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Abstract. There is a growing interest in numeric-algebraic techniques
in the computer algebra community as such techniques can speed up
many applications. This paper is concerned with one such approach
called Exact Numeric Computation (ENC). The ENC approach to
algebraic number computation is based on iterative verified approxima-
tions, combined with constructive zero bounds. This paper describes Core
2, the latest version of the Core Library, a package designed for appli-
cations such as non-linear computational geometry. The adaptive com-
plexity of ENC combined with filters makes such libraries practical.
Core 2 smoothly integrates our algebraic ENC subsystem with tran-
scendental functions with ε-accurate comparisons. This paper describes
how the design of Core 2 addresses key software issues such as modu-
larity, extensibility, and efficiency in a setting that combines algebraic
and transcendental elements. Our redesign preserves the original goals
of the Core Library, namely, to provide a simple and natural interface
for ENC computation to support rapid prototyping and exploration. We
present examples, experimental results, and timings for our new system,
released as Core Library 2.0.

1 Introduction

Most algorithms involving numbers are designed in the Real RAM model of
computation. In this model (e.g., [1, 37]) real numbers can be directly manipu-
lated, comparisons are error-free, and basic arithmetic operations are exact. But
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in actual implementations, real numbers are typically approximated by machine
floating point numbers, leading to the ubiquitous numerical nonrobustness issues
that plague applications in scientific and engineering applications. In Compu-
tational Geometry, these numerical errors are exacerbated by the presence of
discrete geometric relations defined by numbers. The survey articles [24,40] give
an overview of nonrobustness issues in a geometric setting.

Now suppose P is a C++ program using only standard libraries. When com-
piled, it suffers from the expected nonrobustness associated with numerical er-
rors. Imagine a software library with the property that when it is included by
P , the compiled program (magically) runs like a real RAM program because all
numerical quantities1 behave like true real numbers. Such a library would be a
boon towards eliminating numerical nonrobustness. The Core Library [22] was
designed to approximate this dream: the program P only needs to insert the
following two directives:

#define CORE LEVEL 3

#include ”CORE.h” (1)

Our library (CORE.h) will re-interpret the standard number type double as an
Expr object (a directed acyclic graph representing a numerical expression). In-
deed, by changing the CORE LEVEL to 1 or 2 in (1), the program P can be com-
piled into other “accuracy levels”, corresponding to machine precision (Level 1)
or arbitrary multiprecision (Level 2). Although Levels 1 and 2 fall short of a
Real RAM, the ability for a single program P to compile into different accuracy
levels has interesting applications in the debug-exploration-release cycle of pro-
gram development [44]. The purpose of this paper is to present the rationale and
design of Core Library 2.0 (or Core 2). Towards this end, it will be compared
to our original design, which refers to Core Library 1.7 (or Core 1). Thus “old
system/design” refers to Core 1 while “new system/design” refers to Core 2.

§1. On implementing a Real RAM. How do we implement a Real RAM?
This dream in its full generality is impossible for two fundamental reasons. First,
real numbers are uncountably many while any implementation is no more power-
ful than Turing machines which can only access countably many reals. The sec-
ond difficulty is the general impossibility of deciding zeros (equivalently, making
exact comparisons) [45]. The largest class beyond algebraic zeros for which zero
is decidable are the elementary constants of Richardson [38, 39, 45]; this result
depends on the truth of Schanuel’s conjecture. What is possible, however, is to
provide a Real RAM for interesting subsets of the reals. If program P uses only
the rational operations (±,×,÷) then such a library could be a BigRational
number package; such a solution may have efficiency issues (e.g., [47]). If P also
uses the square-root operation, then no off-the-shelf library will do; our precursor
to Core Library [24] was designed to fill this gap. Since many basic problems

1 We are exploiting the ability of C++ to overload operators. Otherwise, we can use
some preprocessor.
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in the algorithms literature involve at most irrationalities of the square-root
kind, such a library is already quite useful. The natural goal of supporting all
real algebraic numbers was first attained in Core Library 1.6 [44]. The other
library that supports exact comparisons with algebraic numbers represented by
floating-point approximations is LEDA [27, 28]. Although our algebraic number
subsystem is central to our library, it is not discussed in this paper since it is
not the focus of our redesign effort. Interested readers are referred to [24] which
describes how we achieve Real RAM capabilities efficiently for this subsystem,
using constructive root bounds and filter techniques.

Another major library that is premised on exact comparison is CGAL [16].
Although CGAL does not have its own engine for general exact algebraic com-
putation, its generic programming design supports number kernels such as the
Core Library. Thus Core Library is bundled with CGAL, and commercially dis-
tributed by Geometry Factory. In the last decade, such libraries have demon-
strated that the exact comparison approach is a practical way of eliminating
nonrobustness in many applications.

The computation of our algebraic program P could, in principle, be carried
out by computer algebra systems (CAS). Why is there a need for something
like Core Library? First of all, if we may use a retail business analogy, many
CAS systems adopt the “department store” approach to providing services while
Core Library takes the “boutique” approach: our main service is a number type
Expr that allows the simulation of a Real RAM. Our system is aimed at geo-
metric applications that have salient differences from typical CAS applications.
CAS are often used for one-of-a-kind computation which might be very difficult.
These computations seek to elucidate the algebraic properties of numbers while
geometric applications [11, 20] are interested in their analytic properties [45].
Inputs for geometric algorithms have some combinatorial size parameter n that
can be moderately large. The algebraic aspects of its computation are normally
encapsulated in a handful of algebraic predicates Q(x) (e.g., orientation pred-
icate) or algebraic expressions E(x) (e.g., distance between two points) where
x = (x1, . . . , xk) represents the input. Evaluating Q(x) or E(x) is easy from the
CAS viewpoint, but we must repeat this evaluation many times (as a function
that grows with n). See [45,46] for more discussion.

