
Language Support

for Program Generation

Reasoning, Implementation, and Applications

by

Zhe Yang

A dissertation submitted in partial ful�llment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

Graduate School of Arts and Science

New York University

September 2001

Olivier Danvy

Benjamin Goldberg

c Zhe Yang

All Rights Reserved 2001

In memory of Bob Paige

iii

Acknowledgment

My graduate study and life, of which this dissertation is one of the outcomes,

bene�tted greatly from the time, energy, and enthusiasm of many people.

I am honored to have studied at both the Courant Institute and at the BRICS

International PhD school, under the guidance of some most wonderful teachers.

From both my former advisor, the late professor Bob Paige, and my PhD advisor

Olivier Danvy, I learned to appreciate the beauty of mathematics|and of music

as well|and to never lose sight of the practical impact. They both demonstrated

great scholarship with devotion to science and also great care for their students.

Their support has been boundless and timeless, available even during their most

diÆcult times.

Andrzej Filinski and Fritz Henglein deserve a great deal of credit: their in-

sights and rigor sharpened my understanding of programming languages and

semantics. Benjamin Goldberg and my undergraduate thesis advisor Kai Lin

introduced me to the art of programming languages, and helped me in many

ways at di�erent stages of my study. Neil D. Jones and Suresh Jagannathan

hosted me for two valuable research trips, at DIKU and NEC Research. I would

also like to thank Richard Cole, Fritz Henglein, Amir Pnueli, and Alan Siegel

for serving on my thesis committee.

I am grateful to Deepak Goyal and Bernd Grobauer, both of who collaborated

iv

closely with me on my research, and shared with me many enjoyable moments of

life. I eagerly expect those memorable tennis matches and bike trips to repeat,

just as I hope to work with them again. Xianghui Duan and Daniel Damian

were two wonderful oÆcemates. With Gabriel Juh�as I endured a winter that

seemed endless, yet passed so quickly. With David Tanzer I endured the initial

ba�ement of studying category theory; he wiped it away with his guitar tunes.

Both Courant Institute and BRICS have been enjoyable places to work.

I would like to thank Rosemary Amico, Janne Christensen, Anina Karmen,

and Karen M�ller for their timely help. Richard Cole, Mogens Nielson, Glynn

Winskel, Alan Siegel provided both outstanding lectures and much needed help.

My student life was made an enjoyable and enriching experience by many friends,

including Gedas Advomavicius, Emanuela Boem, Fangzhe Chang, Cheryl Chen,

Hseu-Ming Chen, Stefan Dziembowski, Trung Dinh Dao, Alina Grabiec, Marcin

Jurdzinski, Allen Leung, Chen Li, Ninghui Li, Madhu Nayakkankuppam, Ed

Osinski, Magda Olbryt, Alexa Olesen, Toto Paxia, Archi Rudra, Simona Penna,

Patricia Gil Rios, Alicja Marczak, Christian Ungureanu, and Daniele Varacca.

The spirit of Courant Basketball Association, of the language-beer-jogging group

at Courant, and of the badminton and soccer teams at both places has fueled

my imagination in computer science. Three unforgettable stays hosted by three

warm European families|of Jo Keller in Paris, of Bernd Grobauer in Deggen-

dorf, and of Ra�aella Grasso in Genova|were calm oases in an ever-tense stu-

dent's life.

I want to thank my parents and my sister Delin Yang for cultivating in me an

interest in computer science many years ago, for giving me the opportunity to

explore this subject many years later, and for being patient during my graduate

study, while providing the necessary pressure. Finally, I would like to thank

Ra�aella Grasso, for her love.

v

Abstract

This dissertation develops programming languages and associated techniques for

sound and eÆcient implementations of algorithms for program generation.

First, we develop a framework for practical two-level languages. In this frame-

work, we demonstrate that two-level languages are not only a good tool for de-

scribing program-generation algorithms, but a good tool for reasoning about

them and implementing them as well. We pinpoint several general proper-

ties of two-level languages that capture common proof obligations of program-

generation algorithms:

� To prove that the generated program that it behaves as desired, we use

an erasure property to reduce the two-level proof obligation to a simpler

one-level obligation.

� To prove that the generated program satis�es certain syntactic constraints,

we use a type-preservation property for a re�ned type system that enforces

these constraints.

In addition, to justify concrete implementations, we use a native embedding of a

two-level language into a one-level language.

We present two-level languages with these properties both for a call-by-name

object language and for a call-by-value object language with computational ef-

fects, and demonstrate them through two classes of non-trivial applications:

vi

one-pass transformations into continuation-passing style and type-directed par-

tial evaluation for call-by-name and for call-by-value.

Next, to facilitate implementations, we develop several general approaches to

programming with type-indexed families of values within the popular Hindley-

Milner type system. Type-indexed families provide a form of type dependency,

which is employed by many algorithms that generate typed programs, but is

absent frommainstream languages. Our approaches are based on type encodings,

so that they are type safe. We demonstrate and compare them through a host of

examples, including type-directed partial evaluation and printf-style formatting.

Finally, upon the two-level framework and type-encoding techniques, we re-

cast a joint work with Bernd Grobauer, where we formally derived a suitable self

application for type-directed partial evaluation, and achieved automatic compiler

generation.

vii

Contents

Dedication iii

Acknowledgment iv

Abstract vi

List of Figures xiv

List of Appendices xviii

1 Introduction 1

1.1 Language-based approach in general 2

1.2 Two-level languages . 3

1.3 Type dependency . 4

1.4 Overview of this dissertation . 5

1.5 Themes . 7

2 Preliminaries 9

2.1 Notational conventions . 9

viii

2.2 Semantics: tools for reasoning . 10

2.3 An embedding approach to Language implementation 13

2.3.1 The embedding approach 13

2.3.2 A special form of embedding: instantiation 14

2.4 Type-directed partial evaluation: an informal introduction 15

2.4.1 Partial evaluation . 15

2.4.2 Pure TDPE in ML . 17

I A framework for two-level languages 25

3 Introduction to Part I 26

3.1 Background . 26

3.2 This work . 30

4 The call-by-name two-level language nPCF2 33

4.1 Syntax and semantics . 33

4.2 Example: the CPS transformation 38

4.3 Semantic correctness of the generated code: erasure 40

4.4 Embedding nPCF2 into a one-level language with a term type . . . 42

4.5 Example: call-by-name type-directed partial evaluation 46

4.6 Syntactic correctness of the generated code: type preservation . . 50

4.7 The general framework . 53

5 The call-by-value two-level language vPCF2 56

5.1 Design considerations . 56

ix

5.2 Syntax, semantics, and properties 58

5.3 Example: call-by-value type-directed partial evaluation 61

6 Related work 67

6.1 Two-level formalisms for compiler construction 67

6.2 Correctness of partial evaluators 69

6.3 Macros and syntactic abstractions 70

6.3.1 Multi-level languages . 72

6.3.2 Applications . 73

7 Concluding remarks for Part I 75

7.1 Summary of contributions . 75

7.2 Direction for future work . 77

II Encoding types 79

8 Introduction to Part II 80

9 Type-indexed families of values 85

9.1 The notion . 85

9.2 Running examples . 88

9.2.1 List attening and polytypic printing 88

9.2.2 Type-directed partial evaluation 91

10 Type-indexed families as type interpretations 95

10.1 Implementing indexed families with type encodings: the idea . . . 95

x

10.2 The ad-hoc approach . 97

10.3 Examples . 98

10.4 Printf-style String formatting . 101

10.5 Variations . 105

10.6 Assessment of the approach . 111

11 Value-Independent Type Encoding 115

11.1 Abstracting type encodings . 116

11.2 Explicit �rst-class and higher-order polymorphism in SML/NJ . . 118

11.3 Embedding/projection functions as type interpretation 121

11.3.1 Examples . 124

11.3.2 Universality . 126

11.3.3 Comments . 134

11.4 Multiple Type Indices . 136

12 Related work: using more expressive type systems 138

12.1 Dynamic typing . 138

12.2 Intensional type analysis . 140

12.3 Haskell type classes . 140

12.4 Conclusion . 141

13 Concluding remarks for Part II 142

xi

III The second Futamura projection 144

14 Introduction to Part III 145

14.1 Background . 145

14.1.1 General notions of partial evaluation 145

14.1.2 Self-application . 146

14.1.3 Type-directed partial evaluation 148

14.2 Our work . 150

14.2.1 The problem . 150

14.2.2 Our contribution . 152

15 TDPE revisited 153

15.1 A general account of TDPE . 153

15.1.1 Languages . 154

15.1.2 Embedding results . 155

15.1.3 Partial evaluation . 159

15.2 TDPE in ML . 162

15.2.1 The setting . 162

15.2.2 Implementation . 162

15.2.3 Encoding two-level terms through functors 165

15.2.4 Extensions . 165

16 Formulating self-application 168

16.1 An intuitive account of self-application 168

16.1.1 Visualization . 169

xii

16.1.2 Adapted second Futamura projection 170

16.2 A derivation of self-application . 172

16.2.1 Visualization . 172

16.2.2 Adapted second Futamura projection 174

17 Implementation and benchmarks 178

17.1 Residualizing instantiation of the combinators 178

17.2 An example: Church numerals . 182

17.3 The GE-instantiation . 184

17.4 Type speci�cation for self-application 186

17.5 Monomorphizing control operators 188

17.5.1 Let-insertion via control operators 189

17.5.2 Monomorphizing control operators 191

17.5.3 Sum types . 194

17.6 An application: generating a compiler for Tiny 197

17.7 Benchmarks . 199

17.7.1 Experiments and results 199

17.7.2 Analysis of the result . 201

18 Concluding remarks for Part III 204

Appendices 207

Bibliography 282

xiii

List of Figures

2.1 A data type for representing terms 18

2.2 Rei�cation and reection . 19

4.1 Base syntactic constituents . 34

4.2 The two-level call-by-name language nPCF2 35

4.3 The one-level call-by-name language nPCF 36

4.4 Call-by-value CPS transformation 39

4.5 Call-by-name type-directed partial evaluation 47

4.6 Inference rules for terms in long ��-normal form 51

4.7 nPCF2-terms that generate code in long ��-normal form 52

5.1 The type system of vPCF2 . 58

5.2 The evaluation semantics of vPCF2 64

5.3 Call-by-value type-directed partial evaluation 65

5.4 vPCF2-terms that generate code in �c-normal form 66

5.5 Inference rules for terms in �c-normal form 66

8.1 A type-indexed family of values 82

xiv

9.1 Type-directed partial evaluation 93

9.2 TDPE in the general form of type-indexed family 93

10.1 atten in ML: ad-hoc encoding . 99

10.2 Polytypic printing in ML: ad hoc encoding 100

10.3 Type-directed partial evaluation in ML 101

10.4 printf-style formatting in ML: ad-hoc encoding 104

10.5 The indexed family of ironing functions 109

10.6 iron in ML: ad-hoc encoding . 109

10.7 Iterators from mutable double continuation 111

10.8 Iterators for binary trees . 112

10.9 super reverse in ML: ad-hoc encoding 113

11.1 An unsuccessful encoding of F exp;func and TDPE 117

11.2 Encoding F exp;func using higher-order functors 120

11.3 Type-directed partial evluation using the functor-based encoding . 121

11.4 Embedding/projection-based encoding for TDPE 125

11.5 Formation of a type construction c 129

11.6 Formation of the type Q of a type-indexed value 132

11.7 Type-safe coercion function . 137

15.1 A formal recipe for TDPE . 160

15.2 NbE in ML, signatures . 163

15.3 Pure NbE in ML, implementation 164

15.4 Instantiation via functors . 166

xv

15.5 Full NbE in ML . 167

17.1 Evaluating Instantiation of NbE 180

17.2 Residualizing Instantiation of NbE 181

17.3 Visualizing #�!�!�!� . 182

17.4 Church numerals . 183

17.5 Instantiation via functors . 185

17.6 Specifying types as functors . 188

17.7 Type speci�cation for visualizing #�!� 189

17.8 The CPS semantics of shift/reset 190

17.9 TDPE with let-insertion . 191

17.10Visualizing TDPE with let-insertion 195

A.1 Call-by-name CPS transformation 209

C.1 One-level call-by-value language vPCF: syntax 242

C.2 One-level call-by-value language vPCF: equational theory 243

C.3 Changes of hviPCF2 over vPCF2 247

C.4 ML implementation of vPCF�;st-primitives 250

C.5 The evaluation semantics of vPCF�;st 251

E.1 BNF of Tiny programs . 273

E.2 Factorial function in Tiny . 273

E.3 An interpreter for Tiny . 274

E.4 Datatype for representing Tiny programs 275

E.5 An elimination function for expressions 277

xvi

E.6 A fully parameterizable implementation 278

E.7 Parameterizing over both static and dynamic constructs 279

E.8 Excerpts from signature STATIC . 280

xvii

List of Appendices

A Call-by-name CPS translation 208

B Expanded proofs for nPCF2 211

B.1 Type preservation and annotation erasure 211

B.2 Native embedding . 212

B.3 Call-by-name type-directed partial evaluation 225

C Call-by-value two-level language vPCF2: detailed development 230

C.1 Type preservation . 230

C.1.1 Determinacy . 238

C.2 Annotation erasure . 241

C.3 Native implementation . 246

C.3.1 A more \realistic" language: hviPCF2 246

C.3.2 The implementation language: vPCF�;st 249

C.3.3 Native embedding . 250

C.4 Call-by-value type-directed partial evaluation 263

C.4.1 Semantic correctness . 263

xviii

C.4.2 Syntactic correctness . 264

D Notation and symbols 267

E Compiler generation for Tiny 272

E.1 A binding-time-separated interpreter for Tiny 272

E.2 Generating a compiler for Tiny 276

E.3 \Full parameterization" . 277

E.4 The GE-instantiation . 280

xix

Chapter 1

Introduction

This dissertation aims to show that practical language support for program gen-

eration can be developed, and that it should be developed both to address various

demands from the application domain and to provide sound and tractable imple-

mentations.

More speci�cally, while adopting two-level languages as the main vehicle for

expressing code-generation algorithms, we identify the important properties that

help programmers to debug and to reason about the code-generation algorithms,

and then accordingly, to design two-level languages with these properties. In the

meantime, we also make sure these languages do have e�ective implementations.

To this end, we show that these languages can be e�ectively embedded into

existing, mainstream programming languages, which are already endowed with

eÆcient implementations.

1

1.1 Language-based approach in general

Software systems are becoming more complex, more diverse, and more dis-

tributed. Programming-language methods have found an increasing number of

applications in software systems. Indeed, while modular organization is suitable

for most applications, it is not uncommon that introducing some language ab-

straction helps greatly, because of, e.g., a set of notations that more succinctly

and accurately models certain aspects of the computation, or a type system that

prevents critical systems from abuse. Example applications of programming-

language method include the FoxNet [34] and Anno Domini [28].

Typically, to address a class of applications with the language-based ap-

proach, we need to balance the need of expressiveness, of correctness proofs, and

of implementation. We look in the application domain for the suitable notations

that comprise the programming language: they should be expressive enough

to cover a large class of applications, while restricted enough to bear semantic

properties that help programmers to debug and to reason about these programs.

In other words, in view of the understanding from the area of formal methods

that one programs against a speci�cation, the design of a programming language

should take common proof obligations of its programs into account.

Furthermore, for a language or a language abstraction to be useful in pro-

gramming practice, it is indispensable to equip it with eÆcient implementation

techniques. Of course, it is also important that the implementation is sound

with respect to the semantic speci�cation, which is often at a higher level, one

that is more amenable for the elaboration of semantic properties.

2

1.2 Two-level languages

Many applications generate program code: traditional program translators, in-

cluding compilers for general-purpose and domain speci�c languages, and source-

to-source translators; advanced program optimizers, including partial evaluators

and various other semantics-based program transformers; and, relatively more

recently, programs that generate code at run-time for eÆciency, e.g., Pu et al.'s

Synthesis Kernel [91]. Despite this great variety, some essential issues are com-

mon to all these applications. For example, we usually represent the code gener-

ated with some speci�c data structure, and we usually expect that the generated

code should behave correctly in one way or another.

Two-level languages, and their many recent derivatives (multi-level and multi-

stage languages), provide the language abstraction for these applications. Firstly,

they support expressing algorithms that generate program code in a speci�c

language, the object language, by incorporating types for code representation

and associated constructions in the concrete syntax of this language. Often,

the code type manifests the type of the generated code, which, through a type-

preservation property, captures the common static debugging task of ensuring

that the generated code is type correct.

Two-level languages originate as a formalism for describing partial evaluators

and compiler back ends. The 1990s saw an increasing interest in using two-level

and multi-level languages as the source language for code-generation algorithms.

Several interesting multi-level languages have been proposed, with di�erent de-

gree of expressive power. In these studies of multi-level languages, however, the

3

only general property that has been consistently studied is the type soundness

property. Furthermore, the high-level semantics used for these languages are

not related to any e�ective implementation|either such implementation does

not exist, or their correctness proof diÆcult.

The current situation of two-level and multi-level languages, consequently,

is somewhat disparate. Their studies divide into two separate camps: on one

side, new such languages are designed, but they lead to few applications and

scarcely account for the implementation; on the other side, applications often

use two-level languages informally to motivate and to describe the algorithms,

with a separate e�ort for their formalization and implementation.

