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2ABSTRACT

An important class of algorithms for isolating real roots of polynomials is based on the paradigm of
subdivision, basically a form of binary search. This includes the Sturm algorithm and the Descartes
method. A variant of the latter is applicable for polynomials in the Bernstein basis. Algorithms
based on the Descartes method is very efficient in practice. In this talk, we introduce a third class
of such algorithms, based on polynomial evaluation and interval arithmetic, derived from the work of
Plantinga and Vegter on meshing surfaces. Almost no previous complexity analysis of such algorithms
are known.
We describe three recent results in bounding the complexity of such algorithms:
(1) Simplified approach to the efficient evaluation of Sturm sequences. (2) Almost optimal bounds in
the Descartes method. (3) Complexity analysis of an evaluation-based root isolation algorithm.
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5

I. Subdivision Methods in Root Isolation
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6The Real Root Isolation Problem

• PROBLEM: Isolate all the real zeros of f in I.
∗ Input: interval I = [a, b] and a function f : R→ R
∗ Output: set of isolating intervals, J1, J2, . . . , Jm

∗ Each Ji ⊆ I contains a unique zero of f

• Complexity of Root Isolation
∗ Integer polynomial f(X)

∗ I = interval containing all real zeros of f(X)

∗ d = degree, L = maximum coefficient bit sizes

• Schönhage (’82) : approximate linear factorization approach
∗ Implies root isolation in time eO(d3L)

∗ Classical/Numerical Analysis literature: Weierstrass, Weyl, Aberth, Traub, etc.

∗ Complexity literature: Renegar’87, Kim-Sutherland’94, Neff-Reif’96, Pan’96, etc.

∗ No improvement on Schönhage’s bound

ACS Workshop, Athens, Greece May 8-11, 2006



6The Real Root Isolation Problem

• PROBLEM: Isolate all the real zeros of f in I.
∗ Input: interval I = [a, b] and a function f : R→ R
∗ Output: set of isolating intervals, J1, J2, . . . , Jm

∗ Each Ji ⊆ I contains a unique zero of f

• Complexity of Root Isolation
∗ Integer polynomial f(X)

∗ I = interval containing all real zeros of f(X)

∗ d = degree, L = maximum coefficient bit sizes

• Schönhage (’82) : approximate linear factorization approach
∗ Implies root isolation in time eO(d3L)

∗ Classical/Numerical Analysis literature: Weierstrass, Weyl, Aberth, Traub, etc.

∗ Complexity literature: Renegar’87, Kim-Sutherland’94, Neff-Reif’96, Pan’96, etc.

∗ No improvement on Schönhage’s bound

ACS Workshop, Athens, Greece May 8-11, 2006



6The Real Root Isolation Problem

• PROBLEM: Isolate all the real zeros of f in I.
∗ Input: interval I = [a, b] and a function f : R→ R
∗ Output: set of isolating intervals, J1, J2, . . . , Jm

∗ Each Ji ⊆ I contains a unique zero of f

• Complexity of Root Isolation
∗ Integer polynomial f(X)

∗ I = interval containing all real zeros of f(X)

∗ d = degree, L = maximum coefficient bit sizes

• Schönhage (’82) : approximate linear factorization approach
∗ Implies root isolation in time eO(d3L)

∗ Classical/Numerical Analysis literature: Weierstrass, Weyl, Aberth, Traub, etc.

∗ Complexity literature: Renegar’87, Kim-Sutherland’94, Neff-Reif’96, Pan’96, etc.

∗ No improvement on Schönhage’s bound

ACS Workshop, Athens, Greece May 8-11, 2006



6The Real Root Isolation Problem

• PROBLEM: Isolate all the real zeros of f in I.
∗ Input: interval I = [a, b] and a function f : R→ R
∗ Output: set of isolating intervals, J1, J2, . . . , Jm

∗ Each Ji ⊆ I contains a unique zero of f

• Complexity of Root Isolation
∗ Integer polynomial f(X)

∗ I = interval containing all real zeros of f(X)

∗ d = degree, L = maximum coefficient bit sizes

• Schönhage (’82) : approximate linear factorization approach
∗ Implies root isolation in time eO(d3L)

∗ Classical/Numerical Analysis literature: Weierstrass, Weyl, Aberth, Traub, etc.

