
√

1000018 +
√

1000042 +
√

1000066 +
√

1000113

+
√

1000116 +
√

1000169 +
√

1000175 +
√

1000199
”

< 10−36

• Richardson:
∗ F (F (10−126)) < 10−1141

∗ where F (x) = (1 + x)1/2 − 2(1 + 3x/4)1/3 + 1
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20The Numerical Halting Problem

• Equality Decision: If x = y?
∗ Compute approximations ex, ey to 1002 bits

∗ If |ex− ey| < 2−1000, conclude that x = y

∗ If not, compute to 2002 bits, then 4002 bits, etc

∗ If x = y, we cannot halt!

• Assume: Can evaluate x to any precision (absolute or relative)

• Suppose we have an a priori bound B = B(x, y) > 0
∗ such that, if x 6= y, then |x− y| > B

∗ This provides the stopping criteria !

∗ B is called a (conditional) zero bound

• Feature of Zero Bound approach
∗ For algebraic expressions, such bounds are possible

∗ Semi-adaptivity — if x 6= y, the complexity depends on − log2 |x− y|
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21The Zero Problems

• Let us formalize this...

• Let Ω be a set of numerical operators
∗ Let E(Ω) denote expressions over Ω

∗ E.g., if Ω = {+,−,×,÷} ∪ Z then e = (2 + (1− 3))÷ (1− 1) is an

expression in E(Ω)

• Evaluation Function: val : E(Ω) �C

• The Zero Problem for Ω, ZERO(Ω), is this:
∗ Given e ∈ E(Ω), is val(e) = 0?

• Key Open Problem:
∗ Is the Zero Problem for Ω = {±,×,÷, n

√
·, exp, log} ∪ Z decidable?

∗ Richardson (1997): Decidable if Schanuel’s Conjecture holds

• A Zero Problem is a “canonical expression” problem in Computer Algebra
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22Robust Computation for Every Programmer?

• The principles of EGC can be encoded into a general library
∗ 1990’s – handcoded EGC solutions

∗ Vision: Any C++ Program can be robustified by calling an EGC library

• Two EGC Libraries
∗ LEDA

∗ Core Library

∗ cf. Computer Algebra libraries, Real Libraries (iRRAM, MmxLib, MPFR, etc.)

• CORE Accuracy Levels:
∗ Level I: IEEE Arithmetic

∗ Level II: Arbitrary Accuracy

∗ “Compute each operation to 1000 bits accuracy”

∗ Level III: Guaranteed Accuracy

∗ “Guarantee each variable has 1000 bits accuracy”
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23Core Library

• Delivery Mechanism in C++:

#define Core Level 3
#include "CORE.h"

... standard C++ Program here ...

• Every C++ program can be compiled into three distinct executable code!

• What is under the hood of CORE (and LEDA Real)?
∗ a = b + c constructs an Expression (DAG)

∗ Can approximate to any relative or absolute precision
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24Core Demo

• A simple geometric test

∗ Test if point P belongs to line L

• Core Demo
∗ Intersect 1024 pairs of lines with a fixed plane P in space

∗ Test if the intersection points lie in P

∗ Result: In Level 1 accuracy, only 102 points lie on P

∗ Result: In Level 3 accuracy, every point lies on P

• Knowing zero (and sign) yields correct geometry
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25Mini-summary, Part II

• Central problem of EGC is the Zero Problem
∗ Zero decision is often unavoidable

• Practical solutions must be semi-adaptive
∗ based on theory of Zero Bounds

• Technology of Robust Computation
∗ can now be made widely available, e.g., Core Library
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PART III. WHAT CAN BE SOLVED IN
THE EGC SENSE?

“It can be of no practical use to know that π is irrational, but if we can
know, it surely would be intolerable not to know.”

— E.C. Titchmarsh
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27Challenges in EGC Theory

• Solving nonlinear algebraic problems efficiently
∗ E.g., Fully adaptive surface-surface intersection

• Better constructive zero bounds

• Development and generalizations of filters
∗ Exploit fast machine arithmetic

• Degeneracy and perturbation techniques

• Compiler techniques in EGC software

• Geometric rounding – wide open

• Which problems be computed in the EGC sense?
∗ (next)

Drexel University, Distinguished Lecture Apr 19, 2007



28Shortest Path Amidst Disc Obstacles

• Given: Points p, q ∈ R2 and a collection S of discs

• Find: shortest path from p to q which avoids the obstacles in S

•

Two Discs

• Dijkstra’s shortest path algorithm: O(n2 log n)
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29What is Wrong with Dijkstra’s Algorithm?

• Real RAM model assumed

• Length of a feasible path is

d(µ) =
k∑

i=1

d(µi) = α +
m∑

i=1

θiri (1)

∗ α ≥ 0 is algebraic

∗ 0 < r1 < · · · < rm are distinct radii of discs

∗ θi is total angle (in radians) around discs of radii ri
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30Is it really Transcendental?