§2. Exact Numerical Computation. There are four ingredients in our
real RAM implementation:
(a) certified approximation of basic real functions (e.g., [4]),
(b) the theory of constructive zero bounds [6, 29],
(c) a precision-driven evaluation mechanism [24], and
(d) a filter mechanism [5,17].

The first two ingredients are essential for any Real RAM implementation; the
last two ingredients are keys to making the system efficient and practical. The
certified approximations in (a) are ultimately dependent on interval techniques
[33]. The constructive zero bound in (b) is a systematic way to compute a
bound B(E) for a numerical expression E such that if E is defined and non-zero,
then |E| > B(E). Using this, we are able to do exact comparisons. We can view
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(c) as a pro-active kind of lazy evaluation – this is expanded below in Section
3.3. Finally, a simplified view of “filters” in (d) is to regard them as certified
machine arithmetic. Using them we can cheaply perform exact comparisons in
the majority of input instances, despite the fact that exact comparisons are
very difficult in the worst case. This form of computation is2 characterized as
Exact Numeric Computation (ENC) in [45,46]. Computer algebra textbooks
(e.g., [9]) list several alternatives for computing with algebraic numbers; to this
list, we may now add the ENC approach.

There are many libraries (e.g., [21, 31, 32, 43]) for arbitrary precision real
computation. But lacking the critical ingredient (b), they cannot support exact
comparison. As substitute for exact comparison, they use “ǫ-comparison” that
compares numbers up to any desired ǫ > 0 accuracy. Brattka and Hertling [3]
provides a theoretical study of Real RAM with ǫ-comparisons. Numerical ana-
lysts also use this ǫ-accuracy approach. In this paper, we will need to integrate
an exact subsystem for algebraic numbers with a new ǫ-accurate part for tran-
scendental numbers.

Fig. 1. Isotopic Approximation of curve sin3(x
2) − cos3(y

2) = 0 with Core 2.

As an illustration of ENC applications, Figure 1 shows the curve f(x, y) =
sin3(x

2) − cos3(y
2) = 0 approximated by Core 2, using a recent algorithm [25].

Here sinn, cosn means we use the first n terms of their Taylor expansions. Our
computation in the left figure stops once the isotopy-type is determined; in
the right figure, we continue to a user-specified Hausdorff distance. Until re-
cently, most exact computation on algebraic curves and surfaces are based on
strong algebraic techniques such as resultant computation (e.g., [2]). In ENC,
our main techniques are evaluation and domain subdivision (such subdivision
boxes are seen in Figure 1). Superficially, this resembles the traditional numeri-
cal approaches, but ENC can provide the topological guarantees [25,36] that are
normally only associated with algebraic algorithms. ENC algorithms have many
advantages: adaptive complexity, relatively easy to implement, and locality (i.e.,
we can restrict computational effort to a local region, as in Figure 1).

§3. Goals of this Paper. There are three main motivations for the present
redesign effort. The first is the desire to incorporate transcendental functions in

2 Also known as Exact Geometric Computation (EGC) in the context of geometric
applications.
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our expressions. Many computations need transcendental constants (π, e, ln 2,
etc.) or transcendental functions (sinx, exp x, lnx, etc.). For instance, the prob-
lem of shortest path amidst planar disc obstacles [8], or motion planning in
robotics involving holonomic or dynamic constraints or helical motion are all
transcendental problems. In molecular simulations where we compute Coulom-
bic forces, we need the error function erf, which is an instance of hypergeometric
functions [14,15]. But we no longer guarantee the sign of such expressions.

The second motivation is to make the Expr class more flexible, extensible
and modular. Although these are standard concerns of software engineering, we
will discuss their special manifestations in an ENC software. There are many
opportunities to introduce specialized operators into Expr, and we would like
to introduce mechanisms to support this. Invisible to users, the evaluation of
expressions relies on two critical functions: filters [5, 7, 17] and zero bounds

[6,35]. In Core 1, both functionalities are integrated into the Expr class, making
them hard to maintain and extend.

The third motivation is the perpetual quest for improved efficiency. There
are two major sources of inefficiency that we address. The centerpiece of any
ENC library is a poly-algorithm3 to evaluate a numerical expression [24]. First,
we re-examine this evaluation poly-algorithm. The optimal design of this poly-
algorithm is far from understood, but we will see much room for improvement.
The other efficiency issue arises in the numerical engine that delivers high preci-
sion approximations. Intuitively, this engine is a BigFloat number system com-
bined with interval arithmetic. We will see that it plays two distinct roles but
these roles are conflated in Core 1.

Lastly, our redesign must preserve the simple numerical API of Core Library

as illustrated by the code snippet (1), and is thus backward compatible with Core

1.

§4. Overview. Section 2 reviews the original design of Core Library and
discusses the issues. Sections 3 and 4 present (resp.) the new design of the main
C++ classes for expressions and bigFloats. Section 5 describes new facilities to
make Expr extensible. We conclude in Section 6. Many topics in this paper
appear in greater detail in the Ph.D. thesis [13] of one of the authors. The
source code for all experiments reported here are found in the subdirectory
progs/core2paper, found in our open source (QPL license) Core 2 distribution
[10]. Experiments are done on an Intel Core Duo 2.4 GHz CPU with 2 GB of
memory. The OS is Cygwin Platform 1.5 and compiler is g++-3.4.4.

2 Review of Core Library, Version 1

The Core Library features an object-oriented design, implemented in C++. A
basic goal of the Core Library is to make ENC techniques transparent and

3 By a “poly-algorithm”, we mean a suite of complementary algorithms that work
together to solve a specific problem.
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easily accessible to (non-specialist) programmers through a simple numerical4

API (illustrated by (1)). User convenience is high priority because we view
Core Library as a tool for experimentation and rapid prototyping.