∗ Complexity literature: Renegar’87, Kim-Sutherland’94, Neff-Reif’96, Pan’96, etc.

∗ No improvement on Schönhage’s bound

ACS Workshop, Athens, Greece May 8-11, 2006



7Subdivision Algorithms

• Assume a Root Estimation Procedure, ESTf(I)
∗ Let #f(J) be number of zeros of f in J

∗ EST returns #(J) = 0 or #(J) = 1 or #(J) = wha??

• Generic Subdivision Algorithm (on input I, f)
∗ Initialize queue Q with I

∗ While Q is non-empty

∗ J ← Q.remove()

∗ Call procedure ESTf(J)

∗ If #(J) = 0, discard J

∗ Else if #(J) = 1, output J

∗ Else split J into (J0, J1), and put J0, J1 into Q

• When is this an algorithm for root isolation?
∗ Only termination is at issue
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8Analysis of Three Algorithms

• Three examples of Procedure EST
∗ Sturm procedure: returns #(J)

∗ Descartes procedure: returns #(J) = 0, 1 or #(J) + 2k (unknown k)

∗ Evaluation procedure: return #(J) = 0 or #(J) = 1 or #(J) = wha??

• Bernstein basis variant of Descartes
∗ Lane-Riesenfeld’81, Mourrain-Rouillier-Roy’05, Emiris-Mourrain-Tsigaridas’06

• THIS TALK : the complexity analysis of these 3 algorithms
∗ Common Themes: amortized analysis, Davenport-Mahler Bounds
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9REMARKS

• Relative Advantages of Methods:
∗ Root approximation [Schonhage, Aberth] – simultaneously find all zeros

∗ Subdivision approach – find zeros in a region

∗ Adaptivity – inversely proportional to the cost at each node of the recursion tree

• Empirically: Descartes is superior to Sturm
∗ Collins-Akritas’76,Johnson’98,Rouillier-Zimmermann’01

∗ But Descartes is harder to analyze than Sturm [Davenport’85,Krandick’95]

∗ So until recently, bound for Descartes is worst than for Sturm

• No previous complexity analysis of Evaluation based method known
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II. Variations on Davenport-Mahler Bound
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11A Generalized Form

• THEOREM: Let f(X) ∈ Z[X] be square-free, of degree d. If α1 < β1 ≤
α2 < β2 ≤ α3 < · · · < αk ≤ βk are real roots of f(X), then

k∏
i=1

|αk − βk|
{
≤ M(f)
≥ M(f)−d+1d−d/2(

√
3/d)k

• IDEA of applications
∗ E.g., To bound the size of recursion tree,

∗ express the size as a log of the product of distances among suitable pairs of

roots

∗ E.g., for Evaluation Method, also look at critical points

• Upper Bound Proof
∗ CASE A: Suppose exists an h = 1, . . . , k such that αh < 0 < βh.

kY
i=1

|βi − αi| =

0@h−1Y
i=1

(βi − αi)

1A · |αh − βh| ·

0@ kY
i=h+1

(βi − αi)

1A
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12

≤

0@h−1Y
i=1

|αi|

1A · (|αh|+ |βh|) ·

0@ kY
i=h+1

|βi|

1A

≤ (
dY

i=1

max{1, |γi|}|) (the γi’s are distinct αj, βj ’s)

≤ M(A).

• Lower Bound Proof (Davenport)
∗ First assume A(X) is monic. Then

p
|disc(A)| = ± det V for a Vandermond

matrix V .

∗ The jth column of V has form (1, γ, γ2, . . . , γd−1)T .

∗ Extract the factors (αi−βi) from determinant by subtracting column of αi from

column of βi.