• LEMMA: cos θi is algebraic

• COROLLARY (Lindemann): A non-zero θi is transcendental
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31Approach for Comparing Lengths

• Assume all discs have unit radius
∗ Then d(µ) = α + θ, and d(µ′) = α′ + θ′

• LEMMA: d(µ) = d(µ′) iff α = α′ and θ = θ′

• Hence, we need to ability to add arc lengths
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32Addition of Arc Lengths
• Let A = [C, p, q, n] and A′ = [C ′, p′, q′, n′]

•

q′′′
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33Decidability [CCKPY’05]

• THEOREM 1
∗ Shortest Path for unit disc obstacles is computable.

• THEOREM 2:
∗ Shortest Path for commensurable radii discs is computable.

• No complexity Bounds!
∗ Appeal to Baker’s Linear Form in Logarithms:˛̨̨̨

˛α0 +
nX

i=1

αi log βi

˛̨̨̨
˛ > B

• THEOREM 3
∗ Shortest Paths for algebraic discs is computable.

• THEOREM 4
∗ Shortest Paths for rational discs is in single-exponential time.
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34• Remark: Rare positive result from Transcendental Number Theory
∗ First transcendental geometric problem shown computable
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35Mini-summary, Part III

• Grand Challenge in EGC
∗ Transcendental zero bounds

• Practical Challenge
∗ More efficacious zero bounds [Pion-Yap’04]

∗ Geometric zero bounds [Yap’06]

Drexel University, Distinguished Lecture Apr 19, 2007



36

PART IV.
THEORY OF REAL APPROXIMATION
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37Standard Complexity Theory

• Standard Computability Theory
∗ Turing machines, Recursive Functions

∗ Basic foundations are widely accepted

∗ Well-established complexity theory

• Wanted: Theory suitable for EGC
∗ Standard theory has countable domain (finite strings, N, Z)

∗ Need uncountable domain (Reals, Complex)

∗ Higher order computability
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38Two Approaches to Real Computation

• Analytic Approach
∗ Turing(1936), Grzegorczyk(1955), Weihrauch, Ko, etc

∗ Real numbers represented by rapidly converging Cauchy sequences

∗ Extend Turing machines to compute with infinite input/output sequences

∗ Alternative: Russian approach (numbering instead of representation)

• Algebraic Approach
∗ BSS model (Smale), Real RAMs, uniform circuit complexity

∗ Real numbers directly represented as atomic objects

∗ Real numbers are compared without error

∗ Algebraic operators are carried out without error

∗ Main interest here: (R, +,−,×, 0, 1)
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39What is Wrong?

• Known Criticisms
∗ (Analytic) Only continuous functions are computable

∗ (Algebraic) Unable to distinguish effective from noneffective reals

∗ (Algebraic) Exponential function is not computable

• Difficulties from EGC Viewpoint
∗ Zero Problem is trivial in Algebraic Approach

∗ Zero Problem is undecidable in Analytic Approach

∗ Wanted: theory where the Zero Problem depends on the real operators used

Drexel University, Distinguished Lecture Apr 19, 2007



40How We Solve Numerical Problems

• E.g., Solving a PDE model, A numerical optimization, etc

• STEP A:
∗ Design an ideal Algorithm A

∗ Assume certain operations such as ±,×, exp()

∗ Show that problem is solvable by Algorithm A

• STEP B:
∗ Implement Algorithm A as a Numerical Program B

∗ Account for numerical representation, errors, convergence, etc

∗ Specify the “correctness” criteria
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41The New Synthesis

• Step A:
∗ Algorithm A belongs to an Algebraic Model (e.g., Real RAM, BSS, etc)

∗ Basis Ω = {±,×, exp(), ...}

• Step B:
∗ Program B belongs to some “Numerical Model” (Turing machines?)

∗ We propose a numerical model (below)

• Critical Questions:
∗ Can Algorithm A be implemented by some Program B?

∗ Wanted: Transfer Theorems

• Psychological validity of Algebraic Model
∗ Even numerical analysis books proceed to Step B via Step A

∗ Various proposed refinements of the Algebraic model (Khoiran, Braverman, etc)

∗ The algebraic and numerical models play complementary roles!
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42Theory of Real Approximation

• Postulate a set F of representable reals
∗ Z ⊆ F ⊆ R
∗ F is a ring extension of Z
∗ F is countable and dense in R
∗ F has a effective representation

∗ Comparisons and Ring operations are effective

• Function f : R → R is approximable if a Turing machine compute some
f̃ : F× F → F such that:
∗ Absolute Approximability: | ef(x, p)− f(x)| ≤ 2−p

∗ Relative Approximability: | ef(x, p)− f(x)| ≤ 2−p|f(x)|

• We really want partial functions of form f : S ⊆ R �R.
∗ S is nominal domain

∗ domain(f) = {x ∈ S : f(x) =↓} is proper domain
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43Basic Properties

• LEMMA:
∗ sign(f(x)) = sign(fR(x, 1))

• THEOREM A: The following are equivalent:
∗ (i) f is R-approximable

∗ (ii) f is A-approximable and Zero(f) is decidable

• THEOREM B: There exists f0:
∗ (i) f0 is absolutely approximable in polynomial time

∗ (ii) f0 is not relatively approximable

• THEOREM C: [with C.O’Dunlaing] There exists g0, h0:
∗ g0, h0 are R-approximable in polynomial time

∗ g0 ◦ h0 is not absolutely approximable

• Composition is the basis for Zero Problems
∗ So polynomial-time class must be restrained by niceness properties, e.g., Lipschitz
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44Transfer Theorem

• THEOREM D: The following are equivalent:
∗ (I) valΩ is relatively approximable over Ω

∗ (II) For all problems F , if F is Ω-computable (algebraic model) then F is relative

Ω-approximable (numerical model).