There are three main subsystems in Core 1: the expression class (Expr), the
real number class (Real) and the big float number class (BigFloat). These are
number classes, built over standard big number classes (BigInt, BigRat) which
are wrappers around corresponding types from GNU’s multiprecision package GMP.
The Expr class provides the critical functionalities of ENC. In theory, Expr is
the only number type users need, but experienced users can also access the
underlying number classes directly (with CORE LEVEL set to 4 in (1)). An instance
of Expr is a directed acyclic graph (DAG) representing a numerical constant
constructed from arbitrary real algebraic number constants. In the following, we
raise some issues in the old design of the Expr and BigFloat classes.

– Some critical facilities in Expr should be modularized and made extensible.
Specifically, the filter and root bound facilities have grown considerably over
the course of development and are now hard to maintain, debug, or extend.

– The main evaluation algorithm (the “poly-algorithm” in the introduction)
of Expr has three co-recursive subroutines. The old design does not separate
their roles clearly, and this can lead to costly unnecessary computations.

– Core 1 supports only algebraic expressions. An overhaul of the entire design
is needed to add support for non-algebraic expressions.

– Currently, users cannot easily add new operators to Expr. E.g., it is useful
to add diamond operator [6, 41], product, summation (see below), etc.

Next consider the BigFloat class. It is used by Expr to approximate real
numbers, and is the workhorse for the library. It is implemented on top of BigInt
from GMP. The old BigFloat is represented by a triple 〈m, err, e〉 of integers,
representing the interval [(m− err)Be, (m + err)Be] where B = 214 is the base.
We say the bigfloat is normalized when err < B and exact when err = 0. The
following issues arise:

– The above representation of BigFloat has performance penalty as we must
do frequent error normalization. Some applications do not need to maintain
error. E.g., in self-correcting Newton-type iterations, it is not only wasteful
but may fail to converge unless we zero out the error by calling makeExact.
Users can manually call makeExact but this process is error-prone.

– Our BigFloat assumes that for exact bigfloats, the ring operations (+,−,×)
are computed exactly. This is important for ENC but we see situations below
where this is undesirable and the IEEE model of round-off is preferable.

– The old BigFloat supports only {+,−, ∗, /, 2
√ }. For Expr to support tran-

scendental functions such as exp, sin, etc., we need their BigFloat analogues
(recall ingredient (a) in ¶2). This implementation is a major effort, and the
correct rounding for transcendental functions is quite non-trivial [12,30].

4 API stands for “Application Programmers Interface”
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To bring out these performance penalties, we compare our old BigFloat

implementation of sqrt based on Newton iteration against MPFR [18]: Core 1

was 25 times slower as seen in Figure 8. The MPFR package satisfies all three
criteria above. A key feature of MPFR is its support of the IEEE rounding modes
(the “R” in MPFR refers to rounding). Hence a critical decision of Core 2 was to
capitalize on MPFR.

3 Redesign of the Expr Package

We first focus on expressions. The goal is to increase modularity and extensibility
of expression nodes, and also to improve efficiency.

3.1 Incorporation of Transcendental Nodes

What is involved in extending expressions to transcendental operators? In Core

1, we classify nodes in Expr into rational or irrational ones as such information is
critical for root bound computation. We now classify them into integer, dyadic,
rational, algebraic, and transcendental. A node is transcendental if any of
its descendants has a transcendental operator (e.g., a leaf for π = 3.1415 . . .,
or a unary node such as sin(·)). This refined classification of nodes is exploited
in root bounds. There is a natural total ordering on these types, and the type
of a node is the maximum of the types in descendant nodes. As transcendental
expressions do not have root bounds, we introduce a user-definable global value
called escape bound to serve as their common root bound. Another bound
called cutoff bound is used for a different purpose; both are explained below.

3.2 New Template-based Design of ExprRep

The Expr class in Core 2 is templated, unlike in Core 1. It remains only a thin
wrapper around a “rep class” called ExprRep, which is our focus here.

§5. ExprRep and ExprRepT. The filter and root bound facilities were em-
bedded in the old ExprRep class. We now factor them out into two functional
modules: Filter and Rootbd. The Real class (see Section 2), which was already
an independent module, is now viewed as an instance of an abstract number
module called Kernel. The role of Kernel is to provide approximate real values.
We introduce the templated classes ExprT and ExprRepT, parametrized by these
three modules:

template <typename Rootbd,

typename Filter, typename Kernel>

class ExprT;

template <typename Rootbd,

typename Filter, typename Kernel>

class ExprRepT;
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Now, Expr and ExprRep are just typedefs:

typedef ExprT<BfmsskRootBd<BigFloat2>,

BfsFilter<BigFloat2>, BigFloat2> Expr;

typedef ExprRepT<RootBd,

Filter, Kernel> ExprRep;

The actual template arguments for Rootbd, Filter, and Kernel for Expr are
passed to ExprRep, ExprT, and ExprRepT. The benefit of this new design is that
now we can replace Filter, Rootbd or Kernel at the highest level without any
changes in ExprRep, ExprT or ExprRepT. We see here that the default Expr class
in Core 2 uses the k-ary BFMSS root bounds [6, 35] and the new BigFloat2

kernel (below). But users are free to plug in other modules. E.g., one could
substitute a better filter and root bound for division-free expressions. This design
of Expr follows the “delegation pattern” in Object-Oriented Programming [42]:
the behavior of Expr is delegated to other objects (filters, etc).

§6. ExprRepT class hierarchy. The class ExprRepT defines abstract struc-
tures and operations which are overridden by its subclasses. This hierarchy of
subclasses is shown in Figure 2.