A survey of related work in the area of two-level languages and frameworks

is found in Part I, in particular in Chapters 3 and 6.

1.3 Type dependency

Program-generating algorithms, and language-processing algorithms such as in-

terpreters in general, often exhibit a kind of type dependency. That is, the value

of some input argument could determine the types of the other input arguments

and of the output. The frequent uses of type dependency is not by pure acci-

dent. In most cases, these language-processing algorithms treat typed subject

programs in the object language, and these object-level types are reected in the

meta-level typing of certain components of the algorithm.

In most cases, we can evade the type dependency by using a universal data

type for the type that changes according to the input. But the use of a universal

4

data type also introduces potential type errors in the form of tag mismatches,

which is against the static debugging provided by a static type system. The

use of a universal type is particularly unsatisfactory when the end users are

required to supply the arguments whose type depends on the rest of the input,

as examples in Part II will demonstrate.

Unfortunately, a dependent type system is diÆcult to implement and use,

and is left out by the mainstream programming languages. On the other hand,

several languages incorporate certain extensions to the type system that allows

a limited form of type dependency, as reviewed in Chapter 12.

1.4 Overview of this dissertation

This work follows the language-based approach to addressing issues in code-

generating algorithms.

In Part I, we set up a framework of practical two-level languages for high-

level program generation. We start with a simple two-level language for pure

call-by-value object languages found in the literature, express several non-trivial

applications in this language, and identify and prove the necessary key proper-

ties of the two-level languages that support establishing the correctness of these

applications themselves. We also establish an e�ective implementation for the

language, by showing a native embedding into a conventional one-level language.

From this development, we abstract out the general framework, in particular the

key semantic properties. With this general framework in mind, we proceed to

design a new, arguably more practical two-level language, which works for call-

5

by-value object languages with computational e�ects. We then demonstrate that

this new two-level language is an instance of the general framework by establish-

ing its semantic properties, and we apply these properties to applications. The

semantics and the proofs are generally more involved, and therefore we keep

most of the technical development in the appendix; but the basic structure does

not deviate from the general framework.

Due to our use of native-embedding-based implementations instead of the

more traditional meta-level implementation, type dependency is more promi-

nent. In Part II, we turn to study a programming technique that supports a

limited form of type dependency that is enough to cover a sizable class of practi-

cal applications. We formulate these applications with a notion of type-indexed

family of values, and develop several approaches to realize type-indexed fami-

lies in the Hindley-Milner type system, which is the basis for the mainstream

functional languages nowadays. These approaches all use type encodings, whose

compile-time types reect the types themselves, which makes the approach type-

safe, in the sense that the underlying type system statically guarantees the type

dependency. We present both value-dependent type-encodings, which are tied to

a speci�c type-indexed family, and value-independent type-encoding, which are

used by various type-indexed families. In particular, for a value-dependent en-

coding, directly encoding types as the values indexed at the corresponding type

is suÆcient and practical, while for a value-independent encoding, we use higher-

order functors to express the type dependency explicitly, or use a universal type

encoding based on embedding and projection functions between universal data

types and speci�c type encodings. Since this part is concerned with a program-

6

ming technique, we illustrate all the approaches with the Standard ML code of

a range of applications.

Building upon the framework of Part I and the programming technique of

Part II, in Part III, we derive and implement a more scaled-up application:

the second Futamura projection for type-directed partial evaluation, which uses

self-application to derive eÆcient generating extensions (specialized partial eval-

uators for given programs).1 Due to the di�erences between `traditional', syntax-

directed partial evaluation and type-directed partial evaluation, this derivation

involves several conceptual and technical steps. These include a suitable for-

mulation of the second Futamura projection and techniques for making TDPE

amenable to self-application. We demonstrate this technique with several exam-

ples, including compiler generation for Tiny, a prototypical imperative language.

To keep the development of each part more focused, we keep the speci�c moti-

vations, technical background, related and future work, and concluding remarks

separate, leaving them in the relevant parts.

1.5 Themes

While Part I is mainly concerned with a theoretical foundation, Part II with a

programming methodology, and Part III with an application, both correctness

concerns and implementation issues are present in all the parts.

Our approach to the soundness of our techniques is semantics-based. We use
1This recasts a joint work with Bernd Grobauer. The di�erence lies in the foundation of the work:

whereas the original work is based on Filinski's semantic formulation of TDPE [31], Part III takes

advantage of Part I to give a more syntactic formulation.

7

several di�erent semantic tools to formalize di�erent language abstractions in

the paper and to prove them correct. In general, we opt for more \syntactic"

semantic tools, such as operational semantics and equational theories, but de-

notational semantics proves to be handy in certain situations. A survey of these

techniques is presented in Section 2.2.

For implementation, instead of the traditional meta-level approach where

the language to be implemented is processed as data in the implementation lan-

guage, we follow an approach called embedding, where syntactic phrases of the

implemented language are mapped into those of the implementation language.

For this embedding approach to be e�ective and for the mapping of syntactic

phrases to be readily usable by the programmer, it is important that the mapping

be compositional. This is guaranteed by the notion of syntactic interpretation

(or instantiation), where the syntactic mapping is simply a substitution of base

syntactic constituents. A general description of the embedding approach is pre-

sented in Section 2.3.

8

Chapter 2

Preliminaries

2.1 Notational conventions

We employ several notations for taking interpretations of syntax. Speci�cally,

the semantic bracket [[�]] maps a piece of syntax to its semantics, which is a value

in a mathematical domain; the syntactic-translation bracket fj�jg maps a piece

of syntax to another piece of syntax, probably in a di�erent language. In the

special case where the source syntax represents a type while the target syntax

represents a program term, we write hj � ji instead, indicating that the syntactic

translation is a type encoding.

Because we consider several di�erent languages, we write L ` J to assert

a judgment J in the language L, or we write simply J when L is clear from

the context. We write � for strict syntactic equality, �� for equality up to

�-conversion, and , for de�nitions.

Operations (syntactic translations) de�ned on types � , say fj� jg, are ho-

9

momorphically extended to apply to contexts: fjx1 : �1; : : : ; xn : �njg � x1 :

fj�1jg; : : : ; xn : fj�njg. A type-preserving translation fj�jg of terms-in-contexts in

language L1 into ones in language L2 is declared in the form L1 ` �� E : � =)

L2 ` fj�jg� fjEjg : fj�jg .

For a syntactic phrase (a type or a term) p and a substitution � (a map

from variables to syntactic phrases), we write pf�g for the result of applying the

substitution � to p. We note a substitution in the form p1=x1; : : : ; pn=xn, where

each xi is a variable, and each pi is the corresponding syntactic phrase.

Meta-variables � , �, �, and � respectively range over two-level types, one-

level types, two-level contexts, and one-level contexts. Meta-variables �, �,

range over type variables.

2.2 Semantics: tools for reasoning

This dissertation uses three kinds of formal semantics in building sound lan-

guage support: operational semantics, denotational semantics, and axiomatic

semantics.

An operational semantics describes the meaning of a program in terms of

its operational behavior. Following Landin's work on SECD machine [64], early

work of operational semantics mostly took the form of abstract machines. An

abstract-machine semantics is very close to an actual implementation, but its

lack of abstraction makes high-level reasoning diÆcult. Later, Plotkin developed

structural operational semantics as a more abstract alternative [89]. Structural

operational semantics speci�es program reductions or evaluations inductively,

10

thus lending itself to the inductive proof principles.

The speci�c form of operational semantics we use in this dissertation is eval-

uation semantics (a.k.a. big-step semantics). In its simplest form, an evaluation

semantics presents an inductively de�ned binary relation between an expression

E and a value V , which is a result of evaluating E. Values are special expressions

that are canonical in some formal sense.

In an denotational semantics, the meaning of a program is a mathemati-

cal object, i.e., its denotation. An important feature of denotational semantics

is compositionality: the meaning of a syntactic phrase is determined by the

meaning of its sub-phrases. Compositionality makes denotational semantics a

suitable tool for reasoning about program equivalence: replacing a sub-term in a

program with another sub-term does not change the meaning of the whole pro-

gram, provided that the two sub-terms have the same denotations. Achieving

compositionality, on the other hand, often necessitates advanced mathematical

constructions. As a well-known example, the attempt to model recursion leads

to the development of domain theory [95].

An axiomatic semantics provides an axiomatic system for reasoning about

program properties. With an emphasis on its use, axiomatic semantics is the

probably the most user-oriented among the three genres of formal semantics. A

classical example is the Hoare logic for reasoning about partial correctness of

programs, which de�nes a relation between programs, pre-condition, and post-

conditions. For functional programming languages, equational theories are a

common form of axiomatic semantics. An equational theory is an axiomatic

system for relating terms that are observational equivalent, i.e., those which

11

are interchangeable in abitrary program context without a�ecting the program

behavior.

Any programming language can be equipped with several di�erent formal

semantics. In order to freely reap the bene�ts of all these semantics, it is im-

portant that these semantics agree with each other to some extent. Di�erent

levels of agreement exists, but, in practice, the form that is called computational

adequacy suÆces. Computational adequacy requires that the semantics (in most

cases denotational semantics and operational semantics agree) agree on whole

programs, but not necessarily on the observable behaviors of arbitrary terms. In

general, the observational equivalence induced by operational semantics is the

coarsest, while the equivalence from the equational theory is the �nest.

In the following we sketch the basic form of a simple functional language,

its syntax, its denotational semantics, and its equational theory. Operational

semantics vary greatly according to the language, therefore we refrain from giving

a general description.

A simple functional language L is given by a pair (�; I) of a signature �

and an interpretation I of this signature. More speci�cally, the syntax of valid

terms and types in this language is determined by �, which consists of base type

names, and constants with types constructed from the base type names. A set

of typing rules generates, from the signature �, typing judgments of the form

� ` �� t : � (or L ` �� t : �), which reads \t is a well-formed term of type �

under typing context �".

The denotational semantics of types and terms is determined by an interpre-

tation. An interpretation I of signature � assigns domains to base type names,

12

elements of appropriate domains to literals and constants, and, in the setting

of call-by-value languages with e�ects, also monads to various e�ects. The in-

terpretation I extends canonically to the meaning [[�]]I of every type � and the

meaning [[t]]I of every term t : � in the language; for a term-in-context �� t : �,

its meaning [[t]]I is a map from � to � in the appropriate category of domains

(Kleisli category for call-by-value languages with e�ects).

The equational theory of the language is generated from a parameterized set

of axioms on the constants in Sg via a set of equational rules. Each equation

takes the form ��t1 = t2 : �. A soundness theorem of the equational theory with

respect to the denotational semantics states that all derivable such equations are

validated by an interpretation I, i.e., [[t1]]
I = [[t2]]

I , provided that the axioms on

the constants are validated by I.

2.3 An embedding approach to Language implementa-

tion

2.3.1 The embedding approach

Assume that we have an implementation of language Limp, and we want to im-

plement a language L. We can achieve this by writing an L-interpreter in Limp,

or writing an L-compiler in Limp. A more lightweight approach called embedding

might work when Limp and L are share most language constructs. In the embed-

ding approach, one creates a library of combinators to deal with those constructs

of L that are not immediately present in Limp. This allows direct embedding of

13

L-programs in Limp: the common constructs of L and Limp can be left as is, while

the extra constructs of L embeds as function invocations to the combinators.

The formal notion of syntactic translation serves to make this process of

embedding mathematically precise and reasonable. Concretely, an embedding

of L into L is simply a syntactic translation fj�jg from L to Limp such that the

translation of the common constructs are homomorphic. For example, if both

languages are functional, then we should expect that variables, �-abstractions,

and function applications all translate to themselves, i.e., fjxjg , x, fj�x:tjg ,

�x:fjtjg, and fjt1 t2jg , fjt1jg fjt2jg. Correctness theorem of the implementation

can then be precisely stated. Part I uses the embedding method to implement

the two-level languages and prove the implementation correct.

In general, this embedding approach to language implementation applies only

when the type systems of the new language L and the implementation language

Limp are very close, as we cannot plug in a dedicated type inferencer for L.

In Part II, however, we shall demonstrate implementing more expressive type

systems using the embedding approach.

2.3.2 A special form of embedding: instantiation

It is helpful to understand the precise concept of embedding for the case when

both Limp and L are simple functional languages of the form described in Sec-

tion 2.2. In this case, the only \extra" constructs in L are the types and constants

in its signature. Therefore, we only need to map them into the Limp-phrases.

In fact, the syntactic counterpart of the notion of an interpretation is that

of an instantiation (also known as a syntactic interpretation), which composi-

14

tionally maps syntactic phrases in a language L to syntactic phrases in (usually)

another language L0. The following de�nition of instantiations uses the notion

of substitution. For a substitution �, we write tf�g and �f�g to denote the

application of � to term t and type �, respectively.

De�nition 2.1 (Instantiation). Let L and L0 be two languages with signatures

� and �0, respectively. An instantiation � of �-phrases (terms and types) into

language L0 is a substitution that maps the base types in � to �0-types, and maps

constants c : � to closed �0-terms of type �f�g.

We also refer to the term tf�g as the instantiation of the term t under �,

and the type �f�g as the instantiation of the type � under �.

It should be obvious that an interpretation of a language L0 and an instan-

tiation of a language L in language L0 together determine an interpretation of

L.

2.4 Type-directed partial evaluation: an informal intro-

duction

2.4.1 Partial evaluation

Given a general program p : �S��D ! �R and a �xed static input s : �S, partial

evaluation (a.k.a. program specialization) yields a specialized program ps : �D !

�R. When this specialized program ps is applied to an arbitrary dynamic input

d : �D, it produces the same result as the original program applied to the complete

input (s; d), i.e., [[psd]] = [[p(s; d)]] (Here, [[�]] maps a piece of program text to

15

its denotation.) Often, some computation in program p can be carried out

independently of the dynamic input d , and hence the specialized program ps is

more eÆcient than the general program p. In general, specialization is carried

out by performing the computation in the source program p that depends only on

the static input s , and generating program code for the remaining computation

(called residual code).

We will present further details on the area of partial evaluation in Part III of

the dissertation, where it is the subject of study.

Partial evaluation through normalization by evaluation In a suitable set-

ting, partial evaluation can be carried out by normalization. Consider, for exam-

ple, the pure simply typed �-calculus, in which computation means �-reduction.

Given two �-terms p: �1 ! �2 and s : �1, bringing the application ps into �-normal

form specializes p with respect to s. For example, normalizing the application

of the K -combinator K = �x:�y:x to itself yields �y:�x:�y0:x.

Type-directed partial evaluation (TDPE), due to Danvy [12], builds on this

idea of specialization by normalization, in a somewhat unconventional fashion.

The distinct avor of TDPE lies in the normalization algorithm, which builds

upon an evaluator (interpreter or compiler) and is free of expensive symbol re-

ductions. On pure call-by-name �-calculus, TDPE coincides with Berger and

Schwichtenberg's Normalization by Evaluation (NbE) [6, 17]. In fact, in Part I

and Part II, we will only concern ourselves with (the formulation, implementa-

tion, and correctness proofs of) the normalization algorithm of TDPE, and refer

to it simply as TDPE; subsequently, the focused development on TDPE itself

16

and of self-application techniques for TDPE appear inPart III Roughly speaking,

NbE works by extracting the normal form of a term from its meaning, where the

extraction function is coded in the object language.

Example 2.2. Let L be a higher-order functional language in which we can de�ne

a type exp of term representations. Consider the combinator K = �x:�y:x|the

term KK is of type 8�:�!�!�!�, which can be instantiated to the monotype

exp! exp! exp! exp. We want to extract a �-normal form from its meaning.

Since exp! exp! exp! exp is the type of a function that takes three argu-

ments, one can infer that a (fully-�-expanded) �-normal form of KK must be of

the form �v1:�v2:�v3:t (we underline term representations to distinguish them

from terms), for some term t : exp. Intuitively, the only natural way to generate

the term t from the meaning of term KK is to apply it to the representations

of the terms v1, v2 and v3. The result of this application is v2. Thus, we can

extract the normal form of KK as �v1:�v2:�v3:v2.

2.4.2 Pure TDPE in ML

In this section, we illustrate TDPE for an e�ect-free fragment of ML without re-

cursion, which we call Pure TDPE. For this fragment, the call-by-name and call-

by-value semantics agree, which allows us to directly use Berger and Schwicht-

enberg's NbE for call-by-name �-calculus as the core algorithm (recall that ML

is a call-by-value functional language).

NbE works by extracting the normal form of a �-term from its meaning, by

regarding the term as a higher-order code-manipulation function. The extrac-

17

tion functions are type-indexed coercion functions coded in the implementation

language. To carry out partial evaluation based on NbE, TDPE thus needs to

use a code-manipulating version of the subject �-term. Such a �-term, in gen-

eral, could contain constant functions that cannot be statically evaluated; these

constants have to be replaced with code-manipulating functions.

