
Numer Algor (2009) 52:605–628
DOI 10.1007/s11075-009-9303-2

ORIGINAL PAPER

An adaptive algorithm for efficient computation
of level curves of surfaces

Dimitri Breda · Stefano Maset · Rossana Vermiglio

Received: 7 January 2008 / Accepted: 22 May 2009 /
Published online: 1 July 2009
© Springer Science + Business Media, LLC 2009

Abstract A new efficient algorithm for the computation of z = constant level
curves of surfaces z = f (x, y) is proposed and tested on several examples.
The set of z-level curves in a given rectangle of the (x, y)-plane is obtained
by evaluating f on a first coarse square grid which is then adaptively refined
by triangulation to eventually match a desired tolerance. Adaptivity leads
to a considerable reduction in terms of evaluations of f with respect to
uniform grid computation as in Matlab®’s contour. Furthermore, especially
when the evaluation of f is computationally expensive, this reduction notably
decreases the computational time. A comparison of performances is shown
for two real-life applications such as the determination of stability charts and
of ε−pseudospectra for linear time delay systems. The corresponding Matlab
code is also discussed.

Keywords Level curves · Adaptive computation · Contour plot

1 Introduction

In this paper we face the problem of computing a set of z = constant level
curves of a surface z = f (x, y) where, possibly, f does not have an explicit

D. Breda (B) · R. Vermiglio
Dipartimento di Matematica e Informatica, Università degli Studi di Udine,
via delle Scienze 208, 33100 Udine, Italy
e-mail: dimitri.breda@dimi.uniud.it

R. Vermiglio
e-mail: rossana.vermiglio@dimi.uniud.it

S. Maset
Dipartimento di Matematica e Informatica, Università degli Studi di Trieste,
p.le Europa 1, 34127 Trieste, Italy
e-mail: maset@univ.trieste.it

606 Numer Algor (2009) 52:605–628

form but rather it can be numerically evaluated for any choice of x and y in a
given rectangular region of the (x, y)-plane.

Although the problem could appear simple at a first sight, it hides nontrivial
arguments and peculiarities which have to be considered and exploited if the
final target is to obtain a certain accuracy in the level curves with the least
possible computational effort. Think for instance at two-parameters robust
analysis which very often raises in control theory and automation: here the
interest is in the asymptotic stability analysis of control(led) systems with
uncertain parameters. The complete stability map in the parameters plane is
the set of level curves f (x, y) = z where f is a “stability indicator”, e.g. a
function giving the (real part of the) rightmost eigenvalue governing the system
dynamics, in which case z = 0. Hence typically f corresponds to an exact (or
numerically approximated) eigenvalue problem, possibly of large dimension
(e.g. space-discretized partial differential equations), and its computation at
one point (x, y) could be substantial.

It is clear from the previous example that the simple but natural idea of
computing f in as many regularly spaced point (x, y) as required in order to get
accurate level curves could reveal itself an enormous waste of computational
resources such as CPU time and memory storage. Why should we compute
f almost everywhere if our interest runs only along a finite set of curves? Of
course these curves represent the unknowns of our problem, but this motivated
us to search for new algorithms which can adaptively know how to get closer
to these curves forgetting about the regions far away from them.

A new algorithm following the above lines is proposed and described in this
work. In particular it is based on an adaptive triangulation scheme instead of
using uniformly spaced grids of points as done in Matlab’s contour. Moreover
it uses secant method instead of linear interpolation to eventually detect points
on a level curve once this has been located inside a portion of the (x, y)-plane.
Finally, other tricks or heuristic choices are included in order to overcome
difficult situations which in general arise when a surface intersects a plane.

The new algorithm is implemented in a Matlab package (freely available
from Netlib, http://www.netlib.org/numeralgo/na27) which is tested on several
examples and compared to Matlab’s contour on two real-life applications
which are known to be computationally expensive, i.e. the determination of
the stability chart and of the ε−pseudospectra of linear systems of Delay
Differential Equations (DDEs).

2 Test cases

In order to describe the features of both Matlab’s contour and our algorithm,
in the sequel level, we use the following constructed surface functions:

z = f (x, y) = sin (πx) − 1
2

+ x + 1√
2

− y (1)

http://www.netlib.org/numeralgo/na27

Numer Algor (2009) 52:605–628 607

0 0.5 1 1.5 2
0

0.5

1

1.5

2

x

y
Test 1

–3 –2 –1 0 1 2 3
–3

–2

–1

0

1

2

3

x

y

Test 2

Fig. 1 z = 0 level curve for Test 1 (left) and z = 3 level curves for Test 2 (right)

with (x, y) ∈ [0, 2] × [0, 2], and

z = f (x, y) = 3(1 − x)2e−x2−(y+1)2 − 10
(x

5
− x3 − y5

)
e−x2−y2 − 1

3
e−(x+1)2−y2

(2)
with (x, y) ∈ [−3, 3] × [−3, 3]. The first one (indicated as “Test 1” in the sequel
and in the relevant software) is an ad hoc case built in order to get an explicit
form of the exact z = 0 level curve, which is simply given by

y = sin (πx) − 1
2

+ x + 1√
2

, x ∈ [0, 2],

and it is shown in Fig. 1 (left). The second one (indicated as “Test 2” in the
sequel and in the relevant software) is the function peaks used in Matlab as
an example for surface and contour plots. The set of z = 3 level curves is shown
in Fig. 1 (right).

No matter which level z = constant we are interested in, in the rest of
the paper we always refer to the case z = 0 by translation along the vertical
axis, i.e. by considering f (x, y) − constant instead of f (x, y). In this sense, the
discriminant to say that a point of the surface is above or below the desired
level is the sign of its f value, positive or negative, respectively.

3 Matlab’s contour

In this section we give a brief description of the strategy behind the contour
function used in Matlab. For further details we refer the reader to the relevant
online documentation.

