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ABSTRACT
This paper addresses the problem of piecewise linear approxima-
tion of implicit surfaces. We first give a criterion ensuring that
the zero-set of a smooth function and the one of a piecewise lin-
ear approximation of it are isotopic. Then, we deduce from this
criterion an implicit surface meshing algorithm certifying that the
output mesh is isotopic to the actual implicit surface. This is the
first algorithm achieving this goal in a provably correct way.

Categories and Subject Descriptors
G.1.2 [Mathematics of Computing]: Numerical Analysis—Ap-
proximation of Surfaces and Contours

General Terms
Algorithms, Theory

Keywords
Meshing, Computational Topology, Morse theory

1. INTRODUCTION
Implicit equations are a popular way to encode geometric ob-

jects; See, e.g., [4] and [23]. Typical examples are CSG models,
where objects are defined as results of boolean operations on sim-
ple geometric primitives. Given an implicit surface, associated ge-
ometric objects of interest, such as contour generators, are also de-
fined by implicit equations. Another advantage of implicit repre-
sentations is that they allow for efficient blending of surfaces, with
obvious applications in CAD or metamorphosis. Finally, this type
of representation is also relevant to other scientific fields, such as
level set methods or density estimation [6].

However, most graphical algorithms, and especially those im-
plemented in hardware, cannot process implicit surfaces directly,
and require that a piecewise linear approximation of the consid-
ered surface has been computed beforehand. As a consequence,
polygonization of implicit surfaces has been widely studied in the
literature. There are two general classes of methods devoted to this
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problem: continuation methods and adaptive enumeration meth-
ods. A continuation algorithm is surface based in the sense that it
starts from a seed point on the surface, and computes successive
vertices of the mesh while following the surface in some tangent
direction. None of the algorithms in this category comes with topo-
logical guarantees: they might miss some connected components,
or merge different components into a single one. Adaptive enumer-
ation methods, also called extrinsic polygonization methods [23],
are grid based, or, more generally, based on a tesselation of the
ambient 3D space. They consist of two steps : first build a tesse-
lation of space, and then analyze the intersection of the considered
surface with each cell of the tesselation to construct the approxima-
tion. The celebrated marching cube algorithm [15] belongs to this
category. The goal of an implicit surface polygonizer is twofold :
its output should be geometrically close to the original surface, and
have the same topology. While the former is achieved by several
polygonization schemes [24], the latter has been barely addressed
up to now.

Some algorithms achieve topological consistency, that is, ensure
that the result is indeed a manifold, by taking more or less arbi-
trary decisions when a topologically ambiguous configuration is
encountered. This implies that their output might have a topology
different from the one of theoriginal surface, except in very specific
cases [14]. The problem of topologically correct polygonization of
implicit curves in the plane is treated by Snyder in [22], who uses
an adaptive enumeration method. His algorithm combines interval
arithmetic with a quadtree tesselation of the domain of interest. It
seems hard to generalize this method to implicit surfaces in three-
space. Moreover, this algorithm seems to have high complexity
due to the large number of calls to the interval version of Newton’s
method.

To the best of our knowledge, there is only one paper devoted to
the problem of homeomorphic polygonization of surfaces [17]. The
main theoretical tool used in [17] is Morse theory. The authors first
find a level set of the considered function that can be easily polygo-
nized. This initial polygonization is then progressively transformed
into the desired one, by computing intermediate level sets. This re-
quires in particular to perform topological changes when critical
points are encountered. This algorithm has an intuitive justification
and seems to work on simple cases. Unfortunately, the authors do
not give any proof of its correctness, and it is not clear to us whether
it can deal with complex shapes in a robust way.

In this paper, we give the first certified algorithm for the more
difficult problem of isotopic implicit surface polygonization. This
means that our output can be continuously deformed into the actual
implicit surface without introducing self-intersections [13]. For in-
stance, if the original implicit surface is knotted, then our output
is guaranteed to be knotted in the same way, which would not be
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guaranteed by an algorithm ensuring only homeomorphic polygo-
nization. Moreover, the whole algorithm can be implemented in the
setting of interval analysis. We only assume that the considered iso-
surface is smooth, that is does not contain any critical point, which
is generic by Sard’s theorem [20]. We also show that our algorithm
can be easily modified so as to ensure geometric closeness between
the implicit surface and its approximation. Our polygonization is
the zero-set of the linear interpolation of the implicit function on a
mesh of R

3. We first exhibit a set of conditions on the mesh used
for interpolation that ensure the topological correctness (section 2).
Then, we describe an algorithm for building a mesh satisfying these
conditions, thereby leading to a provably correct isotopic polygo-
nization algorithm (section 3).