Pure simply-typed �-terms We �rst consider TDPE only for pure simply-

typed �-terms. We use the type exp in Figure 2.1 to represent code (as it is

used in Example 2.2). To use ML with exp as an informal two-level language

for describing code-generation algorithms, in the following we will write �x:E as

shorthand for LAM(x, E), E1@E2 as shorthand for APP(E1;E2), and an occurrence

of a �-bound variable x as shorthand for VAR(x). Following the convention of the

�-calculus, we use @ as a left-associative in�x operator.

datatype Exp = VAR of string

| LAM of string * Exp

| APP of Exp * Exp

Figure 2.1: A data type for representing terms

Let us for now only consider ML functions that correspond to pure �-terms

with type � of the form � ::= � j �1 ! �2, where `�' denotes a base type. The

TDPE algorithm takes as input terms of the types � = �fexp=�g; that is, a

value representing either code (when � = exp), or a code-manipulating function

(at higher types).

Figure 2.2 shows the TDPE algorithm: For every type � , we de�ne inductively

a pair of functions #� : � ! exp (rei�cation) and "� : exp ! � (reection).

18

Rei�cation is the function that extracts a normal form from the value of a code-

manipulation function, using reection as an auxiliary function. We explain

rei�cation and reection through the following examples.

#� e = e

#�1!�2 f = �x:#�2 (f("�1 x)) (x is fresh)

"� e = e

"�1!�2 e = �x:"�2 (e@(#
�1 x))

Figure 2.2: Rei�cation and reection

Example 2.3. We revisit the normalization of KK from Example 2.2 (page 17).

For the type � ! �! �! � the equations given in Figure 2.2 de�ne rei�cation

as

#�!�!�!� e = �x:�y:�z:exyz:

For every argument of base type `�', a lambda-abstraction with a fresh vari-

able name is created. Given a code-manipulation function of the type exp !

exp! exp! exp, a code representation of the body is then generated by applying

this function to the code representations of the three bound variables. Evaluating

#�!�!�!� (KK) yields �x:�y:�z:y.

What happens if we want to extract the normal form of t : �1 ! �2 where

�1 is not a base type? The meaning of t cannot be directly applied to the code

representing a variable, since the types do not match: �1 6= exp. This is where

19

the reection function "� : exp! � comes in; it converts a code representation

into a code-generation function:

Example 2.4. Consider �1 = �! �! �! �:

"�!�!�!� e = �x:�y:�z:e@x@y@z

For any term representation e, "�!�!�!� e is a function that takes three term

representations and constructs a representation of the application of e to these

term representations. It is used, e.g., when reifying the term �x:�y:xyyy with

#(�!�!�!�)!�!�.

Adding constants So far we have seen that we can normalize a pure simply-

typed �-term by (1) coding it in ML, interpreting all the base types as type exp,

so that its value is a code-manipulation function, and (2) applying rei�cation

at the appropriate type. Treating terms with constants follows the same steps,

but the situation is slightly more complicated. Consider, for example, the ML

expression �z:mult 3:14 z of type real! real, where mult is a curried version of

multiplication over reals. This function cannot be used as a code-manipulation

function, since its type is not constructed from the type exp. The solution is to

use a non-standard, code-generation version multr : exp! exp! exp of mult. We

also lift the constant 3:14 into exp using a lifting-function LITreal : real! exp.

(This operation requires a straightforward extension of the data type exp with

an additional constructor LIT REAL.) Reection can then be used to construct a

code-generation version multr of mult:

20

Example 2.5. A code-generation version multr : exp!exp! exp of mult: real!

real! real is given by

multr = "�!�!�\mult" = �x:�y:\mult"@x@y;

where\mult" (more accurately, VAR\mult") is the code representation of a constant

with name mult. Now applying the rei�cation function #�!� to the term

�z:(multr (LITreal 3:14) z)

evaluates to �x:\mult"@3:14@x.

Towards partial evaluation: binding-time annotations In the framework of

TDPE, the partial evaluation of a (curried) program p : �S ! �D ! �R with

respect to a static input s : �S is carried out by normalizing the application ps.

We could use a code-generation version for all the constants in this term; reifying

the meaning will carry out all the �-reductions, but leave all the constants in

the residual program|no static computation involving constants is carried out.

However, this is not good enough: One would expect that the application ps

enables also computations involving constants, not only �-reductions. Partial

evaluation, of course, should also carry out such computations. This is achieved

by leaving the involved constants as is; or, in other words, instantiating these

constants to themselves.

In general, to perform TDPE for a term, one needs to decide for each occur-

rence of a constant, whether to use the original constant or a code-generation

instantiation of it; appropriate lifting functions have to be inserted where neces-

sary. The result must type-check, and its partial application to the static input

21

must represent a code-manipulation function (i.e., its type is built up from only

the base type exp), so that we can apply the rei�cation function.

This process of classi�cation corresponds to a binding-time annotation phase,

as will be made precise in the framework of a two-level language (Sections 4.5,

5.3, and 15.1) Basically, a source term is turned into a well-formed two-level

term by marking constants as static or dynamic, and inserting lifting functions

where needed. In general, one tries to reduce the number of occurrences of

dynamic constants in term t, so that more static computation involving constants

is carried out during partial evaluation. Because only constant occurrences have

to be annotated, this can, in practice, be done by hand. Given an annotated

term tann, we call the corresponding code-manipulation function its residualizing

instantiation tann . It arises from tann by instantiating each dynamic constant

c with its code-generation version cr, each static constant with itself, and each

lifting function with the appropriate coercion function into exp. If t is of type �,

then its normal form can be calculated by reifying tann at type � (remember that

rei�cation only distinguishes a type's shape|all base types are treated equally

as `�'):

NF(t) = [[#� tann]];

Recall that [[�]] maps a piece of code to its denotation; or, informally, it delivers

the result of \executing" the program.

Partial evaluation of a program p : �S � �D ! �R with respect to a static

input s : �S thus proceeds as follows:

� binding-time annotate p and s as pann and sann, respectively;
1 the term

1That the static input also needs to be binding-time annotated may at �rst seem strange. This is

22

�x: pann (sann ; x) must be a code-manipulation function of type �D ! �R

(recall that � arises from � by instantiating each base type with exp).

� carry out partial evaluation by reifying the above term at type �D ! �R:

ps = [[#�D!�R �x: pann (sann ; x)]]

Example 2.6. Consider the function

height = �(a : real):�(z : real):mult (sin a) z:

Suppose we want to specialize height to a static input a : real. It is easy to see

that the computation of sin can be carried out statically, but the computation

of mult cannot|mult is a dynamic constant. This analysis results in a two-

level term heightann, in which sin is marked as static, mult as dynamic, and a

lifting function has been inserted to turn the static application of sin to a into

dynamic. The residualizing instantiation of heightann instantiates sin with the

standard sine function, the lifting function with a coercion function from real

into exp, and mult with a code-generation version as introduced in Example 2.5

(page 20):

heightann = �(a : real):�(z : Exp):multr (LITreal(sin a)) z

Now (heightann
�
6
) has type Exp! Exp, i.e., it is a code-manipulation function.

Thus, we can specialize height with respect to �
6
by evaluating #�!� (heightann

�
6
),

which yields �x:\mult"@0:5@x

natural, however, because TDPE also accepts higher-order values as static input. For a static input

of base type, the binding-time annotation is trivial.

23

Notice that instantiation in a binding-time annotated term tann of every con-

stant with itself and of every lifting function with the identity function yields a

term jtannj that has the same denotation as the original term t; we call jtannj the

standard (also evaluating) instantiation of tann.

24

Part I

A framework for two-level

languages

25

Chapter 3

Introduction to Part I

3.1 Background

Programs that generate code, such as compilers and program transformers, ap-

pear everywhere, but it is often a demanding task to write them, and an even

more demanding task to reason about them. The programmer needs to maintain

a clear distinction between two languages of di�erent binding times: the static

(compile-time, meta) one in which the code-generation program is written, and

the dynamic (run-time, object) one in which the generated code is written. To

reason about code-generation programs, one always considers, at least informally,

invariants about the code generated, e.g., that it type checks.

Two-level languages provide intuitive notations for writing code-generation

programs succinctly. They incorporate both static constructs and dynamic con-

structs for modeling the binding-time separation. Their design usually considers

certain semantic aspects of the object languages. For example, the typing safety

26

of a two-level language states not only that (static) evaluation of well-typed

programs does not go wrong, but also that the generated code is well-typed in

the object language. The semantic bene�t, however, often comes at the price of

implementation eÆciency and its related correctness proof.

Semantics vs. implementation: Consider, for example, the pure simply typed

�-calculus as the object language. A possible corresponding two-level language

could have the following syntax.

E ::= x j �x:E j E1E2 j �x:E j E1@E2

Apart from the standard (static) constructs, there are two dynamic constructs

for building object-level expressions: �x:E for �-abstractions, and E1@E2 for

applications. As a �rst approximation, one can think of the type of object

expressions as an algebraic data type

E = VAR of string | LAM of string * E | APP of E * E

where �x:E is shorthand for LAM("x", E), E1@E2 is shorthand for APP(E1;E2),

and an occurrence of �-bound variable x is shorthand for VAR("x"). For instance,

the term �x:x is represented by LAM("x", VAR "x").

This representation, by itself, does not treat variable binding in the ob-

ject language. For instance, we can write a code transformer that performs

�-expansion as eta , �f:�x:f@x, in the two-level language. Applying this code

transformer to object terms with free occurrences of x exposes the problem that

evaluation could capture names: For instance, evaluating �x:eta x yields the ob-

ject term �x:�x:x@x, which is wrong and not even typable in the simply typed

lambda calculus.

27

If we are working in a standard, high-level operational semantics that de-

scribes evaluation as symbolic computations on the two-level terms, then the

solution to the name-capturing problem is simple: Dynamic �-bound variables,

like usual bound variables, should be subject to renaming during a non-capturing

substitution EfE 0=xg (which is used in the evaluation of static applications).

Therefore, in the earlier example, the two-level term �x:(�f:�x:f@x)x does not

evaluate to �x:�x:x@x, but to �x:�y:x@y. This precise issue is referred to as

\hygienic macro expansion" in Kohlbecker's work [62, 63].

Indeed, the analogy between the dynamic �-bound variables and the static

�-bound variables has long been adopted in the traditional, staging view of two-

level languages, which is shaped by the pioneering work of Jones et al. [57, 58, 59]:

Serving as an intermediate language of o�ine partial evaluators, a two-level lan-

guage is the staged version of a corresponding one-level language. In this context,

in addition to typing safety, another property, which we call annotation erasure,

is important for showing the correctness of partial evaluators: The result of two-

level evaluation has the same semantics as the unstaged version of the program.

Taking up the earlier example again, we can see that the unstaged version of

�x:(�f:�x:f@x)x, i.e., �x:(�f:�x:f x)x, is �-equivalent to the generated term

�x:�y:x y. In the symbolic framework, it is relatively easy to establish annota-

tion erasure, at least in a call-by-name, e�ect-free setting.

For realistic implementations of two-level languages, capture-avoiding sub-

stitution is expensive and undesirable. Indeed, most implementations use some

strategy to generate variables such that they do not conict with each other.

Unsurprisingly, it is more diÆcult to reason about these implementations. In

28

fact, existing work that proved annotation erasure while taking the name gener-

ation into account used denotational-semantics formulations and stayed clear of

operational semantics [31, 37, 75] (see Section 6.2 for detail).

Hand-written two-level programs: In the 1990s, two-level languages started

to be used in expressing code-generation algorithms independently of dedicated

partial evaluators. Such studies propel a second view of two-level languages:

They are simply one-level languages equipped with a code type that represents

object-level terms. This code-type view of two-level languages leads to two sepa-

rate tracks of formal studies, again reecting the tension between semantics and

implementation.

The �rst track explores the design space of more expressive such languages,

while retaining typing safety. Davies and Pfenning characterized multi-level

languages in terms of temporal logic [26] and of modal logic [27]. Their work

fostered the further development of multi-level languages such as MetaML [76].

In general, this line of work employs high-level operational semantics, in partic-

ular capture-free substitution, to facilitate a more conceptual analysis of design

choices.

The second track uses the staging intuitions of two-level languages as a guide

for �nding new, higher-order code-generation algorithms; for the sake of eÆ-

ciency, the algorithms are then implemented in existing (one-level) functional

languages, using algebraic data types to encode the code types and generating

names explicitly. As an example, Danvy and Filinski have used an informal

two-level language to specify a one-pass CPS transformation that generates no

29

administrative redexes [18], which is an optimization of Plotkin's original CPS

transformation [87]. Similarly, a study of binding-time coercions by two-level eta-

expansion has led Danvy to discover type-directed partial evaluation (TDPE), an

eÆcient way to embed a partial evaluator into a pre-existing evaluator [12]. The

proofs of correctness in both applications, as in the case of annotation erasure,

stayed clear of two-level languages.

The case of TDPE deserves some interest of its own: Filinski formalized

TDPE as a normalization process for terms in an unconventional two-level lan-

guage, where the binding-time separation does not apply to all program con-

structs, but to only constants.1 Using denotational semantics, he character-

ized the native implementability of TDPE in a conventional functional lan-

guage [31, 32]. On the other hand, the intuitive connection between TDPE

and conventional two-level languages has not been formalized.

3.2 This work

The speci�c thesis of Part I is that (1) we can formally connect the high-level

operational semantics and the eÆcient, substitution-free implementation, and by

doing so (2) we can both reason about code-generation algorithms directly in two-

level languages and have their eÆcient and provably correct implementations.

First, to support high-level reasoning, we equip the two-level language, say L2,

with a high-level operational semantics, which, in particular, embodies capture-
1Without constants, the call-by-name version of TDPE coincides with Berger and Schwichtenberg's

notion of normalization by evaluation [6].

30

avoiding substitution that takes dynamic �-bound variables into account. We

use the semantics to give simple, syntactic proofs of general properties such as

annotation erasure, which reects the staging view, and type preservation, which

reects the code-type view. In turn, we use these properties to prove semantic

correctness of the generated code (i.e., it satis�es certain extensional properties)

and syntactic correctness of the generated code (i.e., it satis�es certain inten-

sional, syntactic constraints).

Next, to implement L2-programs eÆciently in a conventional one-level lan-

guage (e.g., ML), we show a native embedding of L2 into the implementation

language. This native embedding provides eÆcient substitution-free implemen-

tation for the high-level semantics.

Overview of Part I The remainder of Part I eshes out the preceding ideas

with two instances of the framework. The �rst is a canonical two-level language

nPCF2 for a call-by-name object language (call-by-name \PCF of two-level lan-

guages", following Moggi [75]). The second, designed from scratch while taking

the aforementioned properties (in particular, annotation erasure and native im-

plementability) into account, is a more practically relevant two-level language

vPCF2: one with an instance of Moggi's call-by-value computational �-calculus

as its object language.

In Chapter 4 we present nPCF2 together with its related one-level language

nPCF, prove its properties, and apply them to the example of CPS transforma-

tions and call-by-name TDPE. At the end of this case study we abstract out, in

Chapter 4.7, our general framework, in particular the desired properties and the

31

corresponding proof obligations they support. With this framework in mind, in

Chapter 5 we design vPCF2, prove its properties, and apply them to the example

of call-by-value TDPE. We present the related work in Chapter 6 and conclude

in Chapter 7. The detailed proofs and development are given in the appendices.

Notational conventions: Because we consider several di�erent languages, we

write L ` J to assert a judgment J in the language L, or we write simply

J when L is clear from the context. We write � for strict syntactic equality,

and �� for equality up to �-conversion. Operations (syntactic translations)

de�ned on types � , say fj� jg, are homomorphically extended to apply to contexts:

fjx1 : �1; : : : ; xn : �njg � x1 : fj�1jg; : : : ; xn : fj�njg. A type-preserving translation

fj�jg of terms-in-contexts in language L1 into ones in language L2 is declared in

the form L1 ` �� E : � =) L2 ` fj�jg� fjEjg : fj�jg . Meta-variables � , �, �,

and � respectively range over two-level types, one-level types, two-level contexts,

and one-level contexts.

32

Chapter 4

The call-by-name two-level

language nPCF
2

We present a canonical call-by-name (CBN) two-level language nPCF2 (Sec-

tion 4.1), cast the example of a one-pass CPS transformation as an nPCF2

program (Section 4.2), and use an erasure argument to prove its correctness

(Section 4.3). Building on a native embedding of nPCF2 into a conventional lan-

guage (Section 4.4), we formulate CBN TDPE in nPCF2 and show its semantic

correctness as well as its syntactic correctness (Sections 4.5 and 4.6).

4.1 Syntax and semantics

For the various languages in Part I, we �x a set of base syntactic constituents

(Figure 4.1). Figure 4.2 shows the type system (� � E : �) and the evaluation

semantics (E + V) of nPCF2 over a signature of typed constants d : � in the

33

object language. For example, for the conditional construct, we can have a

family of object-level constants if� : bool! � ! � in Sg.

In addition to the conventional CBN static part,1 the language nPCF2 has a

family of code types�, indexed by the types � of the represented object terms,

and their associated constructors, which we call the dynamic constructs. For

example, in the base case, dynamic constants d :� represent the corresponding

constants d : � in the object language; static values of base types b, called the

literals, can be \lifted" into the code types b with $b, so that the result of

static evaluation can appear in the generated code. The dynamic constructs are

akin to data constructors of the familiar algebraic types, but with the notable

exception that the dynamic �-abstraction is a binding operator: As mentioned in

the introduction, the variables introduced are, like usual bound variables, subject

to renaming during a non-capturing substitution EfE 0=xg (which is used in the

evaluation of static applications).