The contour’s method is based on the following steps. A uniform grid of
equally spaced points is set on the given rectangular region of the (x, y)-plane.

608 Numer Algor (2009) 52:605–628

This grid divides the region into rectangular cells and f is evaluated at the four
vertices of each cell. Then, if the sign of f at the four vertices changes it means
that a segment of level curve is crossing the cell at two edges. The two crossing
(or zero) points are determined by linear interpolation of the corresponding
vertex values. Finally, the segment of level curve is approximated by joining
the zero points with a straight line. To the best of the authors’ knowledge there
is no further rule behind this Matlab code.

With such an algorithm, it is obvious that the final accuracy on the level
curve depends on the grid size and it seems there is no other reasonable way
to measure the accuracy of a curve lying on a plane but inscribing it into a
bounded portion of the plane itself. In this sense, we can say that each point on
the resulting level curve is correct within a given tolerance TOL if, for instance,
the (absolute) length of the longest edge of the rectangles forming the uniform
grid is less than TOL. The (relative) tolerance ensured by the default 60 × 60
contour’s grid can be changed in order to increase this final accuracy.

Matlab’s contour imposes the evaluation of f on a set of uniformly
distributed points independently on the actual location of the level curves.
Hence it inevitably calculate many f values which are useless to determine the
curves, and remember that f is possibly expensive to evaluate. To reduce the
amount of these “useless” points, it seems better to begin with “few” points
and then perform some sort of adaptive refinement as explained in the next
section.

4 Adaptive triangulation

A first natural adaptive refinement is obtained by starting with a coarse rec-
tangular grid, and refine each cell with sign changes at the vertices by dividing
it into four further rectangular cells. The process can be iterated until the final
required accuracy is matched, i.e. the diagonal of each rectangle is less or equal
than a given tolerance TOL. In this way, the closer we are to a level curve,
the higher is the number of f evaluations. We call this adaptive rectangular
refinement, and each cell subdivision requires five new computations of f , i.e.
all the edges mid points and the cell center, see Fig. 2 (left).

In level we introduce a further and substantial improvement called
adaptive triangular refinement. Each rectangular cell with sign changes of the
starting coarse grid is refined by dividing it into four triangles by using only one
new evaluation of f , i.e. the center of the cell, see Fig. 2 (right). The refinement
of a new triangle is obtained by dividing it into two further triangles by the
height relevant to the longest edge, at cost of one new f evaluation.

For regularity reasons which will be clear in Section 6, and without loss
of generality, in the sequel we consider a starting grid of squares (and not
rectangles). Therefore, each square subdivision results in four isosceles rectan-
gular triangles and each of these is divided again into two isosceles rectangular
triangles by the height relevant to the hypotenuse.

Numer Algor (2009) 52:605–628 609

+ –

––

+

–

–

 –

+ –

––

–

Fig. 2 New f evaluations (black squares) with respect to old ones (empty circles) with adaptive
rectangular (left) and triangular (right) refinement and example of exact (solid line) and approxi-
mated (dashed line) level curve

Similarly to what described in Section 3, in the case of triangulation we
choose to control the (absolute) length of the cathetus of each triangle, i.e.
a triangle with sign changes is refined until the length of its cathetus is less than
a prescribed tolerance TOL, in the sequel intended as “final accuracy”. This
latter is also the main tolerance value given in input.

Although the triangulation turns out to be a more complex structure than
what can be obtained by square refinement, the computational advantage is
easily shown with the following argument. Suppose we start from a square cell
of area A and we need to reach a single cell of area a < A. Then, the minimum
number n f of new evaluations of f necessary to reach a from A is given by

n f = 5

⌈
log

(A
a

)

log 4

⌉

using squares and by

n f = 2

⌈
log

(A
a

)

log 4

⌉
− 1

using triangles, where �x� denotes the minimum integer p such that p ≥ x.
Therefore, the averaged computational gain is more than half using triangula-
tion.

The adaptive triangulation strategy produces a set of triangles in the (x, y)-
plane that certainly contains segments of the (still unknown) level curves. In
the next section we explain how to approximate (and hence eventually plot)
these segments.

610 Numer Algor (2009) 52:605–628

5 Level curve location

The problem is the following: given a (triangular) cell with sign changes along
two edges, locate the segment of level curve crossing the cell or, in other
terms, find the zero of the function f along each edge with sign change. As
in contour, linear interpolation can be used obtaining a first approximation
of the exact zero point. One could improve by applying the more efficient
and well-established Newton’s method for zeros of nonlinear functions [6],
but this requires the knowledge of the first derivative of f . The latter is not
always known, especially if f is not given in explicit form, but only computable
for every choice of x and y, as in our case. An approximation to f ′ could
be found, but this would mean extra computational cost, which is opposite
to our goal. Hence we decide to apply the secant method [6] which needs
two initial guesses (already known having the two vertex f values) but not
f ′. Moreover, level implements a slight variation known as regula falsi [6]
that ensures convergence inside the edge with no extra cost. In practice, this is
like applying successive steps of linear interpolation each between the f value
corresponding to the new point and the previous one with opposite sign.

Once the two zero points are found, they are joint with a straight line. In
Fig. 3 we show the situation for a cell: the surface is represented with solid
lines, the linear interpolation by dashed lines and the triangular cell by dotted
lines. The left picture shows a “nice” situation in which linear interpolation
could give good results, but the right one shows a worse, but more general,
case.

In general we get sufficient accuracy with three or four secant iterations,
i.e. one or two new f evaluations for each edge. This extra cost is largely

+

_

+

+

_

+

Fig. 3 Location of a level curve segment on a triangular cell by linear interpolation

Numer Algor (2009) 52:605–628 611

compensated by the strong reduction obtained by triangulation with respect
to uniform square grid.