• REMARKS:
∗ valΩ : EXPR(Ω)→ R is evaluation problem

∗ So valΩ is “universal” or “complete”.
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45Connection to Analytic School

• THEOREM E:
∗ Let f : S ⊆ R �R. If f is computable then the following two conditions hold:

∗ (i) f is partially A-approximable

∗ (ii) f has a recursively enumerable modulus cover

∗ CONVERSELY, if S is regular and then (i)+(ii) implies f is computable

• By focusing on approximability
∗ We are giving up precisely one thing: continuity of f

Drexel University, Distinguished Lecture Apr 19, 2007



46Mini-summary, Part IV
• EGC needs a Theory of Real Computation that properly address the Zero

Problem

• The Analytic and Algebraic Theories can be reconciled in a new synthesis
∗ Need transfer theorems

∗ Focus of approximation
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47Summary of Talk
• We have shown

∗ Why Nonrobustness must be solved

∗ How it can be solved in one strict interpretation (EGC)

∗ Indicated a theory of real computation that is more realistic

∗ Left many open questions to be solved
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48Thanks for Listening!

“A rapacious monster lurks within every computer,
and it dines exclusively on accurate digits.”

– B.D. McCullough (2000)

• Core Library and Papers can be download from
http://cs.nyu.edu/exact/

• Part 3 is based on: “Shortest Paths for Disc Obstacles is Computable”
∗ E.Chang, S.Choi, D.Kwon, H.Park, C.Yap. 21st SoCG, 2005.

• Part 4 is based on: “Theory of Real Computation according to EGC”
∗ C.Yap. To appear.
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END OF TALK
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50Schönhage’s Pointer Model

•

• ∆-graph G: a labelled digraph
∗ Pointer machine transforms G by re-directing edges

Type Name Instruction Meaning

(i) Node Assignment w ← w′ [w]G′ = [w′]G
(ii) Node Creation w ← new [w]G′ is new

(iii) Node Comparison if w ≡ w′ goto L G′ = G

(iv) Halt and Output HALT(w) Output G|w
(v) Value Comparison if (w ◦ w′) goto L Compare V alG(w) ◦ V alG(w′)

where ◦ ∈ {=, <,≤}
(vi) Value Assignment w := f(w1, . . . , wm) V alG′(w) = f(V alG(w1), . . . , V alG(wn))

where f ∈ Ω and w, wi ∈ ∆∗
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• ∆-graph G: a labelled digraph
∗ Pointer machine transforms G by re-directing edges

Type Name Instruction Meaning

(i) Node Assignment w ← w′ [w]G′ = [w′]G
(ii) Node Creation w ← new [w]G′ is new

(iii) Node Comparison if w ≡ w′ goto L G′ = G

(iv) Halt and Output HALT(w) Output G|w
(v) Value Comparison if (w ◦ w′) goto L Compare V alG(w) ◦ V alG(w′)

where ◦ ∈ {=, <,≤}
(vi) Value Assignment w := f(w1, . . . , wm) V alG′(w) = f(V alG(w1), . . . , V alG(wn))

where f ∈ Ω and w, wi ∈ ∆∗

Drexel University, Distinguished Lecture Apr 19, 2007



51What is a Semi-Numerical Problem?

• Knuth’s term
∗ Geometry=Discrete Relation +Numerical Data

• Schönhage’s Pointer Machines
∗ Easily simulate Turing Machines

∗ Naturally encodes combinatorial and geometric structures

• Algebraic Pointer Machines (over basis Ω)
∗ G(R) is the set of real ∆-graphs, where each node stores a real value

∗ Real Pointer Machines: manipulates real ∆-graphs relative to a set Ω of real

operators

∗ Instruction set: comparison of values, operations in Ω

• Computable Semi-Numerical Problem:
∗ A function F : G(R)→ G(R)

∗ F is Ω-computable if it is computed by some Algebraic Pointer Machine over

basis Ω
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52Numerical Model of Computation

• Numerical Pointer Machines
∗ Numerical ∆-graphs: G(F) is similarly defined

∗ Numerical Pointer Machines: manipulates G ∈ G(F)

∗ Instruction set: comparison of values, operations in ΩR

• Approximation of Real ∆-graphs by Numerical ∆-graphs
∗ eG ∈ G(F) is a p-bit relative approximation of G ∈ G(R) if

∗ eG and G are isomorphic

∗ Each value in eG is a p-bit relative approximation of the corresponding value in G

• Approximation of Semi-Numerical Problem F : G(R) → G(R)
∗ There is numerical pointer machine (over Ω) that computes FR : G(F)× F→

G(F)

∗ Such that FR(G, p) is p-bit relative approximation of F (G)
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