2. A CONDITION FOR ISOTOPIC
MESHING

Let f be a C2 function from R
3 to R. We assume that M =

f−1(0), the surface we want to polygonize, is compact. In what
follows, T denotes a triangulation of a domain Ω ⊂ R

3 containing
M and f̂ the function coinciding with f at the vertices of T and that
is linearly interpolated on the simplices of T . A vertex v will be
said to be larger (resp. smaller) than a vertex u if f (v) is larger
(resp. smaller) than f (u) ; the sign of f at a vertex will be referred
to as the sign of that vertex. We set M̂ = f̂−1(0).

2.1 Topological Background

2.1.0.1 Collapses.
Loosely speaking, a collapse [18] is an operation which consists

in removing cells from a simplicial complex whithout changing its
connectivity. More precisely :

DEFINITION 1. If L is a simplicial complex and K a subcom-
plex of L, one says that there is an elementary collapse from L to K
if there is a p-simplex s of L and a (p−1)-face t of s such that :
- s is not a face of any simplex of L.
- t is not a face of any simplex of L other than s.
- L = K ∪ s.
- ∂ s\K is the relative interior of t.
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Figure 1: Elementary collapse.

DEFINITION 2. If L is a simplicial complex and K a subset of
L, one says that L collapses to K if there is a subdivision L′ of L
such that K can be obtained from L′ by a sequence of elementary
collapses.

Definition 2 is illustrated in figure 2. In figure 2, the complexes
in the middle and on the right do not collapse to the bold curve
because they would need to be “torn” in order to do so.

2.1.0.2 Smooth Morse theory.
The topology of implicit surfaces is usually investigated through

Morse theory [16]. Given a real function f defined on a manifold,
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Figure 2: The grey complex on the left collapses to the bold
curve (dashed edges represent the subdivision). This is not true
for the two other complexes.

Morse theory studies the topological changes in the sets f −1(]−
∞,a]) (lower level-sets) when a varies. In our case, as f is defined
on R

3, this amounts to studying how the topology of the part of
the graph of f lying below a horizontal hyperplane changes as this
hyperplane sweeps R

4. Classical Morse theory assumes that f is of
class C2. In this case, as is well known, these topological changes
are related to the critical points of f , that is the points where the
gradient ∇ f of f vanishes. More precisely, the only topological
changes occur when f−1(a) passes through a critical point p. a is
then called a critical value. Generically, in the 2-dimensional case,
the topology of f−1(]−∞,a]) can change in three possible ways,
according to the type of critical point p (see figure 3).
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Figure 3: Smooth Morse theory in 2D.

In figure 3, the sets f−1(]−∞,a]) are displayed as light grey
regions. The leftmost column depicts the situation where p is a
local maximum, that is when the Hessian of f at p is positive. In
this case, f−1(]− ∞,a + ε]) is obtained from f−1(]− ∞,a − ε])
by gluing a topological disk along its boundary. In the case of a
saddle point (i.e. the Hessian has signature (1,1)), passing a critical
value amounts to gluing a thickened topological line segment (in
grey) along its “thickened” boundary (in bold). Finally, passing
through a local minimum (negative Hessian) just amounts to adding
a disk disconnected from f−1(]−∞,a− ε]). If p does not fall in
any of these categories, that is if the Hessian at p is degenerate,
then classical Morse theory cannot be applied. C2 functions whose
critical points all have non-degenerate Hessian are called Morse
functions. From now on, we will assume that f is a Morse function.
Also, we require that 0 is not a critical value of f , which implies
that M is a manifold.
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The number n of minus signs in the signature of the Hessian at
p is classically called the index of p. However, for consistency
reasons that will appear later, we call the index of p the integer
−1 to the n-th power. The index of f on a region V is the sum of
indices of all critical points of f lying in V . The index satisfies the
following important theorem :

THEOREM 1. (Poincare-Hopf index theorem) The index of f on
one of its lower level-sets is the Euler characteristic of that lower
level-set.

2.1.0.3 PL Morse theory.
Morse theory has been extended to a broad class of non-smooth

functions by Goresky and McPherson [10]. We now outline the
special case of PL functions, that is we consider the case of f̂ . We
assume from now on that no two neighboring vertices map to the
same value by f , and that no vertex of T maps to 0 by f , which
guarantees that M̂ is a manifold. We refer to these assumptions as
genericity assumptions. Let us first recall some well-known defini-
tions [8, 10] :

DEFINITION 1. The star of a vertex is the union of all sim-
plices1 containing this vertex. The link of a vertex is the boundary
of its star.