To resume, we propose first to substitute the uniform square grid with an
adaptive triangulation in order to detect a set of small cells where the level
curve lies and second to change the linear interpolation with the secant method
to locate accurately the segments of level curve inside these cells. A detailed
analysis should suggest how to choose the density of the starting coarse square
grid and how deep to go with the triangulation to eventually start with the
location via the secant method. This depends much on the nature of f . In
level we choose a fixed compromise (see Section 8 for the details) among
these three phases which revealed good on average. So the size of the initial
squares, of the smallest triangles and the tolerance (and maximum number) of
the secant iterations are fixed a priori, although in the implemented code the
user is allowed to modify the default values through optional inputs.

Nevertheless, other important questions are to be faced. Some of them are
congenital of the adaptive triangulation, some are not. For instance we refer to
the fact that multiple evaluations between neighboring cells easily occur when
using adaptive strategies, or to the fact that a segment of level curve can cross
(or lies inside) a cell without generating a sign change at its vertex f values.
We address these and other problems in the following sections.

6 Multiple evaluations and information storage

Consider two neighboring square cells and suppose that one has already been
refined, i.e. f has been evaluated at least at the mid point of each edge (plus
the cell center). When we proceed to refine the second one, the value of f at
the mid point of the common edge is already known from the refinement of the
previous cell. Hence we should absolutely avoid its computation again. Since
this can occur quite often, if we do not pay attention the final result could be
a almost doubled computational cost, i.e. we risk to loose all the gain given by
the adaptive strategy.

The solution is quite easy using squares: it is enough to store all the
evaluations of f in a (possibly large and sparse) matrix whose entries indices
are related to the grid coordinates in the (x, y)-plane. Every time a new
evaluation of f is needed, we first check the corresponding entry of this matrix
to see if it is empty or not. The dimension of the matrix depends on that of the
rectangular region to scan and on the final accuracy required, i.e. the size of
the smallest square, and hence it can be determined in advance.

If we now turn our attention to adaptive triangulation, the same idea might
appear not so suitable. But on the contrary, a matrix can be associated to each
square of the starting coarse grid and since it is a square, the triangulation (by
isosceles rectangular triangles) leads to a regular distribution of the grid points
and their (x, y) coordinates can be directly associated to the matrix entries
indices.

612 Numer Algor (2009) 52:605–628

In detail, if ls is the length of the starting square and lt is the cathetus of
the final smallest triangle, the maximum number of possible subdivision is the
minimum integer n such that

ls

(
√

2)n
≤ lt,

i.e.

n =
⌈

2 log2

(
ls

lt

)⌉
.

Observe (Fig. 4) that each possible new vertex belongs to a d × d uniform grid
of equi-spaced points with separation lg where

d = 2m + 1,

lg = ls

2m

and

m =
⌊

n + 1
2

⌋

where 	p
 denotes the largest integer q such that q ≤ p. We use a d × d matrix
S in such a way that if the vertex has coordinates (x, y) and f (x, y) = z, the
corresponding matrix entry is sij = z with

i = ymax − y
lg

+ 1, j = x − xmin

lg
+ 1,

where (xmin, ymax) are the coordinates of the left-top vertex of the square cell.
In this way, when a vertex is introduced by a further subdivision of a triangular
cell, its f value can be recovered from the matrix S whenever this vertex
has already been computed for a neighboring cell. For instance in Fig. 4, the
subdivision of the cell T1 does not require the evaluation of the subdivision

l
t

l
g

l
s

T
2

T
3

T
1

Fig. 4 Example of square cell subdivision (left) and its matrix representation (right)

Numer Algor (2009) 52:605–628 613

vertex (◦) since this is already computed for the cells T2 and T3. Moreover,
since not all the nodes of the square grid are necessarily vertices of triangular
cells, i.e. there is no need to know their f value, the matrix S is usually sparse
and therefore its storage is cheap.

6.1 Scanning the starting grid

The algorithm starts by defining a first coarse square grid on the rectangular
region [Xmin, Xmax] × [Ymin, Ymax] of the (x, y)-plane. Let ls be the size of the
grid square, determined in order to locate at least p squares along the shortest
edge, with p a given positive integer (see Section 8 for details). To cover all the
region with an integer number of squares we possibly enlarge Xmax and Ymax

to

Xmax = Xmin + nxls

and

Ymax = Ymin + nyls,

respectively, where

nx =
⌈

Xmax − Xmin

ls

⌉

and

ny =
⌈

Ymax − Ymin

ls

⌉
.

So nx and ny are the number of squares along the horizontal and vertical edges
of the region, respectively. The analysis starts from the left-top square cell and
goes on towards the right and bottom directions, i.e. the usual reading/writing
ones (Fig. 5, left).

Once a square cell has to be refined (the “current” cell, Sc in Fig. 5, right),
its four f vertex values are stored into the matrix S which is passed in input
to the refinement function as will be clear in Section 8. As for the triangular

X
min

 X
max

Y
min

Y
max

l
s

Sc Sn

S
b

top(1,:) top(2,:) top(3,:) top(4,:)

left

top(5,:)

Fig. 5 Example of starting square grid

614 Numer Algor (2009) 52:605–628

cells, also the square ones share some vertices. Surely the right, respectively
bottom, vertices of the current square cell are the same as the left, respectively
top, ones of the “next” square (Sn in Fig. 5, right), respectively “bottom” (Sb

in Fig. 5, right). But there might be more vertices in common generated by
the triangulation. Hence, to avoid any kind of possible multiple f evaluation,
every time a square cell is refined, all the new vertices created along the right,
respectively bottom, edge of the refined square cell are stored in a d-vector
lef t and in a nx × d matrix top, respectively. The reason of this is the following.
Since the square grid is scan towards the bottom row by row, and each row is
scan towards the right, the right edge of Sc is passed directly to the left one
of Sn which is the next to be refined. Hence a d vector is enough as auxiliary
vector to be passed to the next cell. Opposite, the bottom edge of Sc is the top
one of Sb which will be possibly refined after nx steps. Hence the bottom edges
of all the square cells of a whole row must be stored for the next row and a
nx × d matrix is necessary. The i-th, i = 1, . . . , nx, row of this matrix is filled
with the bottom edge of the i-th square cell according to its position along the
row of the grid. The refinement function provides to update the vector lef t and
the row of the matrix top which are used next. This applies with some attention
when the current cell is the last one of a row or even the right-bottom one.