UnaryOpRepT

AddSubRepT

BinaryOpRepT ConstOpRepT AnaryOpRepT

ConstRationalRepT

ConstULongRepT

ConstIntegerRepT

ConstDoubleRepT

ConstLongRepT

ConstPolyRepT

ConstFloatRepT

DivRepT

MulRepT NegRepT

CbrtRepT

RootRepT

SqrtRepT

DiamondRepT

ProductRepT

ExprRepT

SumRepT

Fig. 2. ExprRepT Class hierarchy

There are four directly derived classes, corresponding to the arities of the
operator at the root of the expressions: constants, unary, binary, and anary
operators. Each of them has further derived classes – for instance, the binary
operator class is further derived into three subclasses corresponding to the four
arithmetic operators (AddSubRepT, MulRepT, DivRepT). The class AddSubRepT

combines addition and subtraction as these two operations share basically the
same code. The introduction of anary operators is new. An anary operator is one
without a fixed arity, such as summation

∑n
i=1 ti and product

∏n
i=1 ti. Another is

the diamond operator 3(a0, . . . , an, i) to extract the ith real root of a polynomial
p(x) =

∑n
i=0 aix

i [6] where ai’s are expressions. Below we show the usefulness
of these extensions.
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§7. Memory layout of ExprRepT. Size of expression nodes can become
an issue (see Section 5). Our design of ExprRepT optimizes the use of space
(see Figure 3(a)). Each ExprRepT node has three fields filter, rootbd and
kernel. Here, filter is stored directly in the node, while rootbd and kernel

are allocated on demand, and only pointers to them are stored in the node. This
is because the filter computation will always be done, but root bound and high
precision approximations (from kernel) may not be needed. No memory will be
allocated when they are not needed. The memory layout of ExprRepT is shown
in Figure 3(b). E.g., a binary ExprRepT node uses a total of 48 bytes on a 32-bit
architecture. The field cache is added to cache important small but potentially
expensive information such as sign, uMSB, lMSB. The field numType is used
for node classification.

ExprRep

d_e,...

Filter

Real

ExprRepT

_filter

_rootbd

_kernel

Filter

Rootbd

Kernel

(a)

Field name Size in bytes

Dynamic type information 4

Reference counter 4

Operands : Node * [arity] 4×arity

Filter filter 16

Kernel * kernel 4

Rootbd * rootbd 4

Cache * cache 4

int numType 4

(b)

Fig. 3. (a) Comparing ExprRep and ExprRepT. (b) Layout in 32-bit architecture.

§8. Some Timings. We provide two performance indicators after the above
redesign. In Figure 4(a), we measure the time to decide the sign of determinants,
with and without (w/o) the filter facility, in Core 1 and Core 2. The format
‘N×d×b’ in the first column indicates the number N of matrices, the dimension
d of each matrix and the bit length b of each matrix entry (entries are rationals).
Interestingly, for small determinants, the filtered version of Core 1 is almost
twice as fast. All times are in microseconds.

MATRIX Core 1.7 Time Core 2.0 Time Speedup
with (w/o) filter with (w/o) filter

1000x3x10 9 (621) 19 (232) 0.5 (2.7)
1000x4x10 26 (1666) 43 (530) 0.6 (3.1)
500x5x10 449 (1728) 204 (488) 2.2 (3.5)
500x6x10 1889 (3493) 597 (894) 3.2 (3.9)
500x7x10 4443 (6597) 1426 (1580) 3.1 (4.2)
500x8x10 8100 (11367) 2658 (2820) 3.0 (4.0)

(a)

bit length L Core 1 Core 2 Speedup
1000 0.82 0.59 1.4
2000 6.94 1.67 4.2
8000 91.9 11.63 7.9
10000 91.91 30.75 3.0

(b)

Fig. 4. (a) Timing filter facility (b) Timing root Bound facility

In Figure 4(b), we test the new root bound facility by performing the com-
parison

√
x +

√
y :

√
x + y + 2

√
xy where x, y are b-bit rational numbers. As
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this expression is identically zero, filters do not help and root bounds will always
be reached.

3.3 Improved Evaluation Algorithm

Since the evaluation algorithm is the centerpiece of an ENC library, it is crucial
to tune its performance.

§9. Algorithms for sign(), uMSB() and lMSB(). Core 1 has two main
evaluation subroutines, computeApprox() and computeExactSign() (see [24]).
The former computes an approximation of the current node to some given (com-
posite) precision bound. The latter computes the sign, upper and lower bounds
on the magnitude of the current node. The sign of an expression node is critical
in many places. E.g., the division operator must check the sign of the right child
to detect divisions by zero. But to get the sign of an expression E, we may need
to estimate upper (E+) or lower (E−) bounds on the magnitude of the expres-
sion. These three values are maintained in Expr as sign(), uMSB() and lMSB().
In Core 1, computeExactSign() computes them simultaneously using the rules
in Table 5.

E Case E.sgn() E+ E−

Constant x sign(x) ⌈log2 x⌉ ⌊log2 x⌋

E1 ± E2

if E1.sgn() = 0 ±E2.sgn() E+

2
E−

2

if E2.sgn() = 0 E1.sgn() E+

1
E−

1

if E1.sgn() = ±E2.sgn() E1.sgn() max{E+

1
, E+

2
} + 1 max{E−

1
, E−

2
}

if E1.sgn() 6= ±E2.sgn() and E−

1
> E+

2
E1.sgn() max{E+

1
, E+

2
} E−

1
− 1

if E1.sgn() 6= ±E2.sgn() and E+

1
< E−

2
±E2.sgn() max{E+

1
, E+

2
} E−

2
− 1

otherwise unknown max{E+

1
, E+

2
} unknown

E1 × E2 E1.sgn() ∗ E2.sgn() E+

1
+ E+

2
E−

1
+ E−

2

E1 ÷ E2 E1.sgn() ∗ E2.sgn() E+

1
− E−

2
E−

1
− E+

2

k
√

E1 E1.sgn()
l

E+

1
/k

m j

E−

1
/k

k

Fig. 5. Recursive rules for computing sign, uMSB, lMSB.