∗ Column of βi is modified but its 2-norm can be bounded by
p

d3/3 max{1, |βi|}

∗ Finally, use Hadamard’s bound. Mahler measure M(A) reappears as above.
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III. Simplified Approach to Sturm Method
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14Analysis of Sturm Method

• Classic Approach [Collin-Loos 1983]

• Complexity Analysis in 3 parts
∗ (A) Computing the Sturm sequence Sf(X) of f(X)

∗ (B) Size of the Recursion Tree

∗ (C) Complexity of Evaluation Sf(X) at a dL-bit rational X = x0

• Best known bounds
∗ (A) eO(d2L) [Reischert’97,Lickteig-Roy’01]

∗ (B) O(d(L + log d)) [Davenport’85,Du-Sharma-Y’05]

∗ (C) eO(d3L) [Reischert’97,Lickteig-Roy’01,Du-Sharma-Y’05]

∗ Overall: (A)+(B)(C)= eO(d4L2)

• Polynomial Remainder Sequences
∗ GIVEN: f(X) = f0, g(X) = f1

∗ COMPUTE: polynomial remainder sequence PRS(f, g) = (f0, f1, f2, . . . , fk)

∗ Where βifi+1 = αifi−1 −Qifi

∗ Classic Subresultant PRS Algorithm [Collins,Brown-Traub]

∗ With appropriate signs attached, we assume PRS(f, g) is a Sturm sequence
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16Quotient Remainder Sequences

• Quotient Remainder Sequences [Strassen]
∗ Represent PRS(f, g) as QRS(f, g) = (f0, f1, Q1, Q2, . . . , Qk−1)

∗ Suffices to QRS(f, g) at X = x0

∗ Number of arithmetic operations: O(d) instead of O(d2)

• What about bit complexity?
∗ FACT: The coefficient bit sizes of Qi’s can be Ω(d2L)

∗ E.g., f(X) = aX3d and g(X) = bX2d + c

∗ So, naively, the complexity bound for (C) is eO(d4L)

∗ SOLUTION 1: Reischert uses half-GCD idea

∗ SOLUTION 2: Lickteig-Roy uses rational arithmetic
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17Simplified Approach to Best Sturm Bound

• Amortized Bound to the rescue
∗ Bit size of Qi(X) is O(δidL) where δi = deg(Qi−1)− deg(Qi)

∗ Thus,
P

i δi = d

• THEOREM: Using the Subresultant QRS for QRS(f, g) and evaluate

using Horner’s rule, the bit complexity for (A) and (B) is Õ(d3L).
∗ NOTE: we bumped up the cost of (A) as the price of simplicity

• We achieved the current best bound using “straightforward” and “old”
(ca. 1980) algorithms, but new analysis
∗ Cf. Reischert, Lickteig-Roy
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IV. Almost Optimal Bounds for Descartes
Method
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19Descartes Rule of Sign

• Descartes Rule of Signs:
∗ If f(X) =

Pd
i=0 aiX

i, then #(0,∞) is equal to

V ar(a0, a1, . . . , ad)− 2k, (k ≥ 0)

∗ Here, V ar(a0, . . . , ad) is number of sign variations in the sequence

∗ So, if V ar(a0, . . . , ad) = 0 or 1, then k = 0 (i.e., the estimate is exact!)

• Analogue in the Bernstein form: let J = [u, v]
∗ Let fJ(X) =

Pd
i=0 biB

d
i [u, v](X)

∗ where Bd
i [u, v](X) =

`d
i

´(X−u)i(v−X)d−i

(v−u)d

∗ Then the number of roots of f(X) in J is equal to V ar(b0, . . . , bd)− 2k.

∗ Note: Variation Diminishing Property of Bezier curves
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20Basis-Free Descartes Method
• How to implement ESTf(I):

∗ (1) Transform f to fI(X) so that

|Zeros(f) ∩ I| =

|Zeros(fI) ∩ (0,∞)| in power basis
|Zeros(fI) ∩ I| in Berstein basis

∗ (2) Compute V ar(fI)

∗ NOTE: in Bernstein basis, fI is as the same polynomial as f , but in different

Bernstein basis

• Basis-free framework for Descartes Method
∗ For efficiency, we may store incremental transformations of f , etc

• Correctness (i.e., termination): [Ostrowski’50,Krandick-Mehlhorn’06]
∗ One Circle Theorem: If the disc DI ⊆ C with diameter I does not contain any

zeros of f (complex or real) then EST (I) = 0.