The evaluation judgment of the form E + V reads that evaluation of the

term E leads to a value V . Evaluation is deterministic modulo �-conversion:
1We omit product types but it is straightforward to add them and will not a�ect the results below.

Base types b 2 B : bool (boolean type), int (integer type)

Literals `: L(bool) = ftt;�g;L(int) = f: : : ;�1; 0; 1; : : :g

Binary operators
: +;� : int� int! int,

=; <: int� int! bool

Figure 4.1: Base syntactic constituents

34

a. The object-level signature Sg is a set of (uninterpreted) typed constants d : �

in the object language.

b. Syntax

Types � ::= b j � j �1 ! �2 (two-level types)

� ::= b j �1 ! �2 (object-code types)

Contexts � ::= � j �; x : �

Raw terms E ::= ` j x j �x:E j E1E2 j �xE j if E1E2E3

j E1
E2 j $bE j d j �x:E j E1@E2

Typing Judgment nPCF2 ` ��E : �

(Static) [lit]
` 2 L(b)

�� ` : b
[var]

x : � 2 �

�� x : �

[lam]
�; x : �1 �E : �2

�� �x:E : �1 ! �2
[app]

��E1 : �2 ! � ��E2 : �2
��E1E2 : �

[�x]
��E : � ! �

�� �xE : �
[if]

��E1 : bool ��E2 : � ��E3 : �

�� if E1E2E3 : �

[bop]
��E1 : b1 ��E2 : b2

��E1
E2 : b
(
 : b1 � b2 ! b)

(Dynamic) [lift]
��E : b

�� $bE :b
[cst]

Sg(d) = �

�� d :�

[lam]
�; x : �1 �E :�2
�� �x:E :(�1 ! �2)

[app]
��E1 :(�2 ! �) ��E2 :�2

��E1@E2 :�

Figure 4.2: The two-level call-by-name language nPCF2 (1/2)

If E + V1 and E + V2 then V1 �� V2. A value can be a usual static value

(literal or �-abstraction) or a code-typed value O. Code-typed values are in

1-1 correspondence with raw �-terms in the object language by erasing their

35

c. Evaluation Semantics nPCF2 ` E + V

Values V ::= ` j �x:E j O

O ::= $b` j x j �x:O j O1@O2 j d

(Static) [lit]
` + `

[lam]
�x:E + �x:E

[app]
E1 + �x:E0 E0fE2=xg + V

E1E2 + V

[�x]
E(�xE) + V

�xE + V
[if-tt]

E1 + tt E2 + V

if E1E2E3 + V
[if-�]

E1 + � E3 + V

if E1E2E3 + V

[
]
E1 + V1 E2 + V2
E1
E2 + V

(V1
 V2 = V)

(Dynamic) [lift]
E + `

$bE + $b`
[var]

x + x
[cst]

d + d

[lam]
E + O

�x:E + �x:O
[app]

E1 + O1 E2 + O2

E1@E2 + O1@O2

Figure 4.2: The two-level call-by-name language nPCF2 (2/2)

Types � ::= b j �1 ! �2

Raw terms E ::= ` j x j �x:E j E1E2 j d

j �xE j if E1E2E3 j E1
E2

Contexts � ::= � j �; x : �

Typing Judgment nPCF ` ��E : �

The static part of nPCF2 plus: [cst]
Sg(d) = �

�� d : �

Equational Rules nPCF ` ��E1 = E2 : �

The congruence rules, [�], [�], and equations for �x, if , and binary operators
.

(omitted)

Figure 4.3: The one-level call-by-name language nPCF

36

annotations (erasure will be made precise in Section 4.3).

Because evaluation proceeds under dynamic �-abstractions, intermediate re-

sults produced during the evaluation can contain free dynamic variables [76].

Properties about the evaluation, therefore, are usually stated on terms which

are closed on static variables, but not necessarily dynamic variables. For exam-

ple, a standard property of evaluation in two-level languages is type preservation

for statically closed terms.

Theorem 4.1 (Type preservation). If��E : � and E + V , then��V :

� . (� is the element-wise application of the (�) constructor to the context

�.)

The proof, as most proofs for this part, can be found in the appendices.

As a consequence of this theorem, if��E :� holds, then E + V implies

that V is of the form O.

Figure 4.3 shows the corresponding one-level language nPCF. The language

includes not only the constructs of the object language, but also the static con-

structs of nPCF2. Though the static constructs will not appear in the generated

code, they are needed to specify and prove the semantic correctness of the gen-

erated code.

The equational theory of nPCF is standard for CBN languages. We only

note that there are no equational rules for the constants d in the object lan-

guage, thereby leaving them uninterpreted. That is, any interpretation of these

constants is a a model of nPCF.

37

4.2 Example: the CPS transformation

Our �rst example is the typed versions of two transformations of the pure, sim-

ply typed, call-by-value �-calculus (Figure 4.4a) into continuation-passing style

(CPS).2 The typed formulation [69] of Plotkin's original transformation [87] maps

a term E directly into a one-level term fjEjgp� (Figure 4.4b), but it generates

a lot of administrative redexes|roughly all the bindings named k introduce an

extra redex|and to remove these redexes requires a separate pass. Danvy and

Filinski's one-pass CPS transformation instead maps the term into a two-level

program fjEjgdf� (Figure 4.4c); evaluating fjEjgdf� produces the resulting CPS

term. The potential administrative redexes are annotated as static, and thus are

reduced during the evaluation of fjEjgdf�. Intuitively, the one-pass transformation

is derived by staging the program fjEjgp� [18].

By the de�nition of the translation, the two-level program fjEjgdf� does not

use the �xed-point operator. We can prove that the evaluation of such a term

always terminates using a standard logical-relation argument (note that, with

respect to the termination property, the code type behaves the same as a usual

base type like int).3 The question is how to ensure that the resulting term has

the same behavior as the output of Plotkin's original transformation, fjEjgp�.

An intuitive argument is that erasing the annotations in fjEjgdf� produces a term

which is ��-equivalent to fjEjgp�.
2The call-by-name CPS transformation is studied in Appendix A.
3Less directly, we can also use the embedding translation introduced in Section 4.4 and its associated

correctness theorem: The embedding of a term without �xed-point operators does not use the �xed-

point operator either, and thus its evaluation terminates in the standard operational semantics.

38

a. Source syntax: the pure simply typed �-calculus v�

Types � ::= b j �1 ! �2

Raw terms E ::= x j �x:E j E1E2

Typing judgment v� ` ��E : � (omitted)

b. Plotkin's original transformation:

v� ` ��E : �) nPCF ` fj�jgp� � fjEjgp� : Kfj�jgp� .

Here, K� = (�! Ans)! Ans for an answer type Ans.

Types: fjbjgp� = b,

fj�1 ! �2jgp� = fj�1jgp� !Kfj�2jgp�;

Terms: fjxjgp� = �k:k x,

fj�x:Ejgp� = �k:k �x:fjEjgp�,

fjE1 E2jgp� = �k:fjE1jgp��r1:fjE2jgp��r2:r1 r2 k.

c. Danvy and Filinski's one-pass transformation:

v� ` ��E : � =) nPCF2 ` fj�jgp� � fjEjgdf2� : K
(fj�jgp�) .

Here, K� = (� !Ans)!Ans.

Terms:

fjxjgdf2� = �k:k x;

fj�x:Ejgdf2� = �k:k �x:�k0:fjEjgdf2��m:k0@m;

fjE1 E2jgdf2� = �k:fjE1jgdf2��r1:fjE2jgdf2��r2:r1@r2@�a:k a:

The complete translation

=) nPCF2 ` fj�jgp� � fjEjgdf� :(Kfj�jgp�) .

fjEjgdf� = �k:fjEjgdf2��m:k@m

Figure 4.4: Call-by-value CPS transformation

39

4.3 Semantic correctness of the generated code: erasure

The notion of annotation erasure formalizes the intuitive idea of erasing all the

binding-time annotations, relates nPCF2 to nPCF, and supports the general view

of two-level programs as staged version of one-level programs.

De�nition 4.2 (Erasure). The (annotation) erasure of a nPCF2-phrase is the

nPCF-phrase given as follows.

Types: j �j = �, jbj = b, j�1 ! �2j = j�1j ! j�2j.

Terms: jxj = x, j$bEj = E, jdj = d, j�x:Ej = �x:jEj,

jE1@E2j = jE1j jE2j.

Erasure of the static term constructs is homomorphic (e.g., j�xEj = �x jEj,

j�x:Ej = �x:jEj). If nPCF2 ` � � E : � , then nPCF ` j�j � jEj : j� j. Finally,

the object-level term represented by a code-typed value O is its erasure jOj.

The following theorem states that evaluation of two-level terms in nPCF2

respects the nPCF-equality under erasure.

Theorem 4.3 (Annotation erasure). If nPCF2 ` � � E : � and nPCF2 `

E + V , then nPCF ` �� jEj = jV j : j� j.

Proof. By induction on E + V .

With Theorem 4.3, in order to show certain extensional properties of gener-

ated programs, it suÆces to show them for the erasure of the original two-level

program. As an example, we check the semantic correctness of the one-pass CPS

transformation with respect to Plotkin's transformation.

40

Proposition 4.4 (Correctness of one-pass CPS). If v� ` � � E : � and

nPCF2 ` fjEjgdf� + O then nPCF ` fj�jgp� � jOj = fjEjgp� : Kfj�jgp�.

Proof. A simple induction on E establishes that nPCF ` fj�jgp� � jfjEjgdf2�j =

fjEjgp� : Kfj�jgp�, which has the immediate corollary that nPCF ` fj�jgp� �

jfjEjgdf�j = fjEjgp� : Kfj�jgp�. We then apply Theorem 4.3.

The proof of Proposition 4.4 embodies the basic pattern to establish seman-

tic correctness based on annotation erasure. Although we are only interested

in the extensional property of the generated code (which, we shall recall, is the

erasure of the code-typed value O resulted from the evaluation), we need to re-

cursively establish extensional properties (e.g., equal to speci�c one-level terms)

for the erasures of all the sub-terms. Most of these sub-terms have higher types

and do not generate code by themselves; for these subterms, Theorem 4.3 does

not give any readily usable result about the semantics of code generation, since

the theorem applies only to terms of code types. But since erasure is composi-

tional, the extension of the sub-terms' erasures builds up to that of the complete

program's erasure, for which Theorem 4.3 could deliver the result. It is worth

noting the similarity between this process and the process of a proof based on a

logical-relation argument.

41

4.4 Embedding nPCF2 into a one-level language with a

term type

Our goal is also to justify native implementations of code-generation algorithms.

To this end, we want to embed the two-level language nPCF2 in the one-level lan-

guage nPCF�, which is nPCF with object-level constants removed, and enriched

with an inductive type � (the equational theory, correspondingly, is enriched

with the congruence rules for the data constructors):

� = VAR of int j LITb of b j CST of const

j LAM of int� � j APP of �� �

The type const provides a representation HdI for constants d|usually the string

type suÆces. Type � provides a representation for raw �-terms whose variable

names are of the form vi for all natural numbers i: A value V of type � encodes

the raw term D(V):

D(VAR(i)) = vi; D(LITb(`)) = `; D(CST(HdI)) = d

D(LAM(i; e)) = �vi:D(e); D(APP(e1; e2)) = D(e1)D(e2)

The language nPCF� has a standard, domain-theoretical CBN denotational

semantics [73],4 which interprets the types as follows:

[[int]] = Z?; [[bool]] = B?; [[�]] = E?; [[�1 ! �2]] = [[�1]]! [[�2]]

where Z, B and E are respectively the set of integers, the set of booleans, and the

set of raw terms (i.e., the inductive set given as the smallest solution to the equa-

tionX = Z+Z+B+Cst+Z�X+X�X). Without giving the detailed semantics
4This is di�erent from a lazy CBN semantics [107], which models Haskell-like languages where

higher-order types are observable; there, function spaces are lifted, and the �-rule does not hold.

42

(which can be found in Appendix B), we remark that (1) the equational theory is

sound with respect to the denotational semantics: If nPCF� ` �� E1 = E2 : �,

then [[E1]] = [[E2]], and (2) the evaluation function for closed terms of base types

induced from the denotational semantics has (by its computational adequacy

with respect to a environment-based (i.e., not substitution-based) call-by-name

evaluation semantics where evaluation of the data constructors are strict; the

proof of adequacy adapts the standard proof [88]) eÆcient implementations that

do not perform capture-avoiding substitutions.

De�nition 4.5 (Embedding of nPCF2 into nPCF�: fj�jgn�).

Types : fj�jgn� = int! �; fjbjgn� = b;

fj�1 ! �2jgn� = fj�1jgn�!fj�2jgn�

Terms : fj$bEjgn� = $n�b fjEjgn�; fjdjgn� = �i:CST(HdI);

fj�x:Ejgn� = �n��x:fjEjgn�;

fjE1@E2jgn� = @n�fjE1jgn�fjE2jgn�

where we use the following terms:

$n�b � �l:�i:LITb(l);

�n� � �f:�i:LAM(i; f(�i0:VAR(i))(i+ 1));

@n� � �m:�n:�i:APP(mi; ni):

Static constructs are translated homomorphically.

The three terms used in the embedding translation are nPCF�-terms them-

selves, and are kept as-is in the result of the translation. For instance, fjf@xjgn� is

the term @n�fx � (�m:�n:�i:APP(mi; ni))fx, not the simpli�ed term �i:fi; xi.

This is crucial for the validity of the following substitution lemma (Lemma 4.6);

moreover, this also models the actual implementation, where the dynamic con-

43

structs are provided as combinators in the implementation language nPCF�.

The translation uses a de Bruijn-level encoding for generating variable bind-

ings. Furthermore, a dynamic �-abstraction is translated using a static �-

abstraction5 and thus the two terms have the same binding behavior|a fact

reected in the following substitution lemma.

Lemma 4.6 (Substitution lemma for fj�jgn�). If nPCF
2 ` �; x : � 0 � E : �

and nPCF2 ` �� E 0 : � 0, then fjEfE 0=xgjgn� �� fjEjgn�ffjE
0jgn�=xg.

We shall establish that the embedding translation preserves the behavior of

closed terms of the code type, � in nPCF2 and � in nPCF�.

Lemma 4.7 (Evaluation preserves translation). If nPCF2 ` � � E : �

and nPCF2 ` E + V , then nPCF� ` fj�jgn� � fjEjgn� = fjV jgn� : fj� jgn�.

Proof. By induction on nPCF2 ` E + V . For E � E1E2, we use Lemma 4.6.

Lemma 4.8 (Translation of code-typed value). If nPCF2 ` v1 :�1; : : : ; vn :

�n �O :�, then there is a value t : � such that

� nPCF� ` � (fjOjgn�(n+ 1))f�i:VAR(1)=v1; : : : ; �i:VAR(n)=vng = t : �,

� nPCF ` v1 : �1; : : : ; vn : �n �D(t) : �, and

� jOj �� D(t).

5This is an instance of higher-order abstract syntax [86]. It might come as a surprise that we use

both higher-order abstract syntax and de Bruijn levels. In fact, they serve two di�erent but related

functions: higher-order abstract syntax makes the object-level capturing-behavior consistent with the

meta-level capturing-behavior, and the de Bruijn levels are used to generate the concrete names of

the object terms.

44

Proof. By induction on the size of term O. For the case O � �x:O1, we use

induction hypothesis on the term O1fvn+1=xg.

Lemma 4.9 (Computational adequacy). If nPCF2 ` �E :�, and there is

a nPCF�-value t : � such that [[fjEjgn�(1)]] = [[t]], then 9O:E + O.

Proof. (Sketch) We use a Kripke logical relation between nPCF2-terms and the

standard denotational semantics of nPCF�, which relates a term E and the de-

notation of fjEjgn�. The de�nition of the logical relation at the type � implies

the conclusion.

Theorem 4.10 (Correctness of embedding). If nPCF2 ` �E : �, then

the following statements are equivalent.

(a) There is a value O :� such that nPCF2 ` E + O.

(b) There is a value t : � such that [[fjEjgn�(1)]] = [[t]].

When these statements hold, we further have that

(c) nPCF ` �D(t) : � and jOj �� D(t).

Proof. (a)) (b),(c): We combine Lemmas 4.7 and 4.8 to show the existence of

value t : � such that (c) holds and nPCF� ` � fjEjgn�(1) = t : �, which implies

(b) by the soundness of the type theory.

(b)) (a),(c): By Lemma 4.9, we have (a); by (a)) (c), we have a value

t0 : � that satis�es (c). It is easy to show that t � t0.

The embedding provides a native implementation of nPCF2 in nPCF�: Static

constructs are translated to themselves and dynamic constructs can be de�ned as

functions. Explicit substitution in the operational semantics has been simulated

45

using de Bruijn-style name generation through the translation. The code gen-

eration in the implementation is one-pass, in that code is only generated once,

without further traversal over it, as in a substitution-based implementation.

Furthermore, native embeddings exploit the potentially eÆcient implementation

of the one-level language, and they also o�er users the exibility to use extra

syntactic constructs in the one-level language|as long as these constructs are

semantically equivalent to terms in the proved part.