DEFINITION 2. The lower star St−(v) of f̂ at a vertex v is the
union of all simplices incident on v all vertices of which but v are
smaller than v. The lower link Lk−(v) of f̂ at a vertex v is the union
of all simplices of the link of v all vertices of which are smaller than
v.
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Figure 4: Morse theory for PL functions in 2D. Plus and minus
signs indicate whether neighbors of v are larger or smaller than
v. Lower links are displayed in bold, sets f̂−1(]−∞, f (v)− ε])
in grey, and sets f̂−1([ f (v)− ε, f (v)+ ε]) in light grey.

Figure 4 shows that —for small ε— the topological changes be-
tween lower level-sets f̂−1(]−∞, f (v)− ε]) and f̂−1(]−∞, f (v)+
ε]) are determined by the topology of Lk−(v). In particular, in
2D, topological changes occur whenever Lk−(v) is not connected
or equals the link of v (right and middle cases in figure 4). This is
what motivates the next definition in the higher dimensional case :

DEFINITION 3. A critical point of f̂ is a vertex whose lower link
is not collapsible2. A vertex that is not a critical point of f̂ will be
called regular.

With this definition, topological changes in lower level-sets oc-
cur exactly at critical points, which is consistent with smooth Morse
theory. The index of a vertex v is defined to be 1 minus the Euler
characteristic of Lk−(v) [2]. In particular, regular points all have

1By simplex we mean a closed cell of T of any dimension.
2A complex is collapsible if it collapses to a point.

index 0. The converse is not true however in dimension at least 3.
Also, checking if a vertex is regular is easy in 3D : it is sufficient to
check that the lower link and the upper link —similarly defined—
are both non-empty and connected. Define the index of f̂ on a re-
gion V to be the sum of indices of all critical points of f̂ lying in V .
Again, this definition is consistent with the smooth case, since the
PL index can be shown [2] to also satisfy the Poincare-Hopf index
theorem. The following lemma, which is a consequence of a result
proved in [1] will be used later :

LEMMA 2. If the gradients of f̂ on tetrahedra incident to a ver-
tex v all make a positive dot product with some vector, then v is
regular.

2.2 Main result
0. We assume that f does not vanish on any tetrahedron of T

containing a critical point of f .

THEOREM 3. Let W be a subcomplex of T .
If W satisfies the following conditions :
1. f does not vanish on ∂W.
2. W contains no tetrahedron of T containing a critical point of f .
2’. W contains no critical point of f̂ .
3. W collapses to M̂.
4. f and f̂ have the same index on each bounded component of
Ω\W.

Then M and M̂ are isotopic in W. Moreover, the Hausdorff dis-
tance between M and M̂ is smaller than the “width” of W, that is
the maximum over the components V of W of the Hausdorff dis-
tance between the subset of ∂V where f is positive and the one
where f is negative.

In the conclusion of the theorem, isotopic in W means that M can
be continuously deformed into M̂ while remaining a manifold em-
bedded in W , so that M could not be a knotted torus if M̂ is an un-
knotted one, for instance. We first prove that under the conditions
of the theorem, M and M̂ are homeomorphic. Under the assump-
tions of the theorem, the fact that they actually are isotopic will be
a direct consequence of a result obtained in [5]. Before proving
the theorem, we first show by some examples that none of its as-
sumptions can be removed. In the three following pictures, (local)
minima of f are represented by min, (local) maxima by max, and
saddle points by s. Critical points of f̂ are represented similarly but
with a caret. The sign preceding a critical point symbol indicates
the sign of the considered function ( f or f̂ ) at the critical point.
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Figure 5: Condition 0. is needed.

Figure 5 shows that condition 0. cannot be removed even in the
2D case. By allowing for critical points of f inside a triangle of

303



T with positive vertices, one can build an example where M has
an extra component w.r.t. M̂ without violating conditions involving
critical points and their indices. Indeed, in figure 5, f has index 0
on the triangle, since minima have index 1 and saddle points have
index −1.
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Figure 6: Critical points do not determine the topology of level-
sets.

Figure 6 is a 2D example of two zero-sets M (boundary of the
grey region) and M′ which are not homeomorphic, though their
defining functions have the same critical points, with the same in-
dices. The dashed curve represents a negative level-set of the func-
tion defining M′. Such an example can also be built such that
M′ = M̂ for some mesh T . This shows the importance of the set
W in the theorem. In particular, conditions 1. and 3. cannot be
removed. Indeed, if one drops 1., taking for W any set satisfying 2.
and 3. makes the theorem fail. On the other hand, if one drops 3.,
any W satisfying 2. and 1. also makes the theorem fail.
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Figure 7: Condition 2’. and 4. are needed.

Figure 7 is a 3D example where M is a torus whereas M̂ is a
sphere. This is because f̂ has an extra negative minimum inside
f̂−1(]−∞,0]) whereas f has an index 1 saddle point outside the
bounding box Ω. Depending on whether this extra minimum lies
in W or not (see the circle arc with arrows at both ends in figure
7), one obtains counterexamples to the theorem if assumptions 2’.
or 4. are dropped. One can build similar examples showing that
condition 2. is also needed.