∗ Two Circle Theorem: If the union of two discs, D+
I ∪ D−I contains exact one

real root of f and no other roots (complex or real) then EST (I) = 1.

∗ Corollary: every path terminates
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21Almost Optimal Bound on Recursion Tree Size

• Previous analysis:
∗ Depth is O(d(L + log d). Hence size is exponential

∗ Width is d. Hence size is O(d2(L + log d)

∗ Size is O(d2(L + log d) log d) [Krandick]

• THEOREM : Recursion tree T size has |T | = O(d(L + log d)
∗ SKETCH: A leaf of T is type i if it has i roots (i = 0, 1)

∗ Prune leaves which have non-leaf siblings

∗ If two leaves are siblings, prune one of them (prefer to prune type 0 over type 1)

∗ Let T ′ be pruned tree: |T ′| > |T |/2

∗ If U = leaves of T ′, then |U | ≤ d and |T ′| ≤
P

u∈U log
w(I0)

w(Iu)

• Reduce to Mahler-Davenport bound:
∗ Type 1 node u: there is a real root α in Iu. Find another root β as its partner

∗ Type 0 node v: similarly find a pair α, β of roots, perhaps complex

∗ The {α, β} pairs are disjoint among the type 0, and among the type 1 nodes

∗ Further, w(Iu) ≥ |α− β|/2

∗ Thus, |T ′| ≤ log(MD) + d log |I0| = O(d(L + log d))
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22• This bound is achieved for L ≥ log d
∗ Use variations of an example from Mignotte

• THEOREM: Worst case complexity for real root isolation of square-free
polynomials via Descartes method is Õ(d4L2).
∗ [Emiris-Mourrain-Tsigaridas’06] showed that the same bound applies to the

non-square free case, by first removing the square-free part

ACS Workshop, Athens, Greece May 8-11, 2006



22• This bound is achieved for L ≥ log d
∗ Use variations of an example from Mignotte

• THEOREM: Worst case complexity for real root isolation of square-free
polynomials via Descartes method is Õ(d4L2).
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V. Evaluation Based Isolation Method

ACS Workshop, Athens, Greece May 8-11, 2006



24Meshing according to Vegter-Plantinga

• Meshing of an implicit curve C : f(X, Y ) = 0
∗ Want a polygonal curve C ′ that is ε-isotopic to C

∗ I.e., C, C ′ are isotopic and there is a homeomorphism h : C → C ′ such that

‖h(p)− p′‖ ≤ ε (for all p)

∗ Previous work: [Stander-Hart’97] in SIGGRAPH, etc

∗ Vegter-Plantinga’05 gave the first correct solution

• Vegter-Plantinga Model (Refinement of Marching Cube Model)
∗ Use subdivision of space into a (non-uniform) grid

∗ Primitive (1): (sign) evaluation of f(X, Y ) at grid points

∗ Primitive (2): interval evaluation of f(X, Y ) and first derivatives at any

rectangular box

• Let R be the set of (closed) intervals, ( R)2 = R2 be set of boxes
∗ For any set S ⊆ R, let f(S) = {f(p) : p ∈ S}
∗ The interval analogue of f is f : R2 → R
∗ Property (1): f(B) ⊆ f(B)

∗ Property (2): If Bi → p ∈ Rd as i→∞, then f(Bi)→ f(p).
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∗ Primitive (2): interval evaluation of f(X, Y ) and first derivatives at any

rectangular box

• Let R be the set of (closed) intervals, ( R)2 = R2 be set of boxes
∗ For any set S ⊆ R, let f(S) = {f(p) : p ∈ S}
∗ The interval analogue of f is f : R2 → R
∗ Property (1): f(B) ⊆ f(B)

∗ Property (2): If Bi → p ∈ Rd as i→∞, then f(Bi)→ f(p).
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24Meshing according to Vegter-Plantinga
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25Meshing in 1-D