7 Further refinement

In Section 4 we assumed to refine a (square or triangular) cell when a sign
change in the f vertex values occurs along two edges. Indeed, this condition is
sufficient to state that a segment of level curve is crossing the cell. But it is not
necessary as explained next.

7.1 The slope test

If one looks at Fig. 6, it soon realizes that a segment of level curve may cross a
cell, or completely lie inside it, even if there is no sign change at the f vertex
values. Also in this case a cell refinement is necessary, but the question is how
to detect this possibility.

To this aim consider an edge p1 p2 with values f1 = f (p1) and f2 = f (p2)

of the same sign at the vertices pi = (xi, yi), i = 1, 2 (Fig. 7). We check the
possibility that a segment crossing exists, i.e. there exists a point (x, y) = p ∈
p1 p2 with f (p) = 0, measuring the minimum slope at which p is reached
simultaneously from f1 and f2. This slope is given by

s = tan α = | f1 + f2|
l

where l is the length of the edge. Then we set a tolerance parameter, say Tp,
and if s ≥ Tp for all the edges of the cell, then there is no need to refine because
the f vertex values are “too far” from zero with respect to the length of the
edge. Indeed, this is not a sufficient condition to exclude the refinement, but at

Numer Algor (2009) 52:605–628 615

+

+

+

+

+

+

Fig. 6 Examples of level curves not generating sign changes at the vertices of the cell

least it is a good indicator if Tp is chosen correctly. In the implementation we
set two values for this tolerance, i.e. Tp = Ts for square cells and Tp = Tt for
triangular cells.

A couple of other particular situations are treated in the following sections

7.2 Adaptive curvature determination

So far we are able to determine a set of cells where the level curve lies, and
to locate it using a set of segments whose vertices are given via the secant
method along the cell edges. As explained in Section 5, few secant iterations
allows to detect with good accuracy the zero points along the two cell edges
with sign change. But looking at Fig. 8 (left) it is clear that all this accuracy is
lost inside the cell if the segment shows a large curvature, and this sounds like
unreasonable.

Fig. 7 Slope test on a cell
edge

f
1

f
2

p
p

2
p

1

–f
2

α

616 Numer Algor (2009) 52:605–628

+

_

+

+

_

+

Fig. 8 Examples of poor curvature approximation obtained by linear interpolation

To prevent this, i.e. to better follow the exact segment, we implement in
level an adaptive curvature determination function. This consists in consider-
ing an extra mid edge inside the cell (Fig. 9), finding its zero point by the secant
method and measuring the height of the triangle given by this zero and the two
other ones along the cell edges with sign change. If this height is too large,
say greater than a fixed valueTc depending on the final required accuracy (see
Section 8 for details), the process is iterated by adding more extra mid edges. In
this way the curvature of the segment can be tracked with sufficient accuracy
not loosing the good approximation obtained for the zeros. The position of

Fig. 9 Extra mid edge for the
adaptive curvature
determination

Numer Algor (2009) 52:605–628 617

each extra mid edge is determined by weighting the position of the zero points
along the two edges between which the new one should lie.

In the following section we explain how to overcome the particular case
shown in Fig. 8 (right).

7.3 The “two-segments” case

The situation in Fig. 8 (right) could lead to some problem if the extra mid edge
computed by the adaptive curvature function falls in between the two segments
of level curve. Opposite to the case in Fig. 8 (left), this means that the f vertex
values of the new edge have the same sign. In this situation, the secant method
along this edge will look for a zero point outside the cell. This would not be
a problem if no other level curves were close to the cell, but sometimes this
happens and the secant routine determines a zero in the wrong curve.

We avoid this by performing a double secant procedure in order to compute
the two zeros which lie on the same edge. Then we start two separate adaptive
curvature determinations, one on each external triangle determined with these
new points. In this way the two segment are tracked independently and the
missing joining part will be given by the neighboring cell.

8 The overall algorithm

In this section we describe the overall implementation of level in order to
resume how the features presented separately in the previous sections are joint
together.

First of all, level takes as input the external function f through which
the surface values can be computed for any choice of x and y, the con-
stant z identifying the desired set of level curves f (x, y) = z, the rectangle
[Xmin, Xmax] × [Ymin, Ymax] of the (x, y)-plane where the problem has to be
solved and the final accuracy TOL on the level curve as defined in Section 4. All
the remaining parameters (i.e. the tolerance St and the number of iterations Si

for the secant method, the tolerance for the adaptive curvature determination
Tc, the tolerances for the slope tests on squares Ts and on triangles Tt and
the minimum number p of starting squares along the shortest side) are set to
fixed default values given in the sequel. These values have been selected after
numerous tests on several functions. Nevertheless, as announced in Section 5,
the user is free to modify these values by providing additional optional inputs.

The tolerance for the secant method along the cell edges is set to St = 0.01,
which means that a maximum error of 1% of the edge length is allowed. The
maximum number of secant iterations is set to 10. The size of the smallest
triangle (i.e. the length of its cathetus) created by the adaptive triangulation is
given by

lt = TOL
St

.