We now return to the proof of theorem 3.

2.3 Proof of the theorem

LEMMA 4. Let S and T be two subsets of a topological space
X that meet (ie S∩T 6= /0).
Assume the boundary of S is connected, as well as T and X \T .
If the X \ S and X \T meet but their boundaries do not, then S is
contained in the interior of T or the other way around.

PROOF. Let S and T be two such sets. ∂S is the disjoint union of
∂S∩ int(T ) and ∂S∩ int(X \T ) since ∂S∩∂T is empty. So we have
a partition of ∂S in two relatively open sets. As it is connected, one
has to be empty.
If ∂S∩ int(T ) is empty then ∂S ⊂ int(X \T ) that is T ∩∂S is empty.
As a consequence, T is included in int(S) or in int(X \ S) by con-
nectedness. Since S and T meet, we have that T ⊂ int(S).
Now if ∂S∩ int(X \T ) is empty then X \T is contained in int(S) or
in int(X \ S) by connectedness again. Similarly as above it has to
be contained in int(X \S), which means that S ⊂ T . Thus int(S) ⊂
int(T ) so ∂S ⊃ S \ int(T ) = S∩ ∂T . If S would meet ∂T , then ∂S
and ∂T would meet, which is impossible : S is included in the in-
terior of T .

LEMMA 5. Let V be a connected component of W.
M∩V is a connected smooth compact manifold without boundary.

PROOF. Hypothesis 3 implies easily that V collapses to M̂ ∩V .
Thus V contains a simplex having positive and negative vertices.
As a consequence, f vanishes on V . Since f does not vanish on
∂W (1), M intersects V . Also, M does not meet the boundary of V
(1), so M∩V is a smooth compact manifold without boundary.

Because V , which is connected, collapses to M̂ ∩V , M̂ ∩V is
a connected closed surface. Therefore, the complement of M̂ ∩V
has exactly two components, one of which is bounded. Because
V collapses to M̂, R

3 \V also has exactly one bounded component
which we denote by A and one unbounded component we denote by
B. The complement of A, which is B∪V , is connected, because B
and V are connected. For the same reason, A∪V is also connected.
Moreover, since the complement of A∪V is B, it is also connected.
In summary, A is connected as well as its complement, and the same
is true for A∪V .

Call now Mi, i = 1..n the connected components of M ∩V . For
each i, let Ni be the bounded component of R

3 \ Mi. Mi = ∂Ni
does not meet ∂ (A∪V ) ⊂ ∂W (1), and A∪V is connected as is its
complement. So Ni is included in A∪V thanks to lemma 4. Now
Ni contains at least one critical point of f . But as Ni ⊂ A∪V , such
a point has to lie in A, by 2. So Ni meets A, but since ∂Ni = Mi does
not meet ∂A ⊂ W̄ , Ni contains A by lemma 4 again. Suppose M∩V
is not connected. Then N1 and N2 both contain A so they intersect.
Because M is smooth, their boundaries do not intersect. So one has
w.l.o.g. N2 ⊂ N1. Now f vanishes on ∂ (N1 \N2) = ∂N1∪∂N2, and
therefore has an extremum in N1 \N2, which is impossible because
N1 \N2 ⊂V .

So M ∩V and M̂ ∩V are connected compact surfaces without
boundary. As seen in the preceding proof, A contains all critical
points of f enclosed by M ∩V , with the same notations. Also, A
contains all critical points of f̂ enclosed by M̂∩V by 2’. From con-
dition 4., we deduce that the volumes enclosed by M ∩V and by
M̂ ∩V have the same Euler characteristic, since the Euler charac-
teristic of a lower level set is the index of the considered function
on that lower level set (theorem 1). So M ∩V and M̂ ∩V have the
same genus and are thus homeomorphic. To complete the proof
that M and M̂ are homeomorphic, it remains to check that :
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LEMMA 6. M is included in W.

PROOF. Let D be some component of Ω \W . We claim that
M∩D is empty. First M̂∩D is empty by 3 so w.l.o.g vertices lying
in the closure of D are all positive. If M∩D is not empty then some
component E of f−1(]−∞,0]) meets D. Moreover, by condition
1, ∂D does not meet E. Indeed, f is positive at vertices of ∂D
and does not vanish on ∂D ⊂ ∂W ∪ ∂Ω. So E, being connected,
is included in the interior of D. But then E is compact and thus f
reaches its minimum on E : E contains a (negative) critical point of
f . This is impossible since the tetrahedron containing this critical
point would have negative vertices by condition 0, though being
included in D.