• Let f : R → R be any continuous function
∗ First, assume f has simple zeros only, with known root separation bound ∆

• Two Criteria:
∗ C0(I): 0 6∈ f(I)

∗ C1(I): 0 6∈ f ′(I) where f ′(X) = ∂f
∂X(X)

• LEMMA: Assume C1(I). Then I = [a, b] has at most one zero of f .
Moreover I contains a zero iff f(a)f(b) ≤ 0.
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26Simple Root Isolation by Evaluation

• Algorithm to isolate roots of f in I0

SimpleRootIsol
Input: f and I0
Initialize Q to I0.
while Q is non-empty
1. I = [a, b]← Q.remove().
2. if (C0) then DISCARD I.
3. else if (C1)

if f(a)f(b) ≤ 0, OUTPUT(I)
else discard I

4. else
4.1 Let m← (a + b)/2, I0 ← [a, m] and I1 ← [m, b].
4.2 if f(m) = 0 then OUTPUT([m, m]) and adjust endpoints of I0, I1 by ∆/2.
4.3 Put I0, I1 into Q.

• Correctness
∗ It is partially correct, i.e., it is correct if it halts

∗ Termination: it it fails to halt, there is an infinite path

∗ Let I0 ⊇ I1 ⊇ · · · ⊇ Ii ⊇ · · · be intervals on this path

∗ Then Ii → x∗, and so f(Ii)→ f(x∗)

∗ Moreover, C0(Ii) and C1(Ii) must fail for all i

∗ In particular, f(x∗) = 0 and f ′(x∗) = 0. Contradiction
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28Complexity Analysis

• Assume that f gives the ideal interval

• THEOREM: Assume a square-free polynomial of degree d and L bit
coefficients, and initial interval I0 = [−2−L, 2−L], the recursion tree has
size O(d(L + log d))
∗ Idea of proof: we need Mahler-Davenport type bounds for distances between

zeros of f and critical points of f

∗ Subdivide I0 by real zeros and critical points

• Non-Ideal Case
∗ We can get a bound based on Lipschitz constants for the curve

∗ Complexity is unclear as parameters of d and L

∗ Dependence on the choice of box function

∗ Experimental results – not competitive with Descartes for common examples
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29Evaluation and Root Separation Bounds

• Multiple Roots (singular case)
∗ Let K = KI be a Lipschitz constant for I: for x, y ∈ I, |f(x) − f(y)| ≤

K|x− y|.
∗ Root separation bound: let ∆(f, g) = min{|α − β| : α ∈ Zero(f), β ∈

Zero(g), α 6= β}
∗ Evaluation bound: let EV(f, g) = min{|f(α)| : α ∈ Zero(f) \ Zero(g)}

Write ∆(f) = ∆(f, f) and EV(f) = EV(f, f ′)
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30Evaluation Based Isolation in the Singular Case

• NonAdaptic MultipleRoot Isolation
∗ Subdivide as long as interval is larger than min{∆(f), ∆(f ′), ∆(f, f ′), EV(f)/3K,

EV(f ′, f)/2K ′}

RootIsol Input: F : R→ R, and interval I0
Output: A list F of non-overlapping subintervals of I0, representing isolating intervals for

all the zeros of F in I0. Each isolating interval is classified as singular or simple.
Initialize Q to I0.
while Q 6= ∅

I = [a, b]← Q.remove().

if |I| > min{∆(F ), ∆(F ′), ∆(F, F ′), EV(F,F ′)
3K

,
EV(F ′,F )

3K′ }
if the midpoint of I, m = (a + b), is root

if the midpoint of I is also a root of F ′, put [m, m] into L (singular).
else put [m, m] into L (nonsingular)

Split I in two equal halves, and put them in Q.
else

if (F ′(a)F ′(b) ≤ 0)

1. if |f(a)| ≤ EV(F, F ′)/3, put I into L (singular).
2. else Discard I.

else —- Thus, F ′(a)F ′(b) > 0
if (f(a)f(b) ≤ 0)