618 Numer Algor (2009) 52:605–628

The starting square grid is determined by setting a minimum number of p = 10
squares along the shortest edge min {|Xmax − Xmin|, |Ymax − Ymin|}. Then Xmax

and Ymax are rearranged as explained in Section 6.1 to contain exactly a
minimum 10 × 10 square grid with separation ls determined accordingly. At
this point, if the starting squares are already smaller than the smallest possible
triangle, we set automatically lt = ls, which simply means that the starting grid
is accurate enough to match the final tolerance TOL via the secant iterations.
If not the case, the adaptive triangulation is performed.

The tolerances Ts and Tt for the slope tests are set to be (possibly different)
fixed numbers as said in Section 7.1. From the output of numerous tests on
different surfaces, it turns out that the values Ts = Tt = 0.2 are large enough
for surfaces with “normal” variation, i.e. say with first derivative enough far
away from zero, while these values have to be increased when the surface is
almost flat. Anyway values Ts, Tt ≤ 5 should guarantee to find the full set of
level curves, even the smaller ones. We point out that higher values of these
parameters lead to more evaluations of f .

Finally, the tolerance Tc for the adaptive curvature determination described
in Section 7.2 is set to be

Tc = TOL
10

.

When all the parameters are set, the code starts creating the square cells.
Then, following the scanning direction as in Section 6.1, each square is possibly
refined according to the presence of sign changes on its vertex f values or
to the slope test as described in Section 7.1. If this is the case, the associated
matrix S (Section 6) is passed to the refinement function which provides the
triangulation and the final segments location as given in Sections 4 and 5. This
function starts from the matrix S, where the f values of the four corners are
known, by evaluating f at the center point of the square. With this new vertex,
four triangular cells are created and each is stored in a 3 × 2 matrix containing
the coordinates (x, y) of each vertex. These four matrices initialize a vector of
matrices T of length 4. Then the refinement analysis starts from the last matrix
of T and the following two cases are possible:

– if the cell has to be refined according to sign changes or to the slope test,
then

– the matrix corresponding to the originating cell is deleted from T;
– the subdivision vertex is calculated;
– f is evaluated by filling the relevant entry in the matrix S;
– two new triangular cells are created and stored in two new 3 × 2

matrices added at the end of T.

– if no refinement is required the cell is deleted from T.

The refinement analysis always resume from the last matrix of T and it stops
when this vector is empty, that means that the whole region of the (x, y)-plane
included in the input square cell represented by S is analyzed.

Numer Algor (2009) 52:605–628 619

During the triangulation, when the minimum triangle size is reached and
a sign change occur or the slope test detects a possible level curve, the cell
is passed to the function implementing the secant method coupled with the
adaptive curvature determination as described in Sections 5, 7.2 and 7.3.

Finally, when the refinement of a square is finished, the matrix S of the next
square is initialized with the necessary f values given by refinement of the
neighboring squares according to what presented in Section 6.1.

A complete description of functions parameters and calls can be found in
the primer provided with the relevant software. Moreover, let us remark that
the algorithm presented in this paper is used (together with the one of [5])
in “Trace-DDE” ([3, 13]), a Matlab graphic user interface devoted to the
computation of characteristic roots and of stability charts of DDEs.

Remark 1 Observe that for small-size closed contours, the size of the starting
square grid is also important, i.e. if this latter is larger than the size of such
a curve, then the curve might be missed during the algorithm execution. To
our knowledge, there is no optimal choice of the initial grid size. Such an
optimal choice should be based on accurate estimates of the diameters of the
level curves, which are very difficult to obtain. A partial (but effective to our
experience on several tests) remedy is represented by the slope test on squares
described in Section 7.1 although, as already stated, this does not represent a
sufficient condition to exclude the possibility of missing small portions of the
set of level curves.

9 Numerical examples

We present here some numerical experiments on the case studies described in
Section 2. All presented tests (also in forthcoming sections) are performed on
a MacBook Pro 2.53 GHz Intel Core 2 Duo processor with 4 GB 1067 Mhz
DDR3 RAM. Similar tests were also performed on a Pentium III processor
with 256 MB RAM running Windows XP. Matlab version 7.0 R14 was used.

Functions Test 1 and Test 2 are tested both with contour and level to
compute their set of level curves f (x, y) = 0 and f (x, y) = 3, respectively.
Computational data are collected in Tables 1 and 2 where TOL refers to the
final required accuracy given in input, N refers to the number of f evaluations

Table 1 Computational data for Test 1: TOL = accuracy, N = number of f evaluations, t = CPU
time (seconds), suffix c for contour and l for level

TOL Nc Nl tc tl Nc/Nl tc/tl
0.1 441 522 0.0 0.1 0.8 0.3
0.05 1681 522 0.0 0.2 3.2 0.2
0.01 40401 572 0.1 0.2 70.6 0.5
0.005 160801 614 0.6 0.2 261.9 4.0
0.001 4004001 1007 109.4 0.2 3976.2 454.0

620 Numer Algor (2009) 52:605–628

Table 2 Computational data for Test 2: TOL = accuracy, N = number of f evaluations, t = CPU
time (seconds), suffix c for contour and l for level

TOL Nc Nl tc tl Nc/Nl tc/tl
0.1 3721 789 0.1 0.2 4.7 0.4
0.05 14641 956 0.2 0.2 15.3 0.9
0.01 361121 1727 5.9 0.4 209.1 14.8
0.005 1442401 2241 39.0 0.5 643.6 73.5
0.001 4067 1.0

needed to calculate and plot the level curves, t refers to the CPU time. The
suffix c stands for contour and the suffix l stands for level. All internal
parameters are fixed to the default values as given in Section 8.

From both tables it can be noticed the speedup Nc/Nl in terms of number
of f evaluations obtained by using level with respect to contour. This
increases notably as TOL decreases. In particular for Test 2, the value TOL =
0.001 cannot be reached using contour due to limited memory capacity: it
would require more than 3.6 × 107 evaluations of f against the relatively small
amount of 4067 points with level.