The proof of the bound on the Hausdorff distance between M
and M̂ is not difficult. Pick any point p in M̂ and let V be the
component of W containing it. Assume w.l.o.g. that f (p) > 0 and
let p′ be the closest point of p on the component of ∂V where f is
negative. By the intermediate value theorem, the line segment pp′

meets M at a point q. The distance between p and q is smaller than
the distance between p and p′ which is smaller than the Hausdorff
distance between the two components of ∂V . This shows one half
of the bound. The other half can be proved in a similar way.

Now that we know that M and M̂ are homeomorphic, the fact
that they are isotopic is a consequence of proposition 7, which is
proved in [5].

PROPOSITION 7. Let M̂ be a orientable compact surface with-
out boundary and let M be a surface such that

• M̂ is homeomorphic to M,

• M separates the sides of a topological thickening3 W̃ of M̂.

Then M is isotopic to M̂ in W̃ .

Indeed, considering a regular neighborhood of W [18] yields the
desired topological thickening W̃ . The proof of this fact, which we
omit, relies on the uniqueness theorem for regular neighborhoods
from piecewise-linear topology [18].

3This means that there is a homeomorphism Φ : W̃ → M̂ × [0,1]
mapping M̂ to M̂×{1/2}.

3. ALGORITHM
In the algorithm, we take as W a set that is related to the no-

tion of watershed from topography. This set satisfies properties 2.
and 3. by construction. In section 3.1, we give its definition, basic
properties, and construction algorithms. Section 3.2 describes the
meshing algorithm itself, which ensures that V fulfills also condi-
tions 0., 1., 2’., and 4., and proves its correctness.

3.1 PL watersheds
We first assume that the mesh T conforms to M̂, i.e. M̂ is con-

tained in a union of triangles of T . We will see later how to remove
this assumption, which is in contradiction with the genericity as-
sumptions. Define W + as the result of the following procedure :

Positive Watershed Algorithm

set W+ = M̂.
mark all vertices of M̂.
while there is a positive regular unmarked vertex v of T

such that the vertices of Lk−(v) are marked
do

set W+ = W+ ∪St−(v).
mark v.

end while
return W+

W− is defined as the result of the same algorithm applied to − f .
We set W = W+∪W−. Note that W contains no critical point of f̂ .
Also, positive marked vertices are exactly the vertices of W +.
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Figure 9: Construction of W + : lower stars of regular vertices
(such as v1) are added one by one. Lower stars of critical ver-
tices (v2) are discarded.

LEMMA 8. W collapses to M̂.

PROOF. It is sufficient to show the result for W +. Let W+
i be

the state of W + after i steps of the algorithm, and let vi be the i-th
marked vertex. As W +

0 = M̂, the only thing we have to show is that
W+

i+1 collapses to W +
i for all i. Let us first show that Lk−(vi) is

included in W +
i . If it is not the case, let u be the largest vertex of

some simplex s of Lk−(vi) that is not in W +
i . s is in St−(u) which

is hence not included in W +
i . So u is either critical or not marked

yet, which is a contradiction since vi is marked. So Lk−(vi) ⊂W+
i .

Now since vi is regular, Lk−(vi) is collapsible. Consider a sequence
of elementary collapses allowing to collapse Lk−(vi) to p and let
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s j ⊂ Lk−(vi), j = 1..n be the sequence of simplices defining these
elementary collapses. The simplices conv(s j ∪ vi) and the edge pvi
define a valid sequence of elementary collapses allowing to col-
lapse W+

i+1 =W+
i ∪St−(vi) to W+

i , which concludes the proof.

One may prefer a more intrinsic definition of W +. In the same
spirit as in [9], one can define a partial order on the vertices of T by
the closure of the acyclic relation ≺ defined by u ≺ v if u ∈ St−(v)
or u = v. We will note this order ≺ again and say that v flows
into u whenever u ≺ v. The next lemma shows that the vertices of
W+ do not depend on the order the vertices are considered in the
construction.

LEMMA 9. The vertices of W + are exactly the positive vertices
that do not flow into any positive critical point.

PROOF. The vertices of W + have this property by construction.
Let p /∈ W+ be a positive vertex and assume p does not flow into
any positive critical point. In particular, p is regular. Hence, as
p /∈ W+, the lower link of p, which is not empty, has to contain
either a critical vertex or an unmarked one. It cannot contain a
critical point because as T conforms to M̂, vertices in Lk−(p) are
all non-negative, and so p would flow into a positive critical point.
There is thus an unmarked vertex p1 in Lk−(p). If p1 can be chosen
positive, then p1 satisfies the same assumptions as p so one can
define p2 in a similar way. By going on, one obtains a strictly
decreasing sequence of positive vertices, that thus has to end. Let
pk its last term. Lk−(pk) contains no positive unmarked vertices.
But as T conforms to M̂, vertices in Lk−(pk) are all non-negative.
As vertices of M̂ are marked, we get a contradiction.