There are two “unknown” entries in Table 5. In these cases, computeApprox()
will loop until the sign is determined, or up to the root bound. To compute such
information, we recursively compute sign and other information over the chil-
dren of this node, whether needed or not. This can be unnecessarily expensive.
In Core 2, we split the two routines into five co-recursive routines in ExprRepT:
get sign(), get uMSB(), get lMSB(), refine() and get rootBd(). In Expr the
corresponding methods sign(), uMSB() and lMSB() simply calls get sign(),
etc. Depending on the operator at a node, these co-routines can better decide
which information from a child is really necessary. The structure of these algo-
rithms are quite similar, so we use get sign() as an example:



The Design of Core 2 11

Sign Evaluation Algorithm, get sign():
1. Ask the filter if it knows the sign;
2. Else if the cache exists, ask if sign is cached;

Note: the cache may contain non-sign information
3. Else if the approximation ( kernel) exists, ask if it

can give the sign;
4. Else if the virtual function compute sign() returns

true, return sgn() (sign is now in the cache);
5. Else call refine() (presented next) to get the sign.

Thus it is seen that, for efficiency, we use five levels of computation in
get sign(): filter, cache, kernel, recursive rules (called compute sign()), and
refine(). Note that we do not put the cache at the first level. We do not even
cache the sign, uMSB and lMSB information when the filter succeeds because a
Cache structure is large and we try to avoid costly memory allocation.

The object oriented paradigm used by the above design is called the “tem-
plate method pattern” [19, p. 325]: define the skeleton of an algorithm in terms
of abstract operations which is to be overridden by subclasses to provide con-
crete behavior. In the derived classes of ExprRepT, it is sufficient to just override
the virtual function compute sign() when appropriate. For example, MulRepT
may override the default compute sign() function as follows:

1 virtual bool compute sign ( ) {
2 s i gn ( ) = f i r s t −>g e t s i g n ( ) ∗ second−>g e t s i g n ( ) ;
3 return true ; }

§10. Algorithm for refine(). As seen in the get sign() algorithm, if
the first four levels of computation fail, the ultimate fall-back for obtaining sign
(and also for lower bounding magnitude) is the refine() algorithm. We outline
this key algorithm to obtain sign via refinement:

1. If the node is transcendental, get the global escape bound. Otherwise, compute
the constructive root bound.
2. Take the minimum of the bound from step 1 and the global cutoff bound.
3. Compute an initial precision. If an approximation exists, use its precision as
the initial precision. Otherwise use 52 bits instead which is the relative precision
that a floating-point filter can provide.
4. Initialize the current precision to the initial precision. Then enter a for-loop
that doubles the current precision each time, until the current precision exceeds
twice the bound computed in step 2.
5. In each iteration, call a approx() (see below) to approximate the current
node to an absolute error less than the current precision. If this approximation
suffices to give a sign, return the sign immediately (skip the next step).
6. Upon loop termination, set the current node to be zero.
7. Check if the termination was caused by reaching the escape bound or cutoff
bound. If so, append zero assertion to a diagnostic file in the current directory.
This assertion says that “the current node is zero”.
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§11. Conditional Correctness. The cutoff bound in the above refine()

algorithm is a global variable that is set to CORE INFTY by default. While escape
bound affects only transcendental nodes, the cutoff bound sets an upper bound
on the precision in refine() for all nodes. Thus it may override computed
zero bounds and escape bounds. During program development, users may find
it useful to set a small cutoff bound using set cut off bound(). Thus, our
computation is correct, conditioned on the truth of all the zero assertions in the
diagnostic file.

§12. Computing Degree Bounds. In the refine() algorithm above,
the first step is to compute a constructive root bound. Most constructive root
bounds need an upper bound on the degree of an algebraic expression [24]. For
radical expressions, a simple upper bound is obtained as the product of all the
degrees of the radical nodes (a radical node k

√
E has degree k). A simple recursive

rule can obtain the degree bound of E from the degree bounds of its children
(e.g., [23, Table 2.1]). But this bound may not be tight when the children share
nodes. The only sure method is to traverse the entire DAG to compute this
bound. To support this traversal, in Core 1 we store an extra flag visited with
each ExprRep. Two recursive traversals of the DAG are needed to set and to
clear these flags, while computing the degree bound. To improve efficiency, we
use the std::map (or std::hash map) data structure in STL to compute the
degree bound: we first create a map M and initialize the degree bound D to 1.
We now traverse the DAG, and for each radical node u, if its address does not
appear in M , we multiply its degree to the cumulative degree bound D and save
its address in M . At the end we just discard the map M . This approach requires
only one traversal of the DAG.

3.4 Improved Propagation of Precision

An essential feature of precision-driven evaluation is the need to propagate pre-
cision bounds [24]. Precision propagation can be illustrated as follows: if we want
to evaluate an expression z = x+y to p-bits of absolute precision, then we might
first evaluate x and y to (p+1)-bits of absolute precision. Thus, we “propagate”
the precision p at z to precision p + 1 at the children of z. This propagation is
correct provided x and y have the same sign (otherwise, p + 1 bits might not
suffice because of cancellation). In general, we must propagate precision from
the root to the leaves of an expression. In Core 1, we use a pair [a, r] of real
numbers that we call “composite precision” bounds. If x, x̃ ∈ R, then we say
x̃ is an [a, r]-approximation of x (written, “x̃ ≈ x[a, r]”) if |x̃ − x| ≤ 2−a or
|x̃ − x| ≤ |x|2−r. If we set a = ∞ (resp., r = ∞), then x̃ becomes a standard
relative r-bit (resp., an absolute a-bit) approximation of x. It is known
that a relative 1-bit approximation would determine the sign of x; so relative
approximation is generally infeasible without zero bounds. The propagation of
composite bounds is tricky, and various small constants crop in the code, mak-
ing the logic hard to understand and maintain (see [34]). Our redesign offers
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a simpler and more intuitive solution in which we propagate either absolute or
relative precision, not their combination.