The same increasing trend occurs in terms of CPU time, but in this case
contour is still comparable with respect to level, except for the lowest
values of TOL. This happens because both the functions Test 1 and Test
2 are computed at each required point (x, y) almost instantaneously, hence
the major tribute to the computational cost comes from the computational
structure of the algorithms more than from the evaluations of f , and the
triangulation in level is certainly more expensive than the regular grid in
contour. As stated in the introduction, the advantage in saving computational
time of an adaptive strategy turns out to be evident when f is computationally
heavy as it will be shown in the next section.

Fig. 10 Computational
comparison for Test 1

10–310–210–1 10–310–210–1

TOL

Test 1 f evaluations

10–2

10–1

100

101

102

103

102

103

104

105

106

107

TOL

Test 1 CPU time

Nc

Nl

tc

tl

Numer Algor (2009) 52:605–628 621

Fig. 11 Computational
comparison for Test 2

10–310–210–1 10–310–210–1

TOL

Test 2 f evaluations

10–2

10–1

100

101

102

102

103

104

105

106

107

TOL

Test 2 CPU time

Nc

Nl

tc

tl

Figures 10 and 11 resume the computational results by using double loga-
rithmic plots of N and t with respect to TOL for both Test 1 and Test 2.

Finally, Figs. 12 and 13 show the set of level curves at z = 0 for Test 1 and
at z = 3 for Test 2 and the points (with dots) at which f has been evaluated
to obtain the curves with TOL = 0.05 and TOL = 0.1, respectively, using
contour (left) and level (right). The use of the adaptive strategy (right)
is evident.

0 0.5 1 1.5 2
0

0.5

1

1.5

2

x
0 0.5 1 1.5 2

x

y

0.5

1

1.5

2

y

Test 1 with CONTOUR Test 1 with LEVEL

Fig. 12 Evaluations of f (dots) for Test 1: 1681 with contour (left) and 522 with level (right)
for TOL = 0.05

622 Numer Algor (2009) 52:605–628

x
–3 –2 –1 0 1 2 3

–3

–2

–1

0

1

2

3

y

x
–3 –2 –1 0 1 2 3

–3

–2

–1

0

1

2

3

y

Test 2 with CONTOUR Test 2 with LEVEL

Fig. 13 Evaluations of f (dots) for Test 2: 3721 with contour (left) and 789 with level (right)
for TOL = 0.1

10 Real-life applications

10.1 Stability charts

In this section we face the problem of computing the stability chart of a system
of linear DDEs of the general form

y′(t) = L0 y(t) +
k∑

l=1

⎛
⎝Ll y(t − τl) +

−τl−1∫

−τl

Ml(θ)y(t + θ)dθ

⎞
⎠ , t ≥ 0, (3)

where L0, L1, . . . , Lk ∈ C
m×m, 0 = τ0 < τ1 < · · · < τk = τ and Ml : [−τ, 0] →

C
m×m, l = 1, . . . , k, are smooth functions. Delay systems such as (3) are par-

ticularly important in control theory, where the stability effects of delays are a
crucial problem [10, 12]. Important applications can be found also in machining
tool such as milling, turning and drilling where the role of parameters such as
spindle speed and feed are stability determining [8, 11]: these are second order
systems with time dependent coefficients and the interest is in the stability of
periodic solutions.

The asymptotic stability of the zero solution of (3) is determined by the
position on C of the rightmost characteristic root, i.e. the solution with largest
real part λr ∈ C of the characteristic equation

det

⎛
⎝λI − L0 −

k∑
l=1

⎛
⎝Lle−λτl +

−τl−1∫

−τl

Ml(θ)eλθ dθ

⎞
⎠

⎞
⎠ = 0. (4)

In particular, it is well known that the zero solution is asymptotically stable if
and only if (λr) < 0 [7].

Numer Algor (2009) 52:605–628 623

Now suppose that system (3) depends on two uncertain parameters (e.g. de-
lays or coefficients) p1 and p2 given into fixed intervals, i.e. p1 ∈ [p1,min, p1,max]
and p2 ∈ [p2,min, p2,max]. The stability chart is nothing else but the collection
of stable-unstable regions in the rectangle [p1,min, p1,max] × [p2,min, p2,max] of
the parameters plane. Clearly the regions are determined by the so-called
stability boundaries, i.e. the set of curves λr(p1, p2) = 0, being the system
asymptotically stable wherever λr(p1, p2) < 0 and unstable elsewhere. In-
deed this problem corresponds to find the set of z = 0 level curves of the
surface f (x, y) = λr(p1, p2) in [Xmin, Xmax] × [Ymin, Ymax] = [p1,min, p1,max] ×
[p2,min, p2,max] and hence it can be solved by using contour or level as
described in this paper.

This real-life application is a challenging problem. In fact, the characteristic
equation (4) is transcendental and the infinitely many characteristic roots
cannot be computed analytically, rather a finite set of them can be numerically
approximated. In the recent years the authors presented a family of numer-
ical techniques focused on the discretization of the infinitesimal generator
of the solution semigroup associated to (3) [2, 4, 5]. The discretization via
pseudospectral differencing techniques [5] is based on n + 1 Chebyshev nodes
on the delay interval [−τ, 0] and it leads to a matrix whose eigenvalues give
approximations to the rightmost characteristic roots. Consequently, each eval-
uation of the function λr(p1, p2) corresponds to a (possibly large) eigenvalue
problem, hence it is computationally expensive and the use of an adaptive
strategy with respect to a regular grid in order to plot the stability boundaries
reveals itself substantially advantageous in terms of computational time as we
show in the following case study.

As an application (indicated as “Test 3” in the sequel and in the relevant
software) we consider a case of variable pitch cutter applied in modern
machining whose dynamics is modeled with the following system of 8 DDEs
with five discrete delays depending on the two parameters τ1 and τ2 ([1]
and courtesy of Prof. N. Olgac and Dr. R. Sipahi, University of Connecticut,
Mechanical Engineering Departement):

y′(t) = L0 y(t) + L1(y(t − τ1) + y(t − τ2)) + L2(y(t − 2τ1)+
+y(t − 2τ2)) + L3 y(t − τ1 − τ2).

