
4.6 Implementation and Software

Our algorithms are implemented in Java on the Eclipse Platform. See 3.7 for

the hardware configuration. The code for 2D meshing is available for download at

http://cs.nyu.edu/exact/papers/cxy/, and the code for 3D meshing is

available for download at http://cs.nyu.edu/exact/papers/cxyz/.

Note that this implementation is based on machine arithmetic. This is valid since all

arithmetic operations use only ring operations and divide by 2 and no under/overflows

occur. The limitation of machine precision is that, for high degree polynomials, the

code might fail because of under/overflows. Cxy algorithm has been transformed to

C++ based exact computational library Core Library by Shuxing Lu, and improved

by Narayan Kamath. We will convert other Java codes to C++ for distribution with our

open source Core Library.

We use the default Java heap memory 256MB (some runs result in OutOfMemo-

ryError (OME)). We implemented four algorithms: PV, Balanced Cxyz, Balanced Cxyz

with epsilon precision, and Rectangular Cxyz. These are abbreviated as PV, Cxyz,

Cxyze, and Rect-n (where n is the maximum aspect ratio). We did not implement

Snyder’s algorithm in 3D since it is relatively more complicated.

4.7 Experimental Results

We report some encouraging experimental results. Table 4.1 lists 11 examples of our

tests. Table 4.2 compares the number of boxes and the running time among Cxyz, PV,

and Rect-n (n = 2, 4, 8, 16, 32). The percentages represents the relative running times,

using Cxyz as 100%. Figure 1.1, Figure 4.28, Figure 4.29, Figure 4.30, Figure 4.31,

Figure 4.32 and Figure 4.33 illustrates the meshes for Eg.1 to Eg.7 in Table 1 respec-

120

tively, using Cxyze, PV, Cxyz and Rect-n, where n is selected in a way that Rect-n is

the fastest among all Rect algorithms.

Table 4.1: Equations and input boxes of examples
Curve name Equation f(x, y, z) = 0 Original Box

Eg1 tangle cube x4
− 5x2 + y4

− 5y2 + z4
− 5z2 + 10 [(−8,−8,−8), (8, 8, 8)]

Eg2 chair (x2 + y2 + z2
− 23.75)2 − 0.8((z − 5)2 − 2x2)((z + 5)2 − 2y2) [(−8,−8,−8), (8, 8, 8)]

Eg3 quartic cylinder y2x2 + y2z2 + 0.01x2 + 0.01z2
− 0.01 [(−8,−8,−8), (8, 8, 8)]

Eg4 quartic cylinder y2(x− 1)2 + y2(z − 1)2 + 0.01(x− 1)2 + 0.01(z − 1)2 − 0.2002 [(−5,−5,−5), (7, 7, 7)]

Eg5 quartic cylinder y2(x− 1)2 + y2(z − 1)2 + 0.01(x− 1)2 + 0.01(z − 1)2 − 1.0002 [(−12,−12,−12), (14, 14, 14)]

Eg6 shrek −x4
− y4

− z4 + 4(x2 + y2z2 + y2 + z2x2 + z2 + x2y2)− [(−8,−8,−8), (8, 8, 8)]
20.7846xyz − 10

Eg7 tritrumpet 8z2 + 6xy2
− 2x3 + 3x2 + 3y2

− 0.9 [(−8,−8,−8), (8, 8, 8)]

Eg8a eclipse x2 + 102y2 + 102z2
− 1 [(−8,−8,−8), (8, 8, 8)]

Eg8b(n) eclipse x2 + 10ny2 + 10nz2
− 1 [(−7,−7,−7), (8, 8, 8)]

(1) Cxyz is at least as good as PV, and is significantly faster than PV in most exam-

ples. In Eg8b(4), Cxyz is 7.5 times faster than PV. In Eg8b(6), Cxyz spends 1.3 seconds

to construct the mesh, compared to PV which spends more than 70 seconds, and runs

out of memory. Rect is the fastest in both Eg8b(4) and Eg8b(6): Rect-2 spends 141 mil-

liseconds for Eg8b(4), and 172 milliseconds for Eg8b(6). Note that the only exception

is Eg8a, Cxyz and PV produce the same number of boxes, and spend the same amount

of time. In Eg8b(2), we use the same function as Eg8a, but with an asymmetric original

box. Cxyz is twice as fast as PV. Also note that in the Eg3, Cxyz and PV also produce

the same number of boxes, but Cxyz is faster than PV because the computational cost

for the C1 predicate is bigger than the Cxyz predicate.

(2) Rect can be significantly faster than Cxyz, but the performance of Rect is incon-

sistent. In Eg3, Rect-32 takes 11.8% of Cxyz’s running time; and in Eg8b(6), Rect-2

takes 12.8% of Cxyz’s running time. The input surface for these examples are very long

and thin, in which Rect algorithm can take advantage of various aspect ratios. The re-

sults also show that although Rect produces less boxes than Cxyz in all examples but

Eg8b(2), the running time of Rect is not always faster than the Cxyz (especially when

the input surface is squarish, like Eg2). This is because Rect needs to spend more time

121

to check the criteria before splitting a box, and needs to process each box in three direc-

tions in Rect.