§13. Algorithms for r approx() and a approx(). Core 1 has one sub-
routine computeApprox() to compute approximations; we split it into two sub-
routines a approx() and r approx(), for absolute and relative approximations
(respectively). Above, we saw that refine calls a approx(). There are two im-
provements over Core 1: first, propagating either absolute or relative precision
is simpler and can avoid unnecessary precision conversions. Second, the new al-
gorithms do not always compute the sign (which can be very expensive) before
approximation.

§14. Overcoming inefficiencies of Computational Rings. Another
issue relates to the role computational rings in ENC (see §16 in [45]). This
is a countable set F ⊆ R that can effectively substitute for the uncountable set
of real numbers. To achieve exact computation, F needs a minimal amount of
algebraic structures [45]. We axiomatize F to be a subring of R that is dense in
R, with Z as a subring. Furthermore, the ring operations together with division
by 2, and comparisons are effective over F. BigFloats with exact ring operations
is a model of F, but IEEE bigFloats is not. For computations that do not need
exactness, the use of such rings may incur performance penalty. To demonstrate
this, suppose we want to compute

√
2 ·

√
3 to relative p-bits of precision. We

describe two methods for this. In Method 1, we approximate
√

2 and
√

3 to
relative (p + 2)-bits, then perform the exact multiplication of these values. In
Method 2, we proceed as in Method 1 except that the final multiplication is
performed to relative (p + 1)-bits. The timings (in microseconds) are shown in
Figure 6. We use loops to repeat the experiment since the time for single runs
is short. It is seen that Method 2 can be much more efficient; this lesson is
incorporated into our refinement algorithm.

Precision Loops Method 1 Method 2 Speedup
10 1000000 345 191 45%
100 100000 60 46 23%
1000 10000 72 71 1%
10000 1000 267 219 18%
100000 100 859 760 12%

Fig. 6. Timing for computing
√

2 ·
√

3 w/ and w/o exact multiplication.

4 Redesign of the BigFloat system

The BigFloat system is the “engine” for Expr, and Core 1 implements our own
BigFloat. In Section 2, we discussed several good reasons to leverage our system
on MPFR, an efficient library under active development for bigFloat numbers
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with directed rounding. Our original BigFloat plays two roles: to implement
a computational ring [45] (see section section 3.4), and to provide arbitrary
precision interval arithmetic [33]. Computational ring properties are needed in
exact geometry: e.g., to compute implicit curve intersections reliably, we can
evaluate polynomials with exact BigFloat coefficients, at exact BigFloat values,
using exact ring operations. Interval arithmetic is necessary to provide certified
approximations. For efficiency, Core 2 splits the original BigFloat class into two
new classes: (1) A computational ring class, still called BigFloat. (2) An interval
arithmetic class called BigFloat2, with each interval represented by two MPFR

bigFloats. This explains5 the “2” in its name.

4.1 The BigFloat Class as Base Real Ring

The new class BigFloat is based on the type mpfr t provided by MPFR. MPFR
follows the IEEE standard for (arbitrary precision) arithmetic. The results of
arithmetic operations are rounded according to user-specified output precision
and rounding mode. If the result can be exactly represented, then MPFR always
outputs this result. E.g., a call of mpfr mul(c, a, b, GMP RNDN) will compute
the product of a and b, rounding to nearest BigFloat, and put the result into c.
The user must explicitly set the precision (number of bits in the mantissa) of c
before calling mpfr mul(). To implement the computational ring BigFloat, we
just need to automatically estimate this precision. E.g., we can use the following:

Lemma 1. Let fi = (−1)si · mi · 2ei (for i = 1, 2) be two bigFloats in MPFR,
where 1/2 ≤ mi < 1 and the precision of mi is pi. To guarantee that all bits in
the mantissa of the sum f = f1 ± f2 is correct, it suffices to set the precision of
f to {

1 + max{p1 + δ, p2} if δ ≥ 0
1 + max{p1, p2 − δ} if δ < 0

where δ = (e1 − p1) − (e2 − p2). Similarly, for multiplication, it suffices to set
the precision of f to be p1 + p2 in computing f = f1 · f2.

See [13] for a proof. While this lemma is convenient to use, it may over-
estimate the needed precision. In binary notation, think of the true precision
of c as the minimum number of bits to store the mantissa of c. Trailing ze-
ros in the mantissa contributes to over-estimation. To avoid this, we provide
a function named mpfr remove trailing zeros() whose role is to remove the
trailing zeros. In an efficiency tradeoff, it only removes zeros by chunks (chunks
are determined by MPFR’s representation). To understand the effect of overesti-
mation, we conduct an experiment in which we compute the factorial F =

∏n
i=1 i

using two methods: In Method 1, we initialize F = 1 and build up the prod-
uct in a for-loop with i = 2, 3, . . . , n. In the i-th loop, we increase the pre-
cision of F using Lemma 1, then call MPFR to multiply F and i, storing the
result back into F . In Method 2, we do the same for-loop except that we call

5 Happily, it also coincides with the “2” in the new version number of Core Library.
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mpfr remove trailing zeros() on F after each multiplication in the loop. In-
stead of F , we can repeat the experiment with the arithmetic sum S =

∑n
i=1 i.