(5)

The associated stability chart for (τ1, τ2) ∈ [0, 2 × 10−3] × [0, 2 × 10−3] is de-
picted in Fig. 14: each evaluation of λr is obtained by the use of pseudospectral
differencing methods based on n + 1 Chebyshev nodes, which means a final
eigenvalue problem of dimension m(n + 1) [5] where m = 8 is the system di-
mension. We performed two similar computations with n = 10 and n = 40, the
latter resulting more accurate due to the finer discretization in the numerical
procedure for the rightmost root approximation. Indeed lower values of n do
not lead to correct boundaries as is the case in Fig. 14 for n = 10 (the dimension
of the corresponding eigenvalue problem is 88). On the other hand, the larger
is n, the more expensive is the computation of the rightmost root for one choice
of the two parameters, evaluation which takes around 3 s on average with
n = 40 (the dimension of the corresponding eigenvalue problem is 328).

624 Numer Algor (2009) 52:605–628

Fig. 14 Stability chart of
system Test 3 computed with
level for TOL = 1 × 10−5,
n = 10 (dashed line) and
n = 40 (solid line), the origin
is a stable point

0 0.5 1 1.5 2

x 10–3

0

0.5

1

1.5

2
x 10–3

τ1

τ 2

Test 3 with LEVEL

n=40

n=10

A computational comparison between contour and level is reported
in Table 3 and Fig. 15. It is now clear from these data that the adaptive
triangulation strategy implemented in level gives raise to a considerable
reduction in either the number of function evaluations and the CPU time. In
Table 3, for n = 40, the last value of Nc (∗) is deduced from the regular grid
size giving a final accuracy of TOL = 1 × 10−5 and tc � 3 h is estimated from
Nc knowing the average cost of 3 s per evaluation: compared to tl � 4 min the
advantage is evident.

10.2 ε−pseudospectra

In this section we consider the computation of the ε−pseudospectrum of a
linear operator A : X → X where X is a Banach space. We denote by �(A)

the spectrum of A , i.e the set of λ ∈ C such that a bounded inverse of λI − A
does not exist. For any ε > 0, the ε−pseudospectrum �ε(A) of A is defined as
[14]

�ε(A) = {
λ ∈ C : ‖ (λI − A)−1 ‖∞ ≥ ε−1} (6)

Table 3 Computational data for Test 3: n = discretization index, TOL = accuracy, N = number
of f evaluations, t = CPU time (seconds), suffix c for contour and l for level (∗ estimated)

TOL Nc Nl tc tl Nc/Nl tc/tl
n = 10 1 × 10−4 441 627 4.4 6.3 0.7 0.7

5 × 10−5 1681 667 17.0 6.6 2.5 2.6
1 × 10−5 40401 881 390.9 8.9 45.9 43.9

n = 40 1 × 10−4 441 641 117.6 168.6 0.7 0.7
5 × 10−5 1681 667 446.9 175.7 2.5 2.5
1 × 10−5 40401 915 10499∗ 240.7 44.1∗ 43.6∗

Numer Algor (2009) 52:605–628 625

Fig. 15 Computational
comparison for Test 3

102

103

104

105

106

100

102

104

106

10–510–4 10–510–4

TOL TOL

Test 3 f evaluations Test 3 CPU time

t
c
, n=10

t
l
, n=10

t
c
, n=40

t
l
, n=40

N
c
, n=10

N
l
, n=10

N
c
, n=40

N
l
, n=40

and assuming by convention that ‖ (λI − A)−1 ‖∞ = ∞ for λ ∈ �(A), it is
clear that �0(A) = �(A), but it can be shown that �ε(A) ⊃ �(A) for ε > 0.

The reason why pseudospectra are important is mainly that in the case of
(matrices or) operators far from normality, the knowledge of their spectrum
is not always suitable to get information about their behavior measured by
quantities such as ‖exp(tA)‖ or ‖A n‖, [14]. For instance, in the case of a
differential operator A governing the dynamics of an evolving system, the
spectrum of A can give information about the asymptotic behavior of the
zero solution, but nothing can be said about the transient which can exhibit
a fast and large growth prior to decay in the case of stability, i.e. eigenvalues
in the left-half of C. The analysis of the pseudospectrum can provide such
information.

Moreover, the alternative definition

�ε(A) = {λ ∈ C : λ ∈ �(A + 	A) for some 	A with ‖	A ‖ ≤ ε}

suggests that the pseudospectrum measures the perturbation of the spectrum
of an operator subject to perturbations itself.

In this work we consider the particular case arising again from DDEs, i.e. we
compute the ε−pseudospectrum of the linear unbounded operator A which
is the infinitesimal generator associated to systems of DDEs such as (3) [9].
Since this operator is infinite dimensional, its pseudospectrum is approximated
by discretizing A into a suitable matrix An via pseudospectral differencing
methods as reported in the previous section, for details see [5]. Although
there is little general literature on the computation of pseudospectra of infinite
dimensional operator via a matrix discretization, “this procedure can be quite
successful if the discretization is highly accurate, and, in particular, spectral
methods rather than finite differences or finite elements have been the basis of
most the computations so far” [14].

626 Numer Algor (2009) 52:605–628

It is clear from (6) that the ε−pseudospectrum is bounded by the level
curves f (x, y) = ε−1 of the function

f (x, y) = ‖ (λI − An)
−1 ‖∞, λ = x + iy, i2 = −1,

where x and y are real and An is the matrix discretization of the infinitesimal
generator A associated to the system of DDEs. Therefore the problem can be
solved again either with contour or level.