3. if (|F ′(a)| ≤ EV(F ′, F )/3), put I into L (singular)
4. else put I into L (nonsingular).
5. else Discard I.
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31• Adaptive version
∗ Too long to fit the slide — see the end
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VI. Conclusion
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33Summary and Open Problems

• Our results are based on:
∗ Amortization arguments in algebraic complexity analysis

∗ Effective use of Davenport-Mahler type bounds

• Decreasing complexity in the EST Routine:
∗ Sturm > Descartes > Evaluation

∗ Cheaper EST allows more adaptive complexity

∗ This potential is not currently realized

• Open Problems:
∗ Prove optimality of Sturm/Descartes method when L = o(log d)

∗ Develop practical techniques in Evaluation Based Isolation

∗ Improved complexity analysis of Evaluation Based Isolation

∗ Extend analysis to higher dimensional analogues

• Finally, a perspective for Evaluation Based Isolation:
∗ Sturm and Descartes methods are now quite mature areas

∗ But it took 3 decades of progress...

∗ Cf. the optimal Sturm algorithm we presented
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END of TALK
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36Thanks for Listening!

• Papers download from
http://cs.nyu.edu/exact/

• “Amortized Bound for Root Isolation via Sturm Sequences”
∗ Z.Du, V.Sharma, C.Yap.

Workshop on Symbolic-Numeric Computation (SNC 2006)

• “Almost Tight Recursion Tree Bounds for the Descartes Method”
∗ A.Eigenwilig, V.Sharma, C.Yap.

(to appear) ISSAC 2006

• “Exact Evaluation-Based Root Isolation”
∗ M.Burr, C.Wu, V.Sharma, C.Yap.

Preprint, 2006
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AdaptiveRootIsol Input: f : R→ R, and interval I0 = [r, s]
all the zeros of f in I0. Each isolating interval is classified as singular or simple.

1. if The lower endpoint, r, of I0 is a root of f

if r is also a root of f ′, put [r, r] into L (singular).
else put [r, r] into L (nonsingular).
change the lower endpoint of I0 to r + ∆(f).

if The upper endpoint, s, of I0 is a root of f

if s is also a root of f ′, put [s, s] into L (singular).
else put [s, s] into L (nonsingular).
change the upper endpoint of I0 to s−∆(f).

Initialize Q to I0.
while Q 6= ∅

I = [a, b]← Q.remove().

2. if 0 6∈ f(I), discard I

else if |I| > min{∆(f), ∆(f ′), ∆(f ′′)}
if the midpoint of I, m = (a + b)/2, is root of f

if the midpoint of I is also a root of f ′, put [m, m] into L (singular).
else put [m, m] into L (nonsingular)

3. put [a, m−∆(f)] and [m + ∆(f), b] into Q.
else Split I in two equal halves, and put them in Q.

else

4. if f ′(a)f ′(b) ≤ 0
4.1 if f(a)f(b) < 0, put I in L (nonsingular).
4.2 else

4.3 if f(a)f ′(a) > 0, discard I.

4.4 while min{|f(a)|, |f(b)|} ≥ EV (f, f ′) and max{|f(a)|, |f(b)|} ≤ K|b− a|
if the midpoint of I, m = (a + b)/2, is a root of f , put [m, m] into L (singular)

break to main while loop.

4.5 else if f ′(a)f ′(b) ≤ 0, set I = [a, m]
else set I = [m, b].

4.6 if max{|f(a)|, |f(b)|} > K|b− a|, discard I.
4.7 else put I into L (singular).
5. else
5.1 if f(a)f(b) > 0, discard I.
5.2 else

5.3 if f ′(a)f ′′(a) > 0, discard I.

5.4 while min{|f ′(a)|, |f ′(b)|} ≥ EV (f ′, f) and max{|f ′(a)|, |f ′(b)|} ≤ K′|b− a|
if the midpoint of I, m = (a + b)/2, is a root of f ′, put [m, m] into L (singular)

break to main while loop.

5.5 else if f ′(a)f ′(b) ≤ 0, set I = [a, m]
else set I = [m, b].

5.6 if max{|f ′(a)|, |f ′(b)|} > K′|b− a|, discard I.
5.7 else put I into L (singular).
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