Note that W is the union of simplices with all their vertices in W .
As a result, we get an intrinsic definition of W , and not only of its
vertices. From an algorithmic point of view, it may be efficient to
examine the vertices in increasing order in the construction of W +.
One can for instance maintain the ordered list of vertices neighbor-
ing W , always consider the first element of this list for marking,
and discard it if it cannot be marked. Indeed, with this strategy, a
vertex that cannot be marked at some point will never be marked.
Another consequence of lemma 9, which will be useful later, goes
as follows. Call c the minimum of | f̂ (v)| = | f (v)| over all critical
points v of f̂ .

LEMMA 10. W contains all vertices whose image by | f | is smaller
than c.

PROOF. Let p be such that | f (p)| < c. Without loss of general-
ity, assume that p is positive. Any critical point v in which p flows
satisfies f (v) < f (p). So it cannot be positive by definition of c :
by lemma 9, p lies in W +.

Non conforming case. We now drop the assumption that T
conforms to M̂ and assume genericity again. From T and M̂ one can
build a mesh S that is finer than T , conforms to M̂, and has all its
extra vertices on M̂. Indeed, it suffices to triangulate the overlay of
M̂ and T without adding extra vertices except those of M̂∩T . This
can be done as the cells of the overlay are convex. The construction
of W described above can then be applied to S. A positive vertex
of T has its lower link in S containing only vertices of M̂ if and
only if its lower link in T contains only negative vertices. Thus,
in order to find the say positive vertices of W ∩T , one can apply
the positive watershed algorithm described above to T , if at the
initialization step one marks all negative vertices having a positive

neighbor instead of those of M̂. Still, note that if a negative critical
point has a positive neighbor, then this neighbor will not be marked
by this modified algorithm, whereas it could have been marked by
the standard algorithm applied to S. However, if we assume that
vertices having a neighbor of opposite sign are regular (condition
a), then this does not happen and the result W ′ of the modified
algorithm is equal to W . In our meshing algorithm, we will not
build the mesh S, but rather make sure condition a holds, and apply
the modified algorithm.

Updating W ′. The intrinsic definition of W —or W ′— given
above yields an efficient way of updating W when T undergoes
local transformations. It is sufficient to describe the algorithm for
updating the vertices of W +. Let T1 be a mesh obtained from T by
removing some set of tetrahedra E and remeshing the void left by
E. Call A the set of positive critical points of the linear interpolation
of f on T1 that lie in E. Then the vertex set of the positive watershed
W+

1 associated with T1 can be computed from the vertex set of W +

by performing the following two operations. To begin with, the
set of vertices of T1 that flow into A must be removed from W +

(lemma 9), which amounts to a graph traversal. Remaining vertices
all belong to W +

1 . Then, mark these vertices and apply the positive
watershed algorithm loop to get the vertex set of W +

1 .
Remark. The presented definition of a watershed seems quite

well-behaved and leads to an easy construction algorithm, but it is
not fully satisfactory. In particular, the watershed we compute is in
general strictly included in the ’true watershed’. The ’true water-
shed’ seems hard to compute, though, and can intersect a triangle
in a very complicated way. There might be interesting intermediate
definitions between ours and the true one, for instance based on the
PL analog of the Morse complex introduced in [8].

3.2 Main algorithm
Assume the critical points of f are given. Theorem 3 enables us

to build a mesh isotopic to M using only one simple predicate, van-
ish. vanish takes a triangle or a box and returns true if f vanishes
on that triangle or that box. We actually not even need a predicate,
but rather a filter. More precisely, vanish may return true even if f
does not vanish on the considered element, but not the other way
around. Still, we require that vanish returns the correct answer if
the input triangle or box is sufficiently small. Such filters can be
designed using interval analysis.

Our algorithm also requires to build a refinable triangulation of
space such that f̂ (resp. ∇ f̂ ) converges to f (resp. ∇ f ) when the
size of elements tends to 0. As noticed by Shewchuk [21], this
is guaranteed provided all tetrahedra have dihedral and planar an-
gles bounded away from π . In [3], Bern, Eppstein and Gilbert de-
scribed an octree-based algorithm yielding meshes whose angles
are bounded away from 0. In our case, which is much easier, the
desired triangulation can simply be obtained by adding a vertex at
the center of each square and each cube of the octree, triangulating
the squares radially from their center, and doing the same with the
cubes. Indeed, resulting planar and dihedral angles are all bounded
away from 180◦. One can expect that this scheme does not produce
too many elements upon refinement, because the size of elements
is allowed to change rapidly as we do not require that these have a
bounded aspect ratio (see figure 10). The main algorithm uses an
octree O, the associated triangulation T , the watershed W ′. We will
say that two (closed) boxes of O are neighbors if they intersect. O is
initialized to a bounding box Ω of M. Such a bounding box can be
found by computing the critical points of the coordinate functions
restricted to M, if possible, or using interval analysis. Besides, we
maintain four sets of boxes ordered by decreasing size. Critical
contains all boxes containing a critical point of f̂ that is not in a
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Figure 10: Octree and triangulation used in the algorithm. In
this 2D example, only the edges of the triangulation of the box
on the right are shown (dashed).