4.5 Example: call-by-name type-directed partial evalua-

tion

We now turn to a bigger example: Type-Directed Partial Evaluation (TDPE)

[15]. Following Filinski's formalization [31], we describe TDPE as a native nor-

malization process for fully dynamic terms (i.e., terms whose types are built

solely from dynamic base types) in the somewhat di�erent two-level language

nPCFtdpe. Here, by a native normalization process, we mean an normalization

algorithm that is implemented through a native embedding from nPCFtdpe into

the implementation language.

The syntax of nPCFtdpe is displayed in Figure 4.5a. The language nPCFtdpe

di�ers from nPCF2 in that only base types are binding-time annotated as static

(b) or dynamic (bd, instead of b, for clarity), and the language does not have

any dynamic type constructors (like the dynamic function type in nPCF2). Apart

from lifted literals, dynamic constants dd are the only form of term construction

that introduces dynamic types. Their types, written in the form �d, are the

46

a. The language of CBN TDPE: nPCFtdpe

Type ' ::= b j bd j '1 ! '2

Raw terms E ::= x j ` j �x:E j E1E2 j �xE1

j if E1E2E3 j E1
E2 j $bE j dd

Typing judgment: nPCFtdpe ` ��E : '

Typing rules: same as those of nPCF2, with the dynamic ones replaced by

[cstd]
Sg(d) = �

�� dd : �d
[liftd]

��E : b

�� $bE : bd
;

where �d , �fbd=b : b 2 Bg, i.e., fully dynamic counterpart of the type �.

b. Standard instantiation (TDPE-erasure)

nPCFtdpe ` ��E : ' =) nPCF ` j�j� jEj : j'j

jbdj = b; j$bEj = jEj; jddj = d

Figure 4.5: Call-by-name type-directed partial evaluation (1/2)

fully dynamic counterpart of the constants' type � in the object language: For

example, for the object-level constant eq : int ! int ! bool, the corresponding

dynamic constant is eqd : intd ! intd ! boold; consequently, for what we write

eq@($int(1 + 2)) : (int ! bool) in nPCF2, we write eqd ($int(1 + 2)) : intd !

boold in nPCFtdpe. Let us stress that there is no binding-time annotation for

applications here.

The semantics is described through a standard instantiation6 into the one-
6An instantiation is a homomorphic syntactic translation. It is speci�ed by a substitution from the

base types to types and from constants to terms.

47

c. Extraction functions ��� and ���:

We write � for �fb=b : b 2 Bg.

8>>>><
>>>>:

nPCF2 ` ���� : �!�

��b = �x:x

���1!�2 = �f:�x:���2(f (���1x))

8>>>><
>>>>:

nPCF2 ` ���� :�! �

��b = �x:x

���1!�2 = �e:�x:���2(e@(��
�1x))

d. Residualizing instantiation

nPCFtdpe ` ��E : ') nPCF2 ` fj�jgri � fjEjgri : fj'jgri

fjbdjgri =b; fj$bEjgri = $bfjEjgri; fjd
d : �djgri = ���d

e. The static normalization functionNF is de�ned on closed terms E of fully dynamic

types �d:

NF(E : �d) = ���fjEjgri :�

Figure 4.5: Call-by-name type-directed partial evaluation nPCF2 (2/2)

level language nPCF (Figure 4.5b), which amounts to erasing all the annotations;

thus we overload the notation of erasure here.

Normalizing a closed nPCFtdpe-term E of fully dynamic type �d amounts to

�nding a nPCF-term E 0 : � in long ��-normal form (fully �-expanded terms

48

with no �-redexes; see Section 4.6 for detail) such that nPCF ` � jEj = E 0 : �.

For example, normalizing the term eqd ($int(1 + 2)) should produce the object

term �x:eq 3 x. As in Filinski's treatment, this notion of normalization leaves

the dynamic constants uninterpreted|E and E 0 need to be the same under all

interpretations of constants, since there are no equations for dynamic constants.

The TDPE algorithm, formulated in nPCF2, is shown in Figure 4.5c-e. It �nds

the normal form of a nPCFtdpe-term E : �d by applying a type-indexed extraction

function ��� (\rei�cation") on a particular instantiation, called the residualizing

instantiation fjEjgri, of term E in the language nPCF2. Being an instantiation,

which maps static constructs to themselves, fj�jgri makes the TDPE algorithm

natively implementable in nPCF� through the embedding fj�jgn� of Section 4.4.

Indeed, the composition of fj�jgri and the embedding fj�jgn� is essentially the

same as Filinski's direct formulation in the one-level language.

We �rst use the erasure argument to show that the result term of TDPE is

semantically correct, i.e., that the term generated by running NF(E) has the

same semantics as the standard instantiation jEj of E.

Lemma 4.11. For all types �, nPCF ` � j���j = �x:x : �! � and nPCF `

� j���j = �x:x : �! �.

The lemma captures the intuition of TDPE as two-level �-expansion, as

Danvy stated in his initial presentation of TDPE [12].

Theorem 4.12 (Semantic correctness of TDPE). If nPCFtdpe ` �E : �d

and nPCF2 ` NF(E) + O, then nPCF ` � jOj = jEj : �.

Proof. A simple induction on E establishes that nPCF ` � jfjEjgrij = jEj : �,

49

which has the immediate corollary that nPCF ` � jNF(E)j = jEj : �. We then

apply Theorem 4.3.

4.6 Syntactic correctness of the generated code:

type preservation

Semantic correctness of the generated terms does not give much syntactic guar-

antee of the generated terms, but using the standard type preservation (Theo-

rem 4.1), we can already infer some intensional properties about the output of

TDPE: It does not contain static constructs, and it is typable in nPCF. Fur-

thermore, a quick inspection of the TDPE algorithm reveals that it will never

construct a �-redex in the output|since there is no way to pass a dynamic �-

abstraction to the �� function. Indeed, an ad-hoc native implementation can be

easily re�ned to express this constraint by changing the term type �. To cap-

ture that the output is fully �-expanded by typing, however, appears to require

dependent types for the term representation.7

To show that the output of TDPE is always in long ��-normal form, i.e.,

typable according to the rules in Figure 4.6 (directly taken from Filinski [31]),

we can take inspiration from the evaluation of nPCF2-terms of type �. Type

preservation shows that evaluating these terms always yields a value of type�,

which corresponds to a well-typed nPCF-term. Similarly, to show that evaluating
7On the other hand, through some extra reasoning on the way the two-level program is written,

it is possible to prove that the output is fully �-expanded in such a setting, as done by Danvy and

Rhiger recently [23].

50

NF(E) always yields long ��-terms, we can re�ne the dynamic typing rules of

nPCF2, so that values of code type correspond to terms in long ��-normal form,

and then we show that (1) evaluation preserves typing in the new type system;

and (2) the term NF(E) is always typable in this new type system.

The two-level language with dynamic typing rules re�ned according to the

rules for long ��-normal forms is shown in Figure 4.7. Briey, we attach the

sort of the judgment, atomic at or normal form nf, with the code type, and add

another code type var(�) for variables in the context. This way, evaluation

of static �-redexes will not substitute the wrong sort of syntactic phrase and

introduce ill-formed code. The type system is a re�nement of the original type

system in the sense that all the new dynamic typing rules are derivable in the

original system, if we ignore the new \re�nement" tags (at, nf, var), and hence

any term typable in the new type system is trivially typable in the original one.

��at E : b

��nf E : b

�; x : �1 �
nf E : �2

��nf �x:E : �1 ! �2

` 2 L(b)

��at ` : b

Sg(d) = �

��at d : �

x : � 2 �

��at x : �

��at E1 : �2 ! � ��nf E2 : �2
��at E1E2 : �

Figure 4.6: Inference rules for terms in long ��-normal form

Theorem 4.13 (Re�ned type preservation). If nPCF2 ` var(�) I E : �

and nPCF2 ` E + V , then nPCF2 ` var(�) I V : � .

Theorem 4.14 (Normal-form code types). If V is an nPCF2-value (Fig-

ure 4.2), then

(1) if nPCF2 ` var(�) I V :at(�), then V � O for some O and ��at jOj : �;

51

Types � ::= b j var (�) j nf (�) j at(�)

Typing Judgment nPCF2 ` � I E : �

(Static) same as the static rules for nPCF2 ` ��E : �

(Dynamic)

� I E :at (b)

� I E :nf (b)

�; x :var (�1) I E :nf (�2)

� I �x:E :nf (�1 ! �2)

� I E : b

� I $bE :at(b)

Sg(d) = �

� I d :at(�)

� I E :var (�)

� I E :at (�)

� I E1 :
at(�2 ! �) � I E2 :

nf (�2)

� I E1@E2 :at (�)

Figure 4.7: nPCF2-terms that generate code in long ��-normal form

(2) if nPCF2 ` var(�) I V :nf (�), then V � O for some O and ��nf jOj :

�.

For our example, we are left to check that the TDPE algorithm can be typed

with normal-form types in this calculus.

Lemma 4.15. (1) The extraction functions (Figure 4.5c) have the following

normal-form types (writing �nf for �fnf (b)=b : b 2 Bg).

I ��� : �nf !nf (�);I ��� :
at(�)! �nf :

(2) If nPCFtdpe ` � � E : ', then nPCF2 ` fj�jgnfri I fjEjgri : fj'jg
nf
ri , where

fj'jgnfri = 'fnf (b)=bd : b 2 Bg

Theorem 4.16. If nPCFtdpe ` �E : �d, then nPCF2 `I NF(E) :nf (�).

52

Corollary 4.17 (Syntactic correctness of TDPE). For nPCFtdpe ` �E : �d,

if nPCF2 ` NF(E) + V , then V � O for some O and nPCF ` ��nf jOj : �.

It appears possible to give a general treatment for re�ning the dynamic part

of the typing judgment, and establish once and for all that such typing judg-

ments come equipped with the re�ned type preservation, using Plotkin's notion

of binding signature to specify the syntax of the object language [33, 90]. How-

ever, since the object language is typed, we need to use a binding signature with

dependent types, which could be complicated. We therefore leave this general

treatment to a future work.

4.7 The general framework

In this chapter, we have seen how several properties of the language nPCF2 aid

in reasoning about code-generation programs and their native implementation

in one-level languages. Before moving on, let us identify the general conceptual

structure underlying the development.

The aim is to facilitate writing and reasoning about code-generation algo-

rithms through the support of a two-level language over a speci�c object lan-

guage. Following the code-type view, we do not insist, from the outset, that

the static language and the dynamic language should be the same. But to ac-

commodate the staging view, we collapse the two-level language, say L2 (e.g.,

nPCF2), into a corresponding one-level language, say L (e.g., nPCF), for which a

more conventional axiomatic semantics (an equational theory) can be used for

reasoning.

53

Using a high-level operational semantics of L2, we identify and prove proper-

ties of L2 that support the following two proof obligations:

Syntactic correctness of the generated code, i.e., it satis�es certain in-

tensional, syntactic constraints, speci�ed as typing rules I. We show that the

code-type view is fruitful here: to start with, the values of a code type already

represent well-typed terms in the object language (which can be modeled as

a free binding algebra [33]). By establishing the type preservation theorem

for the type system, we further have that code-typed programs generate only

well-typed terms.

Similarly, for speci�c applications that require generated code to be I-typable,

we can re�ne the code type, much like we do with an algebraic data type, by

changing the dynamic typing rules according to I, so that code-typed values cor-

respond only to I-typable terms. Subsequently, a re�ned type preservation

theorem further ensures that the code-typed programs typable in the re�ned

type system generate only I-typable terms. The original proof obligation is thus

reduced to showing that the original two-level term type-checks in the re�ned

type system.

Semantic correctness of the generated code, i.e., it satis�es a certain exten-

sional property P . We use the annotation-erasure property from the staging

view. Formulated using the equational theory of the object language L, this

property states that if a two-level program E generates a term g, then g and the

erasure jEj of E must be equivalent: L ` g = jEj. The original proof obligation

is reduced to showing that P holds for jEj.

54

Implementation eÆciency of the code-generation program, i.e., it can

be eÆciently implemented in a conventional one-level language, without actually

carrying out symbolic reduction. By establishing a native embedding of L2 into a

conventional one-level language, we equip the two-level language with an eÆcient

implementation that exploits the potentially optimized implementation of the

one-level language.

In Chapter 4, the call-by-name, e�ect-free setting of nPCF2 has made the

proofs of the aforementioned properties relatively easy. It is reasonable to ask

how applicable this technique is in other, probably more \realistic" settings. In

the next section, we o�er some initial positive answer: These properties should

be taken into account in the design of new two-level languages to facilitate simple

reasoning.

55

Chapter 5

The call-by-value two-level

language vPCF
2

In this section we design a two-level language vPCF2 with Moggi's computational

�-calculus �c [74] as its object language in such a way that the language has

the desired properties that we identi�ed in Section 4.7 (Section 5.1). These

properties are used to give a clean account of call-by-value TDPE (Section 5.3).

5.1 Design considerations

Since we aim at some form of erasure argument, the static part of the language

should have a semantics compatible with the object language. We can consider

a call-by-value (CBV) language for the static part and term construction for the

dynamic part. Can we use the standard evaluation semantics of CBV languages

for the static part as well?

56

The problematic rule is that of static function applications:

E1 + �x:E 0 E2 + V 0 E 0fV 0=xg + V

E1E2 + V
:

Even though the argument is evaluated to a value V 0, its erasure might still be an

e�ectful computation (I/O, side e�ect, etc.): This happens when the argument

E2 is of some code type, so that V 0 is of the form O. The evaluation rule then

becomes unsound with respect to its erasure in the �c-theory. For example, let

E2 , print@($int(2 + 2)), where print :(int!bool) is a dynamic constant. Then

the code generated by the program (�x:let y(x in x)E2 after erasure would

be let y ((print 4) in (print 4), which incorrectly duplicates the computation

print 4.

This problem can be solved by using the canonical technique of let-insertion

in partial evaluation [9]: When V 0 is of the form O that represents an e�ect-

ful computation, a let-binding x = O will be inserted at the enclosing residual

binding (�-abstraction or let-binding) and the variable x will be used in place

of O. But since we want vPCF2 to be natively implementable in a conventional

language, we should not change the evaluation rule for static applications. Our

solution is to introduce a new code type v� whose values correspond to syntac-

tical values, i.e., literals, variables, �-abstractions, and constants. Only terms

of such code type can appear at the argument position of an application. The

usual code type, now denoted by e� to indicate possible computational e�ects,

can be coerced into type v� with a \trivialization" operator #, which performs

let-insertion.

57

Types � ::= � j e�

� ::= b j v� j �! � (substitution-safe types)

� ::= b j �1 ! �2 (object-code types)

Contexts � ::= � j �; x : �

Raw terms E ::= ` j x j �x:E j E1E2 j �xE j if E1E2E3

j E1
E2 j $bE j �x:E j E1@E2 j d

j let x(E1 in E2 j #E

Typing Judgment vPCF2 ` ��E : �

(Static) [lit]
` 2 L(b)

�� ` : b
[var]

x : � 2 �

�� x : �
[lam]

�; x : �1 �E : �2
�� �x:E : �1 ! �2

[app]
��E1 : �2 ! � ��E2 : �2

��E1E2 : �
[�x]

��E : (�1 ! �2)! (�1 ! �2)

�� �xE : �1 ! �2

[if]
��E1 : bool ��E2 : � ��E3 : �

�� if E1E2E3 : �

[bop]
��E1 : b1 ��E2 : b2

��E1
E2 : b
(
 : b1 � b2 ! b)

(Dynamic)

[lift]
��E : b

�� $bE : vb
[cst]

Sg(d) = �

�� d : v�
[lam]

�; x : v�1 �E : e�2
�� �x:E : v(�1 ! �2)

[app]
��E1 : e(�2 ! �) ��E2 : e�2

��E1@E2 : e�
[val]

��E : v�

��E : e�

[let]
�; x : v�1 �E2 : e�2 ��E1 : e�1

�� let x(E1 in E2 : e�2
[triv]

��E : e�

��#E : v�

Figure 5.1: The type system of vPCF2

5.2 Syntax, semantics, and properties

58

The syntax and evaluation semantics of vPCF2 are shown in Figure 5.1 and 5.2.

Again, the languages are parameterized over a signature of typed constants.

Due to the di�erences between call-by-name and call-by-value languages, the

type of many important constants might di�er: For example, for the conditional

construct, we should have object-level constants if� : bool ! (unit ! �) !

(unit!�) (where unit is the standard unit type, which we omit from our language

speci�cation for the sake of brevity).

Note that the type � of a function argument must be \substitution-safe", i.e.,

it cannot take the form e�. The corresponding one-level language vPCF is an

instance of the �c-calculus: Its syntax is the same as nPCF of Figure 4.3, except

for an extra let-construct of the form let x(E1 in E2 with the standard typing

rule; its equational theory, an instance of Moggi's �c, includes �v and �v (the

value-restricted version of the usual � and � rule), and conversion rules that

commute let and other constructs.

In the evaluation semantics of vPCF2, the accumulated bindings B are ex-

plicit; furthermore, the dynamic environment � is necessary, because the gen-

eration of new names is explicit in the semantics. The only rules that involve

explicit manipulation of the bindings are those for the evaluation of dynamic

lambda abstraction and dynamic let-expression (both of which initialize a local

accumulator in the beginning, and insert the accumulated bindings at the end),

and for the trivialization operator # (which inserts a binding to the accumula-

tor).