The speedup for the second method over the first method is shown in Figure 7
(time in microseconds, precision in bits).

n
F =

Q

n

i=1
i S =

P

n

i=1
i

trailing zeros no zeros trailing zeros no zeros
(prec/msec) (prec/msec) (prec/msec) (prec/msec)

102 575/0 436/0 102/0 31/0

103 8979/0 7539/0 1002/0 31/0

104 123619/62 108471/47 10002/15 31/16

105 1568931/9219 1416270/8891 100002/437 31/110

106 timeout timeout 1000002/57313 63/1078

Fig. 7. Timing for computing F and S w/ and w/o removing trailing zeros.

§15. Benchmarks of the redesigned BigFloat. By adopting MPFR, our
BigFloat class gains many new functions such as cbrt() (cube root) and the
elementary functions (sin(), log(), etc). The performance of the BigFloat is
also greatly improved. We compared the performance of Core 1 and Core 2

on sqrt() using the following experiment: compute
√

i for i = 2, . . . , 100 with
precision p. The timing in Figure 8 show that Core 2 is about 25 times faster,
thanks purely to MPFR.

Precision Core 1 Core 2 Speedup
1000 25 1 25
10000 716 32 22
100000 33270 1299 25

Fig. 8. Timing comparisons for sqrt().

4.2 The Class BigFloat2

BigFloat2 is the second class split off from the original BigFloat. An instance
of BigFloat2 is just an interval represented by a pair of bigFloat numbers. Call
this the endpoint representation of intervals. Besides serving as numerical
engine for Expr, the BigFloat2 class is also useful for various ENC applications
(e.g., in meshing algorithms of the kind producing Figure 1). In Core 1, we
use the centered representation where an interval [a, b] is represented by its
center c = (a + b)/2 and an error bound err = (b − a)/2, with c a bigFloat
number and err a machine long. In view of the limited precision in err, it
is necessary to “normalize” the representation when it gets too large. This is
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one of the disadvantages of the centered representations. In the worst case, the
endpoint representation can be less efficient than the centered representation
by a factor of 2, both in speed and in storage. But this loss in efficiency is
compensated by ease of implementation, and by sharper error bounds. It can
also be beneficial in low precision computation. We note that van der Hoeven’s
Mmxlib [43] combines the advantages of both representations by switching from
the endpoint representation to the centered representation when the precision
exceeds some threshold value. Since our kernel class is a template parameter, we
may experiment with such an interval class in the future.

5 Extending the Expr Class

We provide facilities for adding new operators to Expr. Core 2 uses such facilities
to implement the standard elementary functions. Future plans include extending
elementary functions to all hypergeometric functions, following the analysis in
[13,14]. We give two examples of how users can use these facilities for their own
needs. We refer to Zilin Du’s thesis [13] for more details about these facilities.

5.1 Summation Operation for Expr

When an Expr is very large, we not only lose efficiency (just to traverse the
DAG) but we often run out of memory. Consider the following code to compute
the harmonic series H =

∑n
i=1

1
i :

1Expr harmonic ( int n) {
2Expr H( 0 ) ;
3for ( int i =1; i<=n ; ++i )
4H = H + Expr (1)/ Expr ( i ) ;
5return H; }

This function builds a deep unbalanced DAG for large n. This can easily
cause segmentation faults through stack overflow (column 2 in Figure 9). In ¶6,
we said that Core 2 supports a new class of anary (i.e., “without arity”) nodes.
In particular, we implemented the summation and product operators. Using
summation, we can rewrite the harmonic function:

1Expr term ( int i ) {
2return Expr (1)/ Expr ( i ) ; }
3Expr harmonic ( int n) {
4return summation ( term , 1 , n ) ; }

The improvements from this new implementation are shown in Figure 9. We can
now compute the harmonic series for a much larger n, and achieve a speedup as
well. Similarly, the use of product operator leads to speed-ups.

5.2 Transcendental Constants π, e and all that

We present our first transcendental node π, which is a leaf node derived from
ConstRepT:
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n Time w/o summation Time w/ summation Speedup
1000 24 7 3.4
10000 3931 67 58.6
100000 (segmentation fault) 752 N/A
1000000 (segmentation fault) 12260 N/A

Fig. 9. Timings for computing harmonic series
P

n

i=1

1

i
(in microseconds).

1template <typename T>
2class PiRepT : public ConstRepT<T> {
3public :
4PiRepT ( ) : ConstRepT<T>() {
5c ompu t e f i l t e r ( ) ;
6compute numtype ( ) ;
7}
8// funct ions to compute f i l t e r and number type
9void c ompu t e f i l t e r ( ) const {
10f i l t e r ( ) . s e t (
113.1415926535897932384626433832795028F ) ;
12/∗ value i s not exact ∗/
13}
14void compute numtype ( ) const

15{ numType = NODE NT TRANSCENDENTAL; }
16
17// v i r t u a l funct ions for sign , uMSB, lMSB
18virtual bool compute sign ( ) const

19{ s i gn ( ) = 1 ; return true ; }
20virtual bool compute uMSB ( ) const

21{ uMSB() = 2 ; return true ; }
22virtual bool compute lMSB ( ) const

23{ lMSB( ) = 1 ; return true ; }
24
25// v i r t u a l funct ions for r approx , a approx
26virtual void compute r approx ( p r e c t prec ) const

27{ ke rne l ( ) . p i ( prec ) ; }
28virtual bool compute a approx ( p r e c t prec ) const

29{ ke rne l ( ) . p i ( ab s2 r e l ( prec ) ) ; }
30} ;

Now the new π expression is given by:

1template <typename T>
2ExprT<T> pi ( )
3{ return new PiRepT<T>() ; }

Note how easy it is to do this extension — it could equally be used to in-
troduce e or ln 2 or any constant, provided the kernel class knows how to ap-
proximate it. Such constants can now freely appear in an expression, and our
precision-propagation mechanism can automatically approximate the expression
to any desired absolute error bound. Figure 10 gives timings for π and other
elementary functions after incorporation into Expr.