box containing a critical point of f . Index contains all boxes neigh-
boring a box b containing a critical point of f and such that f and f̂
have different indices on b. Boundary1 contains all boxes contain-
ing two neighbors -in T - of opposite signs one of which is critical
for f̂ (condition a, see paragraph Non conforming case). Finally,
Boundary2 contains all boxes that contain a triangle t of ∂W ′ such
that vanish(t) is true and that are not included in W ′.

Main Algorithm
Initialization Refine O until vanish(b) is false for all boxes con-
taining at least one critical point of f .
compute T and W ′, and the four sets Critical, Boundary1,
Boundary2, and Index.
while (true) do

update T , W ′, and the four sets.
if Critical6= /0 then

split its first element.
else if Boundary16= /0 then

split its first element.
else if Boundary26= /0 then

split its first element.
else if f and f̂ have different indices on some bounded com-
ponent of Ω\W ′ then

split the first element of Index.
else

return M̂
end if

end while

Thanks to theorem 3 applied to W ′, the correctness of this algo-
rithm almost amounts to its termination. The only problem is that
W ′ might contain some critical point of f , thereby violating condi-
tion 2.. It thus seems that the definition of W ′ needs to be slightly
modified. The modification consists in taking as W ′+ vertices -and
the same for W ′−- the positive vertices that do not flow into posi-
tive critical points of f̂ nor into vertices lying in a box containing
a positive critical point of f . With this modification, lemma 8 still
holds and lemma 10 holds if one replaces c by the minimum c′ of c
and the minimum of | f | on the boxes containing a critical point of
f . Also, c′ is positive as f does not vanish on these boxes.

We now show that the main algorithm terminates. First note that
after the initialization step, no box containing a critical point of f
is split. The magnitude of ∇ f is thus larger than a certain constant
gmin on the complement C of the union of these boxes. Let us

show that the size of the boxes of Critical that are split at some
point is bounded from below. As ∇ f̂ converges to ∇ f , there is
a number s1 such that for each tetrahedron with diameter smaller
than s1, ||∇ f −∇ f̂ || is smaller than gmin/2 on the interior of that
tetrahedron. If the tetrahedron is included in C, this implies that ∇ f̂
and ∇ f make an angle smaller than π/6.

LEMMA 11. Let A ⊂R
3 be such that ∂A is a manifold included

in C and containing no vertex of T . Suppose that all boxes meeting
∂A are smaller than s1.
Then f and f̂ have the same index on A.

The proof of lemma 11 resorts to stratified Morse theory, which
is an extension of both the smooth and PL Morse theory to the case
of piecewise smooth functions. We refer to [10] for a complete
exposition of this subject.

PROOF. Let p ∈ ∂A and d(p) denote the local feature size of p
with respect to the 2-skeleton of T , as defined -in 2D- by Ruppert
[19]. Simplices of T that meet the open ball centered at p of radius
d(p) all share a vertex v(p) -by definition, d(p) is the largest num-
ber such that this holds. We call dmin the minimum of d, which is
known to be positive, and set k equal to the minimum of dmin and
e, the half of the distance from ∂A to the closest box that does not
meet ∂A.

PSfrag replacements

∂A
p

e

k

v(p)

Figure 11: Proof of lemma 11.

Let us now consider a smooth nonnegative function φ : R
3 → R

with support included in the open ball centered at 0 of radius k. The
convolution of f̂ and φ is a smooth function f̃ . Let p be a point at
distance less than e from ∂A. The gradient of f̃ at p is a weighted
average of the gradients of f̂ at points lying in the open ball cen-
tered at p and with radius k. All gradients involved in this average
are gradients of f̂ on tetrahedra incident on v(p). Moreover, the
size of these tetrahedra is smaller than s1 because k ≤ e. As a con-
sequence, considered gradients all make an angle smaller than π/6
with the gradient of f at v(p). As the weights in the average are
nonnegative, we have that the angle between ∇ f̃ (p) and ∇ f (v(p))
is smaller than π/6. Also, the angle between ∇ f (v(p)) and ∇ f (p)
is less than π/3 since both vectors make an angle smaller than π/6
with the gradient of f̂ on some tetrahedron containing p and v(p).
Finally, we get that ∇ f̃ (p) and ∇ f (p) make a positive dot product.