(3) Increasing the maximum aspect ratio n in Rect does not necessarily improve the

performance of the algorithm. In Eg3, increasing the maximum aspect ratio directly

improves the performance of Rect; but in Eg8b(6), it causes an opposite effect. This is

because increasing the maximum aspect ratio might cause the boxes to “over split” in

one direction, which is also the reason for the inconsistency of Rect. Another example

for over-splitting in Rect is Eg2, where Rect-n spends more time than Cxyz. Figure 4.27

shows the resulting boxes, meshes, and details by running Cxyz, Rect-8, and Rect-32 on

Eg2.

(4) Figure 4.34 illustrates an example that our algorithms preserve the topology: the

first row of Figure 4.34 shows the approximations of Eg4 using Rect-n (n = 2, 4, 8, 16, 32)

algorithm. It is not clear that the topology of the resulting meshes is the same by looking

at the squared area. By zooming in the squared area (see the second row of Figure 4.34),

We could see that the topology is preserved in the squared area of the meshes.

Table 4.2: Cxyz vs. PV vs. Rect-n
Box/Time (ms)/% Cxyz PV Rect-2 Rect-4 Rect-8 Rect-16 Rect-32
Eg1 2584/391 5104/718/184% 1096/579/148% 1304/656/168% 1710/781/200% 2081/922/236% 2653/1125/288%
Eg2 26104/4516 106072/15765/349% 13400/7360/163% 19847/10672/236% 25513/13656/302% 30880/16797/372% 36931/20360/451%
Eg3 35792/3437 35792/3843/112% 12056/2812/82% 6264/1625/47% 3328/953/28% 2000/578/17% 1088/407/12%
Eg4 80662/10282 OME>90sec. 43977/17875/174% 32836/13313/129% 27577/10766/105% 29143/11797/115% 26700/10594/103%
Eg5 134163/17187 OME>90sec. 64617/35156/205% 37237/14703/86% 30730/12188/71% 27612/11187/65% 26221/10532/61%
Eg6 31144/4046 99436/11985/296% 13688/5421/134% 16348/6922/171% 19332/8422/208% 21698/10328/255% 23827/11469/283%
Eg7 1688/328 2920/421/128% 796/359/109% 836/390/119% 1028/422/129% 1244/453/138% 1652/578/176%
Eg8a 400/94 400/94/100% 176/125/133% 200/140/149% 232/156/166% 272/156/166% 320/172/183%
Eg8b(2) 274/125 2164/250/200% 149/109/87% 154/109/87% 197/125/100% 225/140/112% 279/140/112%
Eg8b(4) 1247/203 22121/1531/754% 345/141/69% 418/141/69% 484/156/77% 551/172/85% 658/203/100%
Eg8b(6) 15226/1343 OME>70sec. 696/172/13% 733/187/14% 886/203/15% 952/203/15% 1129/219/16%

122

(a) Cxyz (b) Rect-8 (c) Rect-32

Figure 4.27: Boxes, meshes, and details of Eg2 using Cxyz, Rect-8 and Rect-32. Note
that the triangles are elongated as the maximum aspect ratio increases.

(a) Cxyze (b) PV (c) Cxyz (d) Rect-2

Figure 4.28: Approximation of Eg2: chair f(x, y, z) = (x2 + y2 + z2 − 23.75)2 −
0.8((z − 5)2 − 2x2)((z + 5)2 − 2y2) = 0.

(a) Cxyze (b) PV (c) Cxyz (d) Rect-32

Figure 4.29: Approximation of Eg3: quartic cylinder f(x, y, z) = y2x2 + y2z2 +
0.01x2 + 0.01z2 − 0.01 = 0.

123

(a) Cxyz (b) Rect-32

Figure 4.30: Approximation of Eg4: quartic cylinder 1 f(x, y, z) = y2(x−1)2+y2(z−
1)2 + 0.01(x− 1)2 + 0.01(z − 1)2 − 0.2002 = 0.

(a) Cxyz (b) Rect-32

Figure 4.31: Approximation of Eg5: quartic cylinder 2 f(x, y, z) = y2(x−1)2+y2(z−
1)2 + 0.01(x− 1)2 + 0.01(z − 1)2 − 0.1002 = 0.

(a) Cxyze (b) PV (c) Cxyz (d) Rect-2

Figure 4.32: Approximation of Eg6: shrek f(x, y, z) = −x4− y4− z4 +4(x2 + y2z2 +
y2 + z2x2 + z2 + x2y2)− 20.7846xyz − 10 = 0.

124

(a) Cxyze (b) PV (c) Cxyz (d) Rect-2

Figure 4.33: Approximation of Eg7: tritrumpet f(x, y, z) = 8z2 + 6xy2− 2x3 + 3x2 +
3y2 − 0.9 = 0.

(a) Rect-2 (b) Rect-4 (c) Rect-8 (d) Rect-16 (e) Rect-32

(a) Rect-2 (b) Rect-4 (c) Rect-8 (d) Rect-16 (e) Rect-32

Figure 4.34: First row(a)-(e): Approximations of a quartic cylinder 1 f(x, y, z) =
y2(x − 1)2 + y2(z − 1)2 + 0.01(x − 1)2 + 0.01(z − 1)2 − 0.2002 = 0 using Rect-
n (n = 2, 4, 8, 16, 32). Second row(a)-(e): Topology preservation in the squared area of
the approximations.

125