6 Conclusion

The goal of Core Library is to approximate the ideal real RAM. To support
rapid prototyping of algorithmic ideas in geometry and algebra, ease of use and
functionality is prized above sheer efficiency. With Core 2, we combine exact
algebraic computation with transcendental functions. Our redesigned package
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Precision (bits) Expr. Core 2 Core 1 Speedup

10,000

π 20 — —√
π 90 — —

e2 80 — —
sin(0.7) 50 1240 25
cos(0.7) 50 1230 25
tan(0.7) 110 2490 23

100,000

π 710 — —√
π 2200 — —

e2 830 — —
sin(0.7) 4780 — —
cos(0.7) 4650 — —
tan(0.7) 9450 — —

Fig. 10. Transcendental Constants and Functions

is more modular, extensible, and flexible. We gained efficiency from the design
and better evaluation algorithms. We adopt the highly efficient MPFR library
to improve maintainability and to gain transcendental functions. Despite this
overhaul, the original simple Core Numerical API is preserved.

In the transcendental aspects, we are just leveraging the speed of MPFR into
our environment. What we give back is a new convenient way to access MPFR.
In 2005, MPFR won the Many Digits Competition [26] in a field of 9 teams
that included Maple and Mathematica. Their solutions are “hand-coded” in the
sense that each algorithm is preceded by an error analysis to determine the
needed precision, plus a hand-coded implementation of these error bounds. By
incorporating MPFR into Core 2, we can now do these competition problems
automatically : Core 2 provides the automatic error analysis. Another “added
value” that Core Library provides MPFR is access to a computational ring to
support exact geometric computation. A future research is to understand and
reduce any performance penalties of this automation.

A major open problem is to better understand the expression evaluation
algorithms. There is no satisfactory theoretical basis for the optimal evaluation
of such expressions (see some attempts in [43]). The second major problem is
to provide constructive bounds for non-algebraic constants. Instead of escape
bounds, we could use Richardson’s algorithm to decide zero [38, 39]. This is
because all the constants in Core 2 are elementary constants in the sense of
Richardson. As Richardson suggested, this is a win-win situation because if our
computation is ever wrong, we would have found a counter-example to Schanuel’s
conjecture. Unfortunately, current versions of Richardson’s algorithm do not
appear practical enough for general application.

Core Library represents a new breed of real number libraries to support
exact numerical computation (ENC). It is made feasible through sophisticated
built-in functionalities such as filters and constructive zero bounds. There re-
main ample opportunities for exploring the design space of constructing such
libraries. Our Core Library offers one data point. Such libraries have many po-
tential applications. Besides robust geometric algorithms, we can use them in
geometric theorem proving, certifying numerical programs, and in mathematical
explorations.
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Boston, 1997.
31. N. T. Müller. The iRRAM: Exact arithmetic in C++. In J. Blank, V. Brattka,

and P. Hertling, editors, Computability and Complexity in Analysis, pages 222–252.
Springer, 2000. 4th Int’l Workshop, CCA 2000, Swansea, UK. LNCS No. 2064.

32. N. T. Müller, M. Escardo, and P. Zimmermann. Guest editor’s introduction: Prac-
tical development of exact real number computation. J. of Logic and Algebraic
Programming, 64(1), 2004. Special Issue.

33. A. Neumaier. Interval Methods for Systems of Equations. Cambridge University
Press, Cambridge, 1990.

34. K. Ouchi. Real/Expr: Implementation of an Exact Computation Package. Master’s
thesis, New York University, Department of Computer Science, Courant Institute,
Jan. 1997. From http://cs.nyu.edu/exact/doc/.

35. S. Pion and C. Yap. Constructive root bound method for k-ary rational input
numbers. Theor. Computer Science, 369(1-3):361–376, 2006.

36. S. Plantinga and G. Vegter. Isotopic approximation of implicit curves and surfaces.
In Proc. Eurographics Symposium on Geometry Processing, pages 245–254, New
York, 2004. ACM Press.



The Design of Core 2 21

37. F. P. Preparata and M. I. Shamos. Computational Geometry. Springer-Verlag,
1985.

38. D. Richardson. How to recognize zero. J. Symbolic Computation, 24:627–645, 1997.
39. D. Richardson. Zero tests for constants in simple scientific computation. Mathe-

matics in Computer Science, 1(1):21–38, 2007. Inaugural issue on Complexity of
Continuous Computation.

40. S. Schirra. Robustness and precision issues in geometric computation. In J. Sack
and J. Urrutia, editors, Handbook of Computational Geometry. Elsevier Science
Publishers, B.V. North-Holland, Amsterdam, 1999.

41. S. Schmitt. The diamond operator – implementation of exact real algebraic num-
bers. In V.G.Ganzha, E.W.Mayr, and E. Vorozhtsov, editors, 8th Int’l Workshop
on Comp.Algebra in Sci.Computing (CASC 2005), volume 3718 of Lecture Notes
in Computer Science , Computer Algebra in Scientific Computing, pages 355–366.
Springer, 2005.

42. B. Stroustrup. The Design and Evolution of C++. Addison Wesley, April 1994.
43. J. van der Hoeven. Effective real numbers in Mmxlib. Proc. ISSAC ’06, pages

138–145, 2006. Genova, Italy.
44. C. Yap, C. Li, S. Pion, Z. Du, and V. Sharma. Core Library Tutorial: a library for

robust geometric computation, 1999–2004. Version 1.1 was released in Jan 1999.
Version 1.6 in Jun 2003. Source and documents from http://cs.nyu.edu/exact/.

45. C. K. Yap. In praise of numerical computation. In S. Albers, H. Alt, and S. Näher,
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