In the following, by an abuse of notation, B also also stands for its own

context part.

59

Let us examine the desired properties.

Type Preservation: During the evaluation, the generated bindings B hold

context information of the term E. The type preservation, therefore, uses a

notion of typable binder-term-in-context, which extends the notion of typable

term-in-context. A similar notion to binder-term-in-context has been used by

Hatcli� and Danvy to formalize continuation-based partial evaluation [44].

De�nition 5.1 (Binder-term-in-context). For a binder B � (x1 : �1 =

O1; : : : ; xn :�n = On), we write ��[B]E : � if �; x1 : v�1; : : : ; xi�1 : v�i�1�Oi :

e�i for all 1 � i � n, and �; x1 : v�1; : : : ; xn : v�n � E : � .

Theorem 5.2 (Type preservation). If v�� [B]E : � and �� [B]E + [B0]V ,

then v�� [B0]V : � .

The evaluation of a complete program inserts the bindings accumulated at

the top level.

De�nition 5.3 (Observation of complete program). For a complete pro-

gram �E : e�, we write E & let� B in O if �[�]E + [B]O.

Corollary 5.4 (Type preservation for complete programs). If �E : e�

and E & O, then �O : e�.

Semantic Correctness: The de�nition of erasure is straightforward and similar

to the CBN case, and is thus omitted; the only important extra case is the erasure

of trivialization: j#Ej = jEj.

60

Lemma 5.5 (Annotation erasure). If vPCF2 ` v�� [B]E : � and vPCF2 `

�� [B]E + [B0]V , then vPCF ` �� let� jBj in jEj = let� jB0j in jV j : j� j.

Theorem 5.6 (Annotation erasure for complete programs). If vPCF2 `

�E : e� and vPCF2 ` E & O, then vPCF ` � jEj = jOj : �.

Native embedding: Without going into detail, we remark that vPCF2 has a

simple native embedding fj�jgv� into vPCF�;st, a CBV language with a term type

and a state that consists of two references cells: We use one to hold the bindings

and the other to hold a counter for generating fresh variables. As such, the

language vPCF�;st is a subset of ML; the language vPCF2 can thus be embedded

into ML, with dynamic constructs de�ned as functions.1 The correctness proof

for the embedding is by directly relating the derivation of the evaluation from

a term E, in vPCF2, and the derivation of the evaluation from its translation

fjEjgv�, in vPCF�;st. The details of the native embedding and the accompanying

correctness proof, again, are available in Appendix C.

5.3 Example: call-by-value type-directed partial evalua-

tion

The problem speci�cation of CBV TDPE is similar to the CBN TDPE, where

the semantics is given by a translation into vPCF instead of nPCF. We only

need to slightly modify the original formulation by inserting the trivialization
1The ML source code, with the following example of CBV TDPE, is available at the URL www.

brics.dk/~zheyang/programs/vPCF2.

61

operators # at appropriate places, so that the two-level program NF(E) type

checks in vPCF2. The call-by-value TDPE algorithm thus formulated is shown in

Figure 5.3. We establish its semantic correctness, with respect to vPCF-equality

this time, using a simple annotation erasure argument again; the proof is very

similar to that of Theorem 4.12. Composing with the native embedding fj�jgv�,

we have an eÆcient implementation of this formulation|which is essentially the

call-by-value TDPE algorithm that uses state-based let-insertion [97]; see also

Filinski's formal treatment [32].

Syntactic correctness: The let-insertions slightly complicate the reasoning

about which terms can be generated, since the point where the operator #

is used does not lexically relate to the insertion point, where a residual binder is

introduced. The re�nement of the type system thus should also cover the types

of the binders.

Figure 5.4 shows the re�ned type system; it is easy to prove that the code-

typed values correspond to the object-level terms typable with the rules in Fig-

ure 5.5, which specify the �c-normal forms [32]. A term in �c-normal form can

be either a normal value (nv) or a normal computation (nc). The other two

syntactic categories that we use are atomic values (av; i.e., variables, literals,

constants) and binders (bd, which must be an application of an atomic value to

a normal value). Intuitively, evaluating terms in the re�ned type system can

only introduce binding expressions whose types are of the form ebd (�).

De�nition 5.7 (Re�ned binder-term-in-context). For a binder B � (x1 :

�1 = O1; � � � ; xn : �n = On), we write � I [B]E : � if �; x1 : v
var (�1); : : : ; xi�1 :

62

vvar (�i�1) I Oi : ebd(�i) for all 1 � i � n, and �; x1 : vvar (�1); : : : ; xn :

vvar (�n) I E : � .

Theorem 5.8 (Re�ned type preservation). If vPCF2 ` vvar(�) I [B]E : �

and vPCF2 ` �� [B]E + [B0]V , then vPCF2 ` vvar (�) I [B0]V : � .

Corollary 5.9 (Re�ned type preservation for complete programs). If

I E : enc(�) and E & O, then I O : enc(�).

Theorem 5.10 (Normal-form code types). If V is an vPCF2-value (Fig-

ure 5.1), and vPCF2 ` vvar (�) I V : vX(�) where X is av, nv, bd, or nc, then

V � O for some O and ��X jOj : �.

To show that the CBV TDPE algorithm only generates term in �c-normal

form, it suÆces to show its typability with respect to the re�ned type system.

Lemma 5.11. (1) The extraction functions (Figure 5.3c) have the following

normal-form types (writing �nv for �fvnv(b)=b : b 2 Bg.)

I ��� : �nv ! vnv (�);I ��� : v
av (�)! �nv:

(2) If vPCFtdpe ` � � E : ', then vPCF2 ` fj�jgnvri I fjEjgri : fj'jg
nv
ri , where

fj'jgnvri = 'fvnv(b)=bd : b 2 Bg.

Theorem 5.12. If vPCFtdpe ` �E : �d, then vPCF2 `I NF(E) : vnv(�).

63

Values V ::= ` j �x:E j O

O ::= $b` j x j �x:O j O1@O2 j d j let x(O1 in O2

Bindings B ::= � j B; x : � = O

Judgment form vPCF2 ` �� [B]E + [B0]V

We use the following abbreviations.

E1 + V1 � � � En + Vn
E + V

�
�� [B1]E1 + [B2]V1 � � � �� [Bn]En + [Bn+1]Vn

�� [B1]E + [Bn+1]V

let� x1:�1=O1; � � � ; xn:�n=On in O

� let x1 (O1 in (� � � (let xn(On in O) � � �)

(Static)

[lit]
` + `

[lam]
�x:E + �x:E

[app]
E1 + �x:E0 E2 + V 0 E0fV 0=xg + V

E1E2 + V

[�x]
E + �x:E0 E0f�x (�x:E0)=xg + V

�xE + V
[if-tt]

E1 + tt E2 + V

if E1E2E3 + V

[if-�]
E1 + � E3 + V

if E1E2E3 + V
[
]

E1 + V1 E2 + V2
E1
E2 + V

(V1
 V2 = V)

(Dynamic)

[lift]
E + `

$bE + $b`
[var]

x + x
[cst]

d + d
[app]

E1 + O1 E2 + O2

E1@E2 + O1@O2

[lam]
�; y : �;B � [�]Efy=xg + [B0]O y =2 domB [dom�

�� [B]�x:E + [B]�y:let� B0 in O

[let]

�� [B]E1 + [B0]O1 �; y : �;B � [�]E2fy=xg + [B00]O2

y =2 domB0 [dom�

�� [B]let y(E1 in E2 + [B0]let x(O1 in (let� B00 in O2)

[#]
�� [B]E + [B0]O x =2 domB0 [dom�

�� [B]#E + [B0; x : � = O]x

Figure 5.2: The evaluation semantics of vPCF2

64

a. The language of CBV TDPE: vPCFtdpe

The syntax is the same as that of CBN TDPE, with the addition of a let-construct.

[let]
�; x : �1 �E2 : �2 ��E1 : �1

�� let x(E1 in E2 : �2

b. Standard instantiation (TDPE-erasure)

vPCFtdpe ` ��E : ' =) vPCF ` j�j� jEj : j'j

jbdj = b; j$bEj = jEj; jddj = d

c. Extraction functions ��� and ���:

We write � v for the type �fvb=b : b 2 Bg.

8>>>><
>>>>:

vPCF2 ` ���� : � v ! v�

��b = �x:x

���1!�2 = �f:�x:���2(f (���1x))

8>>>><
>>>>:

vPCF2 ` ���� : v�! � v

��b = �x:x

���1!�2 = �e:�x:���2#(e@(���1x))

d. Residualizing instantiation

vPCFtdpe ` ��E : ') vPCF2 ` fj�jgri � fjEjgri : fj'jgri

fjbdjgri = vb; fj$bEjgri = $bfjEjgri; fjd
d : �djgri = ���d

d

e. The static normalization function

NF(�E : �d) = ���fjEjgri : e�

Figure 5.3: Call-by-value type-directed partial evaluation

65

Types � ::= � j ebd (�) j enc(�)

� ::= b j vvar (�) j vnv (�) j vav (�) j �! �

� ::= b j �1 ! �2

Typing Judgment vPCF2 ` � I E : �

(Static) same as the static rules for vPCF2 ` ��E : �

(Dynamic)

� I E : vvar (�)

� I E : vav (�)

Sg(d) = �

� I d : vav (�)

� I E : b

� I $bE : vav (b)

� I E : vav (b)

� I E : vnv (b)

�; x : vvar (�1) I E : enc(�2)

� I �x:E : vnv (�1 ! �2)

� I E1 : v
av (�2 ! �) � I E2 : v

nv (�2)

� I E1@E2 : e
bd (�)

� I E : vnv (�)

� I E : enc(�)

�; x : vvar (�1) I E2 : e
nc(�2) � I E1 : e

bd (�1)

� I let x(E1 in E2 : e
nc(�2)

� I E : ebd (�)

� I #E : vvar (�)

Figure 5.4: vPCF2-terms that generate code in �c-normal form

x : � 2 �

��av x : �

Sg(d) = �

��av d : �

` 2 L(b)

��av ` : b

��av E : b

��nv E : b

�; x : �1 �
nc E : �2

��nv �x:E : �1 ! �2

��av E1 : �2 ! � ��nv E2 : �2
��bd E1E2 : �

��nv E : �

��nc E : �

�; x : �1 �
nc E2 : �2 ��bd E1 : �1

��nc let x(E1 in E2 : �2

Figure 5.5: Inference rules for terms in �c-normal form

66

Chapter 6

Related work

The introduction (Chapter 3) of Part I has already touched upon some related

work, which forms the general background of this work. Here we examine other

related work in the rich literature of two-level languages, and put the current

work in perspective.

6.1 Two-level formalisms for compiler construction

While Jones et al. [57, 58, 59] studied two-level languages mainly as meta-

languages for expressing partial evaluators and proving them correct, Nielson

and Nielson's work explored various other aspects and applications of two-level

languages, such as the following ones.

� A formalism for components of compiler backend, in particular code gener-

ation and abstract interpretation, and associated analysis algorithms [79].

These two-level languages embrace a traditional view of code objects|as

67

closed program fragments of function type; name capturing is therefore

not an issue in such a setting. By design, these two-level languages are

intended as meta-languages for combinator-based code generators, as have

been used, e.g., by Wand [104]. In contrast, in meta-languages for partial

evaluators and higher-order code generators (such as the examples studied

in the present article), it is essential to be able to manipulate open code,

i.e., code with free variables: Without this ability, basic transformations

such as unfolding (a.k.a. inlining) would rarely be applicable.

� A general framework for the type systems of two-level and multi-level lan-

guages, which, on the descriptive side [80], provides a setting for compar-

ing and relating such languages, and, on the prescriptive side [81], o�ers

guidelines for designing new such languages. Their investigation, however,

stopped short at the type systems, which are not related to any semantics.

Equipping their framework of two-level types systems with some general

form of semantics in the spirit of Part I, if possible, seems a promising step

towards practicality.

To accommodate such a wide range of applications, Nielson and Nielson de-

veloped two-level languages syntactically and used parameterized semantics. In

contrast, the framework in the present article generalizes the two-level languages

of Jones et al., where speci�c semantic properties such as annotation erasure are

essential to the applications. These two lines of studies complement each other.

Beyond the study of two-level languages, two-level formalisms abound in the

literature of semantics-based compiler construction. Morris showed how to re�ne

68

Landin's semantics [65], viewed as an interpreter, into a compiler [77]. Mosses

developed action semantics [78] as an alternative to denotational semantics. An

action semantics de�nes a compositional translation of programs into actions,

which are primitives whose semantics can be concisely de�ned. The translation

can be roughly viewed as a two-level program, the dynamic part of which is

composed of actions. Lee successfully demonstrated how this idea can be used

to construct realistic compilers [68].

6.2 Correctness of partial evaluators

As mentioned in the introduction, annotation erasure has long been used to for-

malize the correctness of partial evaluation, but existing work on proving annota-

tion erasure while modeling the actual, name-generation-based implementation,

used denotational semantics and stayed clear of operational semantics. Along

this line, Gomard used a domain-theoretical logical relation to prove annotation

erasure [37], but he treated fresh name generation informally. Moggi gave a for-

mal proof, using a functor category semantics to model name generation [75]. Fil-

inski established a similar result as a corollary of the correctness of type-directed

partial evaluation, the proof of which, in turn, used an !-admissible Kripke log-

ical relation in a domain-theoretical semantics [31, Section 5.1]. The present

work, in contrast, factors the realistic name-generation-based implementations

through native embeddings from high-level, substitution-based operational se-

mantics. In the high-level operational semantics, simple elementary reasoning

often suÆces for establishing semantics properties such as annotation erasure,

69

as demonstrated in this article.

Wand proved the correctness of Mogensen's compact partial evaluator for

pure �-calculus using a logical relation that, at the base type, amounts to an

equational formulation of annotation erasure [105, Theorem 2]. Mogensen's par-

tial evaluator encodes two-level terms as �-terms, employing higher-order ab-

stract syntax for representing bindings. In this �-calculus-based formulation,

the generation of residual code is modeled using symbolic normalization in the

�-calculus.

Palsberg [83] presented another correctness result for partial evaluation, using

a reduction semantics for the two-level �-calculus. Briey, his result states that

static reduction does not go wrong and generates a static normal form. In the

pure �-calculus, where reductions are conuent, this correctness result implies

annotation erasure.

6.3 Macros and syntactic abstractions

The code-type view of two-level languages, in its most rudimentary form, can

be traced back to the S-expressions of Lisp [51]. Since S-expressions serve as a

representation for both programs and data, they popularized Lisp as an ideal

test bed for experimenting program analysis and synthesis. One step further,

the quasiquote/unquote mechanism [5] o�ers a succinct and intuitive notation

for code synthesis, one that makes the staging information explicit.

The ability of expressing program manipulation concisely then led to intro-

ducing the mechanism of macros in Lisp, which can be informally understood

70

as the compile-time execution of two-level programs. Practice, soon, revealed

the problem of name-capturing in the generated code. A proper solution of this

problem, namely hygienic macro expansion [62, 63], gained popularity in vari-

ous Scheme dialects. Having been widely used to build language extensions of

Scheme, and even domain-speci�c languages on top of Scheme, hygienic macros

have evolved into syntactic abstractions, now part of the Scheme standard [60].

The studies of two-level languages could pave the way to a future generation

of macro languages. The most prominent issue of using macros in Scheme is

the problem of debugging. It divides into debugging the syntax of the macro-

expanded program (to make it well-formed) and debugging the semantics of

macro-expanded programs (to ensure that it runs correctly). These two tasks

are complicated by the non-intuitive control ow introduced by the staging. In

the light of two-level languages, these two tasks correspond to the syntactic and

semantic correctness of generated code. Therefore, if we use two-level languages

equipped with the properties studied in Part I, then we can address these two

tasks:

� for the syntax of macro-expanded programs, type checking in the two-level

language provides static debugging; and

� for the semantics of macro-expanded programs, we can reduce debugging

the macro (a two-level function) to debugging a normal function|its era-

sure.

To make two-level languages useful as syntactic-abstraction languages in the

style of Scheme, the key extensions seem to be multiple syntactic categories and

71

suitable concrete syntax.

6.3.1 Multi-level languages

Many possible extensions and variations of two-level languages exist. Going

beyond the two-level strati�cation, we have the natural generalization of multi-

level languages. While this generalization, by itself, accommodates few extra

practical applications,1 its combination with a run construct holds a greater po-

tential. The run construct allows immediate execution of the generated code;

therefore, code generation and code execution could happen during a single eval-

uation phase|this ability, often called run-time code generation, has a growing

number of applications in system areas [106].

Davies and Pfenning investigated multi-level languages through the Curry-

Howard correspondence with modal logics: �2, which corresponds to intuition-

istic modal logic S4, has the run construct, but it can only manipulates closed

code fragment [27]; �, which corresponds to linear temporal logic, can manip-

ulate open code fragment, but does not have the run construct [26]. Naively

combining the two languages would result in an unsound type system, due to

the execution of program fragments with unbound variables. Moggi et al.'s Ide-

alized MetaML [76] combines �2 and �, by ensuring that the argument to the

run-construct be properly closed. Calcagno et al. further studied how side e�ects

can be added to Idealized MetaML while retaining type soundness [10].