In the sequel we report about the computation of the pseudospectra relevant
to the DDEs:

y′(t) = −5y(t) − y(t − 1) (7)

and

y′′(t) = k2

2
(y(t) + y(t − τ)) (8)

with k = 1 and τ = 4. Equation (7) (indicated as “Test 4” in the sequel and
in the relevant software) is a single delay case used as a constructed test.
The second order equation (8) (provided by Prof. K. Bohinc, University of
Ljubljana, during a private communication and indicated as “Test 5” in the
sequel and in the relevant software) models the potential y of the electric
field relevant to a molecule positioned perpendicularly at a distance t from
a uniformly charged plane. In this last case the variable t denotes a spatial
variable, hence τ is a spatial “delay” and, moreover, the model can be easily
reduced to a first order system of two DDEs.

Numerical results are collected in Table 4 and refer to the computation of
the level curves at the ten different values ε = 10−s with s = −0.15 : 0.1 : 0.75
for Test 4 and s = 0.7 : 0.2 : 2.5 for Test 5. Since contour is based on a
uniform grid, the same grid points are used to compute all the level curves,
hence the computational effort (in terms of number of grid points) does not
change for one or ten levels. Opposite, the adaptive strategy adopted in level
requires one computation for each level because of the dependence of the grid
from the level curve itself. Hence, in Table 4 the number of f evaluations refers
to the total required for all the 10 levels. The same holds for the CPU time.
Although this, it can be noticed how level is still advantageous with respect
to contour, the reason lying in the (large) computational cost of a single f
evaluation. It is then clear that the higher is this cost, the better performing is
level.

Table 4 Computational data for Test 4 (top) and Test 5 (bottom): n = discretization index,
TOL = accuracy, N = number of f evaluations, t = CPU time (seconds), suffix c for contour
and l for level

n TOL Nc Nl tc tl Nc/Nl tc/tl
20 0.05 20301 9862 4.6 4.5 2.1 1.0
20 0.01 20301 8265 25.6 9.8 2.5 2.6

Numer Algor (2009) 52:605–628 627

–4 –3 –2 –1 0 1
0

2

4

6

8

10

ℜ

Test 4

ε

–0.8 –0.6 –0.4 –0.2 0 0.2
0.5

1

1.5

2

2.5

ℜ

Test 5

ε

Fig. 16 ε−pseudospectrum for Test 4 (left) and Test 5 (right), arrow denotes increasing ε

Representations of the ε−pseudospectra for Test 4 and Test 5 are shown in
Fig. 16 around the second and third rightmost eigenvalues (with positive imag-
inary part since the spectrum is symmetric with respect to the real axis). The
imaginary axis is also depicted: since it represents the limit between asymptoti-
cally stable and unstable behavior, its intersection with the ε−pseudospectrum
gives information about the minimum amount of perturbation of A which
leads to bifurcation.

References

1. Altintas, Y., Engin, S., Budak, E.: Analytical stability prediction and design of variable pitch
cutters. J. Manuf. Sci. E.-T. ASME 121, 173–178 (1999)

2. Breda, D.: The infinitesimal generator approach for the computation of characteristic roots for
delay differential equations using BDF methods. Technical Report RR17/2002, Department
of Mathematics and Computer Science, University of Udine, (2002)

3. Breda, D., Maset, S., Sechi, D., Vermiglio, R.: Trace-DDE. http://users.dimi.uniud.it/∼dimitri.
breda/software.html (2005)

4. Breda, D., Maset, S., Vermiglio, R.: Computing the characteristic roots for delay differential
equations. IMA J. Numer. Anal. 24(1), 1–19 (2004)

5. Breda, D., Maset, S., Vermiglio, R.: Pseudospectral differencing methods for characteristic
roots of delay differential equations. SIAM J. Sci. Comput. 27(2), 482–495 (2005)

6. Dahlquist, G., Björck, Å: Numerical Methods. Prentice-Hall, Englewood Cliffs (1974)
7. Hale, J.K., Verduyn Lunel, S.M.: Introduction to Functional Differential Equations, No. 99,

AMS series. Springer, New York (1993)
8. Insperger, T., Stépán, G.: Updated semi-discretization method for periodic delay-differential

equations with discrete delay. Int. J. Numer. Methods Eng. 61, 117–141 (2004)

http://users.dimi.uniud.it/~dimitri.breda/software.html
http://users.dimi.uniud.it/~dimitri.breda/software.html

628 Numer Algor (2009) 52:605–628

9. Michiels, W., Green, K., Wagenknecht, T., Niculescu, S.I.: Pseudospectra and stability radii for
analytic matrix functions with application to time-delay systems. Linear Algebra Appl. 418(1),
315–335 (2006)

10. Niculescu, S.I.: Delay Effects on Stability: A Robust Control Approach, No. 269, TLNCIS.
Monograph. Springer, London (2001)

11. Olgac, N., Sipahi, R.: An exact method for the stability analysis of time delayed LTI systems.
IEEE Trans. Automat. Contr. 47(5), 793–797 (2002)

12. Richard, J.P.: Time-delay systems: an overview of some recent advances and open problems.
Automatica 39, 1667–1694 (2003)

13. Sechi, D.: Sviluppo di interfaccia grafica per lo studio della stabilità di sistemi differenziali con
ritardo. Master’s thesis, University of Udine (2005, in italian)

14. Trefethen, L.N.: Pseudospectra of linear operators. SIAM Rev. 39(3), 383–406 (1997)

	An adaptive algorithm for efficient computation of level curves of surfaces
	Abstract
	Introduction
	Test cases
	Matlab's contour
	Adaptive triangulation
	Level curve location
	Multiple evaluations and information storage
	Scanning the starting grid

	Further refinement
	The slope test
	Adaptive curvature determination
	The "two-segments'' case

	The overall algorithm
	Numerical examples
	Real-life applications
	Stability charts
	ε-pseudospectra

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