Let now U1 be a neighborhood of ∂A whose closure does not
contain any vertex of T and U2 be an open set such that U1 ∪U2 =
R

3. We also require that the Hausdorff distance between U1 and
∂A is smaller than e and that U2 ∩ ∂A = /0. Denote by {u1,u2} a
partition of unity subordinate to the covering {U1,U2}. This means
that for i = 1..2, ui is a non negative smooth function defined on
R

3, with support in Ui, and such that u1 + u2 is identically 1. In
particular, u2 equals 1 on the complement of U1, and vice versa. So
the function g = u2 f̂ +u1 f̃ coincide with f̂ on R

3 \U1 and with f̃
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on R
3 \U2 ⊃ ∂A. Now recall that ∇ f̃ and ∇ f make a positive dot

product on ∂A. Hence the linear homotopy between both vector
fields does not vanish on ∂A : by normalization, one gets a homo-
topy between ∇ f̃ /||∇ f̃ || and ∇ f /||∇ f ||, considered as maps from
∂A to the unit sphere. Because the degree is invariant under homo-
topy [12], we deduce that these maps have the same degree, which
shows that f and f̃ have the same index on A. Now as g and f̃
coincide in a neighborhood of ∂A, f and g have the same index on
A. To complete the proof, it thus suffices to show that g and f̂ also
have the same index on A. Now the critical points of f̂ are critical
for g, with the same index, as U1 contains no such point. Potential
other critical points of g can only lie in U1. But the gradient of g
at any point p of U1 where it is defined is a convex combination
of ∇ f̃ (p) and ∇ f̂ (p) : it thus makes a positive dot product with
∇ f (p). By the result of [1] which we mentioned when we stated
lemma 2, this implies that the index of p is 0. We thus proved the
announced claim.

Suppose that some box b of Critical of size smaller than s1 is
split. Let v be a critical point of f̂ included in b. All the boxes
containing v are in Critical and their size is smaller than s1 since
we consider boxes in decreasing order. Now the gradients of f̂
on tetrahedra incident on v all make a positive dot product with
∇ f which is a contradiction with lemma 2 which implies that v is
not critical. So the conclusion is that Critical becomes -at least
temporarily- empty after a finite number of consecutive splittings
of boxes in Critical.

Now if the algorithm splits a box b in Boundary1, then b contains
a say positive critical point of f̂ , which belongs to a box containing
a critical point of f as Critical is empty. So the maximum of | f |
on b is larger than the minimum of | f | on the boxes containing a
critical point of f (i.e. c′). On the other hand, f vanishes on b since
b contains a negative vertex. This cannot happen if the size of b is
below a certain value, so that boxes in Boundary1 cannot be split
eternally.

Suppose that the algorithm splits arbitrarily small boxes in Bound-
ary2. If a small enough box b is split, then b contains a triangle t
of W ′ on which f vanishes. So, if the size of b is small enough,
the maximum of | f | on b will be smaller than c′. By lemma 10, all
vertices of b belong to W ′ so b ⊂W ′ which is a contradiction. Thus
the size of split boxes in Boundary2 is also bounded from below.

To complete the proof of termination, we need to prove that In-
dex does not contain too small boxes. This is true by applying
lemma 11 to small offsets of the boxes containing critical points of
f . Finally :

THEOREM 12. The main algorithm returns an isotopic piece-
wise linear approximation of M.

Furthermore, if one wishes to guarantee that the Hausdorff dis-
tance between M and its approximation is less than say ε , it suffices
to modify the positive watershed algorithm so as to control that the
width of W is smaller than ε , thanks to theorem 3.

4. CONCLUSION
We have given an algorithm that approximates regular level sets

of a given function with piecewise linear manifolds having the same
topology. Moreover, our algorithm can be modified so as to ensure
geometric closeness in the Hausdorff sense. Though no implemen-
tation has been carried out yet, we believe that it should be rather
efficient due to the simplicity of the involved predicates and the
relative coarseness of the required space decomposition.

The main drawback of our algorithm is that it requires, as is,
the knowledge of the critical points of the considered function. A

closer look shows that we almost only need to find a set of boxes
containing all the critical points, and on which the function does
not vanish. This task, corresponding to the initialization step in the
main algorithm, can be done in a certified way using interval anal-
ysis. Once this is done, the only remaining problem is to compute
the index of the function on these boxes in a robust way. In a forth-
coming version of the paper, we will show how this can be done in
the framework of interval analysis, thereby giving a complete so-
lution to the problem. Also, we plan to adapt the algorithm to the
case of surfaces with boundaries, which is useful for instance when
one wants to study the considered level set inside a user-specified
bounding box.
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