While the development of various multi-level languages has been centered
1It would be, however, interesting to see whether real-life applications like the automake suite in

Unix can be described as three-level programs.

72

on the conicts of expressiveness and type soundness, other important aspects

of multi-level languages, such as eÆcient code generation and formal reasoning,

have not been much explored. Wickline et al. formalized an eÆcient implemen-

tation of �2 in terms of an abstract machine [106]. Taha axiomatized a fragment

of Idealized MetaML, which can be used for equational reasoning [99].

For a practical multi-level language, both eÆcient code generation and for-

mal support of reasoning and debugging would be crucial. It is interesting to see

whether the work in this article can be extended to multi-level languages similar

to Idealized MetaML in expressiveness, yet equipped with an eÆcient imple-

mentation for code generation, and the erasure property (probably for restricted

fragments of the languages).

6.3.2 Applications

Two-level languages originate as a formalism of partial evaluation, while erasure

property captures the correctness of partial evaluation. Consequently, many

standard applications of partial evaluation can be modeled as two-level pro-

grams: For example, automatic compilation by specializing an interpreter (which

is known as the �rst Futamura projection [35]) can be achieved with a two-level

program|the staged interpreter. The erasure property reduces the correctness

of automatic compilation to that of the interpreter.

Some applications are explained and analyzed using the technique of partial

evaluation, but not realized through a dedicated partial evaluator. The one-

pass CPS transformer of Danvy and Filinski is one such example. In this case,

it is not a whole program, but the output of a transformation (Plotkin's CPS

73

translformation), to be binding-time analyzed. The explicit staging of two-level

languages makes them the ideal candidate for describing such algorithms. The

technique of Section 4.2, for example, can be used for constructing other one-pass

CPS transformations and proving them correct: e.g., call-by-name CPS transfor-

mation (see Appendix A) and CPS transformation of programs after strictness

analysis [20]. We have also applied this technique to stage other monadic trans-

formations (such as a state-passing-style transformation) into one-pass versions

that avoid the generation of administrative redexes.

The two-level language vPCF2 (and similarly, nPCF2) can also be used to

account for the self application of partial evaluators. Under the embedding

translation, a vPCF2-program becomes a one-level program in vPCF�;st, which is

a language with computational e�ects, and an instance of the object language

vPCF of vPCF2. With some care, it is not diÆcult to derive a self application

based on this idea and prove it correct. In fact, Part I develops in detail the

formulation and techniques for self-applying TDPE so as to produce eÆcient

generating extensions; this recasts a joint work with Bernd Grobauer[38], using

the framework developed here in Part I.

In recent years, type systems have been used to capture, in a syntactic fashion,

a wide range of language notions, such as security and mobility. It seems possible

to apply the code-type-re�nement technique (Sections 4.6 and 5.3) to guarantee

that code generated by a certain (possibly third-party) program is typable in such

a type system; this could lead to the addition of a code-generating dimension to

the area of trusted computing.

74

Chapter 7

Concluding remarks for Part I

7.1 Summary of contributions

We have pinpointed several properties of two-level languages that are useful for

reasoning about semantic and syntactic properties of code generated by two-

level programs, and for providing them with eÆcient implementations. More

speci�cally, we have made the following technical contributions.

� We have proved annotation erasure for both languages, using elementary

equational reasoning, and the proofs are simpler than those in previous

works, which use denotational formulations and logical relations directly

(i.e., which do not factor out a native embedding from a two-level lan-

guage). On the technical side, our proofs take advantage of the fact that

the substitution operations used in the operational semantics of the two-

level languages do not capture dynamic bound variables.

� We have constructed native embeddings of both languages into conventional

75

languages and proved them correct, thereby equipping the two-level seman-

tics with eÆcient, substitution-free implementations. To our knowledge,

such a formal connection between the symbolic semantics and its implemen-

tation has not been established for other two-level languages [26, 76, 79].

� We have formulated the one-pass call-by-value CPS transformation, call-

by-name TDPE, and call-by-value TDPE in these two-level languages.

Through the native embeddings, they match Danvy and Filinski's orig-

inal work. We also have formulated other one-pass CPS transformations

and one-pass transformations into monadic style, for given monads. We use

annotation erasure to prove the semantic correctness of these algorithms.

To our knowledge, Part I is the �rst to formally use annotation erasure to

prove properties of hand-written programs|as opposed to two-level pro-

grams used internally by partial evaluation. Previously, annotation erasure

has been informally used to motivate and reason about such programs.

The formulation of TDPE as translations from the special two-level lan-

guages for TDPE to conventional two-level languages also clari�es the re-

lationship between TDPE and traditional two-level formulations of partial

evaluation, which was an open problem. In practice, this formal connection

implies that it is sound to use TDPE in a conventional two-level framework

for partial evaluation, e.g., to perform higher-order lifting|one of the orig-

inal motivations of TDPE [12].

� We have proved the syntactic correctness of both call-by-name TDPE and

call-by-value TDPE|i.e., that they generate terms in long ��-normal form

76

and terms in �c-normal form, respectively|by showing type preservation

for re�ned type systems where code-typed values are such terms, and that

the corresponding TDPE algorithms are typable in the re�ned type sys-

tems.

The semantic and syntactic correctness results about TDPE match Filin-

ski's results [31, 32], which have been proved from scratch using denota-

tional methods.

7.2 Direction for future work

It would be interesting to see whether and how far our general framework (Sec-

tion 4.7) can apply to other scenarios, e.g., where the object language is a con-

current calculus, equationally speci�ed. As we have seen in Chapter 6, it seems

promising to combine our framework with the related work, and to �nd applica-

tions in it.

For the speci�c two-level languages developed in Part I, immediate future

work could include:

� to establish a general theorem for re�ned type preservation;

� to �nd and prove other general properties: For example, an adequacy theo-

rem for two-level evaluation with respect to the one-level equational theory

could complete our account of TDPE with a completeness result, which

says that if there is a normal form, TDPE will terminate and �nd it; and,

� to further explore the design space of two-level languages by adding an

77

online dimension to them (in the sense of \online partial evaluation"): For

example, we could consider adding interpreted object-level constants to

the two-level language, which are expressed through equations in the type

theory of the one-level language. The extra information makes it possible

to generate code of a higher quality.

78

Part II

Encoding types

79

Chapter 8

Introduction to Part II

Over the last two decades, the Hindley-Milner type system [47, 70] evolved into

the most popular type basis of functional languages. For example, it underlies

several major higher-order, statically typed functional programming languages,

such as ML [71] and Haskell [85]. Among other reasons, this popularity can be

attributed to (1) static typing, which serves as a static debugging facility, and (2)

implicit polymorphism (allowed by the principal typing scheme), which removes

the burden of pervasive explicit type annotations. The simplicity of the type

system, however, also restricts the class of typeable programs. For example, it

is impossible to examine the type of a value at run-time, as in a dynamically

typed language such as Scheme [60].

Functions that take type arguments and return values of possibly di�erent

types accordingly appear frequently in the abstract formulations of certain al-

gorithms. These functions form an interesting class of programs, which seem to

be beyond the capability of the Hindley-Milner type system. In Part II, we for-

80

mulate such a function as a type-indexed family of values, i.e., a family of values

indexed by one or more type argument(s). Figure 8.1 illustrates a type-indexed

family v indexed by one type argument � : v = fv�g�2F , where � ranges over a

family F of types. For a given type � , the corresponding value is v� of type T� .

Usually, the family F of types is inductively speci�ed using a set of type

constructors. Correspondingly, the F -indexed family v of values is de�ned by

case analysis on the type constructions. Since all types are implicit in a language

with Hindley-Milner type system, only value encodings of types, instead of types

themselves, can serve as the arguments of a function that represents a type-

indexed family. We can try to reduce case analysis on type constructions to case

analysis on value constructions, by encoding the type arguments using inductive

data types. This, however, does not solve the problem, because di�erent branches

of the case-expression might have di�erent types, and hence the case-expression

may not be typeable. A common strategy in such a situation is to use tagged

inputs and outputs, which are of some inductive data types as well. However,

this solution requires users to tag input values themselves, which is not only

inconvenient, and even unusable for cases when verbatim values are required,

but also \type-unsafe", in that a run-time exception might be raised due to

unmatched tags.

The problem of programming with type-indexed families of values has ex-

posed the limitations of the Hindley-Milner type system, and it has motivated a

line of research that explores more expressive type systems, notably intensional

type analysis [42] and polytypic typing [50]. This article, in contrast, investigates

what can be done within the framework of the Hindley-Milner type system. We

81

A family of types � Corresponding values v� : T�

�1

�2

a family of types � to a family of values v� of types T� .
A type-indexed family v of values is a function that maps

v�1 : T�1

v�2 : T�2

v�3 : T�3�3

Figure 8.1: A type-indexed family of values

demonstrate our methods with ML, though the techniques are equally applicable

to any other functional language based on the Hindley-Milner type system.

We �rst show that interpreting types � using corresponding values v� gives

a type-safe solution to the problem. Based on our approach to type encod-

ings, examples ranging from a printf-like formatting function1 to type-directed

partial evaluation can be programmed in ML successfully. Their type safety is

automatically ensured by the ML type system, statically.

The aforementioned type encoding is application-speci�c, or value-dependent,

i.e., the type encoding is tied to a speci�c family of values. Such a type encoding

is not suitable in modular programming practice: one should be able to pro-

gram di�erent type-indexed families that share the same family of type indices
1Initially devised by Danvy [13].

82

separately, and combine them later. It is therefore interesting to �nd a method

of type encoding that is independent of any particular type-indexed family. A

value-independent encoding of a speci�c type � can then be combined with the

representation of a type-indexed family, say v, to deliver the value v� . We present

two methods of creating such a value-independent type encoding:

1. A type-indexed family of values is speci�ed as a tuple of value construct-

ing functions, one for each possible type constructor, and the encoding of

a speci�c type recursively selects and applies components from the tuple.

This gives rise to a Martin-L�of-style encoding of inductive types. The en-

coding uses �rst-class polymorphism and higher-order polymorphism, and

can be implemented using the higher-order module language of Standard

ML of New Jersey [4].

2. A type � is encoded as the embedding and projection functions between

verbatim values, of type � , and tagged values, of a universal data type U .

To encode a speci�c value v� of a type-indexed family v, we can �rst de�ne

its equivalent value, whose type substitutes the universal data type for type

� , and then coerce it to the speci�c value of the indexed type. We show

that this type encoding is universal, i.e., the coercion function can always

be constructed from the embedding and projection functions of the indexed

types.

In Chapter 9, we formalize the notion of type-indexed values, give exam-

ples, and discuss why it is diÆcult to program with them. In Chapter 10,

we view type encodings as type interpretations, characterize requirements for

83

correct implementations of type-indexed values, and give a value-dependent ap-

proach to programming type-indexed values in ML. In Chapter 11, we present

two approaches to value-independent type encodings, and argue that the second

approach is universal and more practical. We discuss related work in Chapter 12

and conclude in Chapter 13.

84

Chapter 9

Type-indexed families of values

9.1 The notion

Type-indexed families of values (or just type-indexed families) are used in the

formulation of algorithms given in a type-indexed (or type-directed) fashion.

Depending on input type arguments, speci�c values from the same family could

have di�erent types. For brevity, we mainly consider such families indexed by

only one type argument. Multiple type arguments can be dealt with by bundling

all type indices into one type index. This solution, however, could lead to code

explosion. We will come back to a practical treatment for dealing with multiple

type arguments in Section 11.4.

A type-indexed family is usually de�ned by induction on the type � , i.e., it

is speci�ed in the form

v� = e

where expression e performs a case analysis on type � , and uses the values in-

85

dexed at the component types of type � . This notion is captured in the following

de�nitions.

De�nition 9.1 (Family of types). An (inductive) family of types is inductively

constructed in the following form:

� = c1(�11; :::; �1m1
)

j : : :

j cn(�n1; :::; �nmn
)

(9.1)

where each ci is a type constructor, representing a type construction in the un-

derlying language (ML in our case), which builds a type � using component types

�i1 through �imi
. We write F c1;��� ;cn for the family of types.

In most of our examples, the constructors ci are named as the type construc-

tions they represent, such as � (product) and! (function). It is not uncommon,

however, that the constructors ci are named according to the application: In the

string-formatting example (Section Section 10.4), intuitive formatting directives

are used as the constructor names. For these cases, one can take the equiva-

lent view that the constructors de�ne an arbitrary syntactic inductive family,

and there is a compositional mapping from this inductive family to the type it

represents; we make this mapping explicit notationally whenever necessary.

Without loss of generality, we assume that the case analysis used in the

de�nition of the type-indexed family occurs at the outer-most level of the right-

hand-side expression. This assumption accommodates the following de�nition.

De�nition 9.2 (Type-indexed family of values). A family of values indexed

by the family F c1;��� ;cn of types is speci�ed inductively in the following pattern-

86

matching form:

vc1(�11;:::;�1m1
) = e1(v�11 ; : : : ; v�1m1

)

...

vcn(�n1;:::;�nmn) = en(v�n1 ; : : : ; v�nmn
)

(9.2)

In the other words, speci�c values in the family are constructed inductively

using the expressions e1 to en. For a given type � , we write v� to represent the

(unique) term obtained by unfolding the speci�cation according to � . We require

that each expression ei be expressible in the underlying language, which is ML

in our case; this condition guarantees that each v� must be an ML-expression.

The types of each ei, consequently, might contain type variables that are bound

at the top level, i.e., the type must be rank-1 polymorphic type of the form 8~�:� .

It is the possible variation in the types of the values that makes programming

with a type-indexed family challenging and interesting. We therefore should

make precise the types of the values in a type-indexed family of values. We

observe that, in the applications that we encounter, the types of the values in

the same family stay essentially the same, modulo the occurrences of the type

index. That is, there is a type Q with a free type variable �, such that the type of

value v� is T� = Qf�=�g.1 Returning to De�nition 9.2, we can infer that the type

scheme of the expression ei should be instantiatable to T�1 � � � � � T�mi
! T� =

Qf�1=�g� � � ��Qf�mi
=�g!Qfci(�1; : : : ; �mi

)=�g. Abstracting over the types �1

through �mi
, we can write the type scheme for a type-indexed family of values

in the following form.
1The type Q could contain other free type variables, which, however, can only be used monomor-

phically.

87

De�nition 9.3 (Type scheme). A type-indexed family of values v, as given

in De�nition 9.2 (page 86), is assigned a type scheme as v : 8� 2 F c1;��� ;cn:Q, if

expression ei has (Hindley-Milner) type scheme 8�1; : : : ; �mi
:(Qf�1=�g � � � � �

Qf�mi
=�g)!Qfci(�1; � � � ; �mi

)=�g for all 1 � i � n.

9.2 Running examples

This section introduces some examples to demonstrate the challenges posed by

type-indexed families, and later to illustrate our methods for programming with

them.

9.2.1 List attening and polytypic printing

The atten program, which attens arbitrary nested lists with integer elements,

is a toy example often used to illustrate the intricacy of typing \typecases"

(case studies on types) in languages with Hindley-Milner type systems. It can

be written in a dynamically typed language like Scheme (where type testing is

allowed) as:

atten x = [x] (where x is atomic)

atten [x1; : : : ; xn] = (atten x1)� � � � � (atten xn)

where � is the list concatenation operator. To write this function in ML, a

natural solution is to use the ML data type mechanism to de�ne a \list" data

type, and use pattern matching facilities for case analysis. However, this requires

a user to tag all the values, making it somewhat inconvenient to use. Is it

possible to use verbatim values directly as the arguments? The term \verbatim

88

values" here refers to values whose types are formed using only native ML type

constructors, and are hence free of user-de�ned value constructors.

Due to restrictions of the ML type system, a verbatim value of nested list type

must be homogeneous, i.e., all members of the list must have the same type. In

the particular case that members are lists themselves, they must have the same

nesting depth. The atten function for verbatim values can therefore be speci�ed

as a family of atten functions indexed by the possible type argument � .

Example 9.4 (atten). The family F int;list of types is generated by the following

grammar.2

� = int j �1 list

The atten function can then be speci�ed as an F int;list-indexed family of function

values.

atten : 8� 2 F int;list:�! int list

attenint x = [x]

atten�1 list[x1; : : : ; xn] = (atten�1 x1)� � � � � (atten�1 xn)

This de�nition conforms to De�nition 9.2 (page 86), since we can also write:

attenint = e1

atten�1 list = e2(atten�1)

where

e1 : int! int list =�x:[x]

e2 : 8�:(�! int list)! (� list! int list)=�f:�[x1; : : : ; xn]:f x1 � � � � � f xn
2It is for the ease of presentation that we use int for the base case here, instead of a universally

quanti�ed type variable. We discuss type variable and polymorphism in Section 10.5.

89

It should be easy to check that atten has the declared type scheme (De�nition 9.3,

page 88).

Before trying to write the function atten, let us analyze how it might be

used. A �rst attempt is to make the input value (of some arbitrary homoge-

neously nested list type) the only argument. This would require that both the

expression flatten 5 and the expression flatten [6] type-check, so the function

argument should be of a polymorphic type that generalizes both type int and

type int list|this polymorphic type can only be a type variable �. But ML's

parametric polymorphism disallows inspecting the type structure of a polymor-

phic value. Consequently, it is impossible to write function atten with the value

to be attened as the only argument.

The next attempt is to use an extra argument for describing the input type,

i.e., a value that encodes the type. We expect to rewrite the aforementioned

function invocations as flatten Int 5 and flatten (List Int) [6], respectively.

One might try to encode the type using a datatype as:

datatype typeExp = Int | List of typeExp

The �xed type typeExp of the type encoding, however, constrains the result of

applying function atten to the type encoding to a �xed ML type again. A simple

reasoning like the one for the �rst attempt shows that it is still impossible to

give a typeable solution in ML.

A similar, but probably more useful example of type-indexed family, is poly-

typic printing. The functionality of polytypic printing is to convert data of

arbitrary verbatim types to a string representation suitable for output, accord-

90

ing to the type. For the type constructors, we consider integer, string, product,

and list.

Example 9.5 (polytypic printing). The family F int;str;�;list of types is gener-

ated by the following grammar.

� = int j str j �1 � �2 j �1 list

Polytypic printing is speci�ed as a F int;str;�;list-indexed family of functions.

toStr : 8� 2 F int;str;�;list:� ! str

toStrint x = intToStr x

toStrstr s = s

toStr�1��2 (x1; x2) = \(" ^ (toStr�1 x1) ^\;" ^ (toStr�2 x2) ^\)"

toStr�1 list[x1; : : : ; xn] = \[" ^ (toStr�1 x1) ^ � � � ^\;" ^ (toStr�1 xn) ^\]"

where ^ is the string concatenation function.

Having speci�ed polytypic printing, we can use it to de�ne a C printf-style

formatting function, also as a type-indexed family. The formatting function,

however, is slightly more involved, in both conceptual terms and practical terms.

In order not to distract the reader with its details at the current stage, we post-

pone its development to Section 10.4, where the basic programming technique

has already been introduced.

9.2.2 Type-directed partial evaluation

Let us apply the type encoding technique to type-directed evaluation, the run-

ning example of this dissertation. Here in Part II, in order to make the develop-

ment independent of Part I and the presentation concrete, we return to use ML

91

with exp as an informal two-level language, where names need to be generated

explicitly. To recall from the informal introduction to TDPE in Section 2.4.2,

we use an inductive type exp, which provides representation for generated code.

datatype exp = VAR of string

| LAM of string * exp

| APP of exp * exp

We write �x:E as shorthand for LAM(x, E), E1@E2 as shorthand for APP(E1;E2),

and an occurrence of �-bound variable x as shorthand for VAR(x).

Example 9.6 (Type-directed partial evaluation). The family F exp;func of

types is generated by the following grammar.

� = exp j �1 ! �2

The extraction function for type-directed partial evaluation is de�ned as two

families of type-indexed functions # (reify) and " (reect) (Figure 9.1), which re-

cursively call each other for the contravariant function argument. At �rst glance,

their de�nitions do not �t into the canonical form of a type-indexed family (Def-

inition 9.2, page 86); however, pairing the two functions at each type index puts

the de�nition into the standard form of a type-indexed family (Figure 9.2).

In the following, we write \�" as a shorthand for the type exp.

It might be helpful, for a rough intuition of the TDPE algorithm, to work out

some simple examples, such as #�!�!�!� ((�x:�y:x) (�x:�y:x)) and #(�!�)!(�!�)

(�f:�x:f(f(x))); see Section 2.4 of this dissertation. Detailed accounts of type-

directed partial evaluation can be found in the literature [15, 31, 38].

92

(reify) #exp v = v

#�1!�2 f = �x:#�2 (f ("�1 x))

(where x is a fresh variable)

(reect) "exp e = e

"�1!�2 e = �v1:"�2 (e@(#
�1 v1))

Figure 9.1: Type-directed partial evaluation

(#; ") : 8� 2 F exp;func:(� ! exp)� (exp! �)

(#; ")exp = (�v:v; �e:e)

(#; ")�1!�2 = let (#�1 ; "�1) = (#; ")�1

(#�2 ; "�2) = (#; ")�2

in (�f:�x:#�2 (f ("�1 x));

�e:�v:"�2 (e@(#
�1 v))

(where x is a fresh variable)

Figure 9.2: TDPE in the general form of type-indexed family

In his article [12], Danvy presents the Scheme code for this algorithm. He

represents the type index as a value|which is an S-expression and is similar

to a value of inductive data type in ML|thereby reducing type analysis to

case analysis. A direct transcription of that program into an ML program,

93

however, would require the input arguments to be tagged. Such a solution is not

satisfactory for the following reasons:

� Using type-directed partial evaluation, one expects to normalize a program

in the source language with minimum modi�cation. It is cumbersome for

the user to tag/untag all the program constructs. A verbatim program is

much preferable in this case.

� Unlike the function atten, the function " (reect) requires the type ar-

gument explicitly. The type index � only appears as the codomain of the

function ", whereas its domain is always of type exp. For the same input

expression, varying the type argument results in di�erent return values of

di�erent types.

Because explicit type arguments must be present, static type checking of

ML cannot guarantee the consistency of the type argument and the tags

attached to the input values cannot be guaranteed by static type checking

of ML: run-time \type error" can arise in the form of a pattern mismatch

exception. This problem is also present in the Scheme program.

94

Chapter 10

Type-indexed families as type

interpretations

Our �rst approach to programming type-indexed families v is based on inter-

preting the types � as the values v� indexed by these types.

10.1 Implementing indexed families with type encodings:

the idea

As we argued in the list-attening example (Section 9.2.1), if verbatim arguments

are required for an ML function that represents a type-indexed family, then (1)

a type encoding must be explicitly provided as an argument to the function, and

(2) this type encoding cannot have a �xed type. Now that the type encodings,

say E� for all � 2 F , themselves must have di�erent types, a reasonable choice

of these types should make them reect the types � being encoded.

95

There are in�nitely many types, therefore we should encode type construc-

tors, such that the encoding of a type is constructed inductively by using the

encoding of the type constructors. To be more precise, for each type constructor

c of arity m (i.e., it constructs a type � from types �1; : : : ; �m), its encoding Ec as

a term (in ML) is a function that transforms the type encodings E�1 ; : : : ; E�m to

the type encoding E� . In other words, the encodings of inductively constructed

types should form a particular syntactic interpretation (also called an instanti-

ation), in the underlying language. If we use hjuji instead of Eu to denote the

interpretation, we can write down the requirements for the encodings:

If � = c(�1; : : : ; �m)

then hj� ji � hjcji(hj�1ji; : : : ; hj�mji):

This can be understood as requiring the interpretations of type and type con-

structors to form a homomorphism, i.e.,

hjc(�1; : : : ; �m)ji � hjcji(hj�1ji; : : : ; hj�mji) (10.1)

This way, for the encoding of a whole family of types, it suÆces to give the

encoding of the type constructors, since the encoding of every type is uniquely

determined.

De�nition 10.1 (Encoding a family of types). The encoding of a family of

types F c1;��� ;cn (as given in De�nition 9.1 (page 86)) is speci�ed as the encoding

of the constructors c1 through cn as ML-terms hjc1ji through hjcnji, such that the

encoding hj� ji of every type, induced according to Equation (10.1), is typable.

With such an encoding hj � ji of a type family F , a F -index family v of values

96

can then be represented as a function fv that takes the type encoding as an

argument.

De�nition 10.2 (Implementation of type-indexed families). Let F be a

family of types, v be an F -indexed family of values, and hj � ji be an encoding of F

(given on the constructors). A ML function fv implements a type-indexed value

v through the encoding hj � ji, if for all � 2 F , the following equation holds.

v� = fvhj� ji (10.2)

10.2 The ad-hoc approach

The task of �nding the type encodings now boils down to �nding suitable inter-

pretations for the type constructors ci. The close similarities between the general

form of type-indexed values in the set of equations given by (9.2) on page 87 and

the interpretation of type constructors in Equation (10.1) hints at an immediate

solution to programming with type-indexed families: We can interpret a type �

as the corresponding value v� , which is achieved by interpreting the type con-

struction ci using the value construction ei in the set of equations given by (9.2)

on page 87.

Proposition 10.3 (Ad-hoc encoding). Let F c1;:::;cn be a family of types and v

an F c1;:::;cn-indexed family of values, with associated data as presented in De�ni-

tion 9.2 (page 86), i.e., type constructors ci and corresponding data constructions

ei. The following equation de�nes a type encoding for F .

hjciji , ei

97

It induces the following encoding of types:

hj� ji � v�

Proof. That hj� ji � v� follows immediately from Equation (9.2) on page 87 and

Equation (10.1) on page 96. The typability of vi implies the typability of hj� ji.

This type encoding is ad hoc, in the sense that it is speci�c to the F -indexed

family v; the implementation of family v, then, is immediate.

Theorem 10.4. Let F c1;:::;cn be a family of types and v a F c1;:::;cn-indexed family

of values, with associated data as presented in De�nition 9.2 (page 86). The

identity function fv , �x:x implements v through the ad-hoc encoding hjciji , ei.

10.3 Examples

Let us demonstrate the ad-hoc type-encoding method with the running examples.

Example 10.5 (atten). The de�nition of the function atten (Example 9.4,

page 89) gives rise to the following interpretations of type constructions:

hj:ji : 8� 2 F int;list:� ! int list

hjintji = �x:[x]

hj� listji = �[x1; : : : ; xn]:hj�jix1@ � � �@hj�jixn

A direct coding of these interpretations of type construction as ML functions

leads to the program in Figure 10.1.

Since we choose the ML function names to be the type constructors they

interpret, a type argument, e.g., List (List Int), already has the value of

hj(int list) listji = atten(int list) list;

98

val Int: int -> int list (� hjintji �)
= fn x => [x]

fun List (T:'a -> int list): ('a list -> int list) (� hjlistji �)
= fn l => foldr (op @) [] (map T l)

fun flatten T = T (� fatten , �x:x �)

Figure 10.1: atten in ML: ad-hoc encoding

and function flatten can be de�ned just as the identity function. As desired, the

function takes verbatim values as input. For example, the expression

flatten (List (List Int)) [[1, 2], [], [3], [4, 5]]

evaluates to [1,2,3,4,5].

This example exhibits the basic pattern of the ad-hoc approach to program-

ming with a type-indexed family: for each type constructor, we bind to its

corresponding ML name the expression ei through a value or function de�ni-

tion. Their associated types, as given in De�nition 9.3 (page 88), are rank-1 and

therefore accepted by the ML type system.1

The same method works for the examples of polytypic printing and type-

directed partial evaluation.

Example 10.6 (polytypic printing). Figure 10.2 shows the ML implemen-

tation of polytypic printing, as formulated in Example 9.5 (page 91), using the

type encoding hj� ji , toStr� .

As an example, evaluating the expression

toStr (List (Pair Str (List Str)))

1The type annotations are not necessary, since the ML type system infers the most general type

scheme anyway; we include them for the sake of clarity.

99

type 'a ts = 'a -> string (� Type scheme: � ! str �)
val Int: int ts (� hjintji �)

= fn n => Int.toString n

fun Str: string ts (� hjstrji �)
= fn s => s

fun Pair (toStr1: 'a ts) (toStr2: 'b ts) (� hj� ji �)
: ('a * 'b) ts

= fn (x1: 'a, x2: 'b) =>

"(" ^ (toStr1 x1) ^ ", " ^ (toStr2 x2) ^ ")"

fun List (toStr: 'a ts): ('a list ts) (� hjlistji �)
= fn (l: 'a list) =>

let fun mkTail [] = "]"

| mkTail [e] = (toStr e) ^ "]"

| mkTail (e :: el)

= (toStr e) ^ ", " ^ (mkTail el)

in "[" ^ (mkTail l)

end

fun toStr T = T (� ftoStr , �x:x �)

Figure 10.2: Polytypic printing in ML: ad hoc encoding

[("N", ["Prince", "8", "14"]),

("P", ["Newport", "Christopher", "9"])]

yields "[(N, [Prince, 8, 14]), (P, [Newport, Christopher, 9])]".

Example 10.7 (type-directed partial evaluation). Figure 10.3 shows the

ML implementation of type-directed partial evaluation, as described in Exam-

ple 9.6 (page 92) and formulated as a type-indexed family of values in Figure 9.2

(page 93), using the type encoding hj� ji = (#; ")� . The structure Gensym provides

a function new for generating fresh names using a counter, and a function init

to initialize this counter.

As an example, the expression

reify_init (a' -> a' -> a' -> a')

100

datatype exp = VAR of string (� exp �)
| LAM of string * exp

| APP of exp * exp

type 'a rr = ('a -> exp) * (exp -> 'a)

(� Type scheme: (� ! exp)� (exp! �) �)

infixr 5 -->

val a': exp rr (� hjexpji �)
= (fn v => v, fn e => e)

fun (T1 as (reif1, refl1): 'a rr) --> (� hj! ji �)
(T2 as (reif2, refl2): 'b rr): ('a -> 'b) rr

= (fn (f: 'a -> 'b) =>

let val x = Gensym.new()

in LAM(x, reif2 (f (refl1 (VAR x))))

end,

fn (e: exp) =>

fn (v: 'a) => refl2 (APP(e, reif1 v)))

fun reify (T as (reif_T, refl_T)) = reif_T (� f# �)
fun reify_init T v = (Gensym.init(); reify T v)

(� reify, with name counter initialized �)

Figure 10.3: Type-directed partial evaluation in ML

((fn x => fn y => x) (fn x => fn y => x))

evaluates to LAM("x1", LAM("x2", LAM("x3", VAR "x2"))), which represents the �-

expression �x1:�x2:�x3:x2.

10.4 Printf-style String formatting

We can apply the ad hoc type encoding method to program a type-safe format-

ting function in the style of the C printf function. In fact, this is an example

where it is more natural not to view the indices as types directly, but to view

them as syntactic phrases that are translated to the types that they represent

under a compositional mapping, say R.

101

We consider the formatting speci�cation as a sequence of �eld speci�ers. The

grammar of formatting speci�cation is given below:

Spec ::= NIL j Field :: Spec

Field ::= LIT s j % �

where s is a string literal and % � speci�es an input �eld argument of type � .

We want to write a function format such that, for instance, the expression

format (% Str ++ LIT " is " ++ % Int ++ LIT "-years old.")

"Mickey" 80

evaluates to the string "Mickey is 80-years old.".

Function format is indexed by a formatting speci�cation fs. A specialized

formatfs has type �1 ! �2 : : : ! �n ! str, where �i's are from all the �eld

speci�ers \% �i" in the speci�cation fs in the order of their appearance. We

make use of an auxiliary function format0, which introduces one extra argument

b as a string bu�er; the function appends its output to the end of this input

string bu�er to build the output string. The functions format and format0 can

be formulated as follows.

Example 10.8. The syntactic family F fs of formatting speci�cations is given by

the following grammar (in concrete syntax).

fs ::= NIL j LIT s :: fs 0 j % � :: fs 0 (� 2 F toStr)

Here, the 0-ary constructor NIL and the binary constructor :: are used for build-

ing sequences, while the unary constructors LIT s and % � are used for building

individual �eld speci�ers.

102

A formatting speci�cation fs determines the type of formatfs , through the com-

positional translation R, de�ned as follows:

R(NIL) = str

R(LIT s :: fs 0) = R(fs 0)

R(% � :: fs 0) = � !R(fs 0)

We specify format0 as an F fs-indexed family via R, and use it to de�ne format.

format0 : 8fs 2 F fs :str !R(fs)

format0
NIL

b = b

format0
LIT s::fs0b = format0fs0(b^s)

format0% � ::fs0b = �(x : �):format0fs0(b^toStr�x)

format : 8fs 2 F fs :R(fs)

formatfs = format0fs(\ ")

where the type-indexed family toStr is from Example 9.5 (page 91).

Following the ad-hoc method, we should interpreter each individual �eld

speci�cation f (LIT s or % �), which is a constructor for formatting speci�cations.

The function hjf ji should be a transformer from format0fs to format0f ::fs , i.e.,

format0f ::fs = hjf ji format0fs

We obtain the interpretation of individual �eld speci�ers by abstracting over

format0fs :

hjLIT sji = �format0fs :�b:format0fs(b^s)

hj% � ji = �format0fs :�b:�(x : �):format0fs(b^toStr�x)

103

On the practical side, it is undesirable to use the �eld speci�cations as nested pre-

�x constructors that build formatting speci�cations from NIL. For this purpose,

we de�ne a function ++ to compose such transformers (similar to the function

append for lists), and we can de�ne the function format to take such speci�ca-

tion transformer, instead of a speci�cation, and to supply the interpretation of

the empty �eld speci�cation hjNILji = format0
NIL
, along with an empty string as

the initial bu�er. Putting everything together, we have the ML implementation

of the string formatter in Figure 10.4; it uses the implementation of toStr in

Figure 10.2 (page 100).

infix 5 ++

type 'a fmt = string -> 'a

(� Type scheme (of format0): str ! R(fs) �)

fun LIT s: ('a fmt -> 'a fmt) (� hj LIT sji �)
= fn (p: 'a fmt) => fn b => p (b ^ s)

fun % (toStr_t: 'c ts): ('a fmt -> ('c -> 'a) fmt) (� hj % � ji �)
= fn (p: 'a fmt) => fn b =>

fn (x: 'c) => p (b ^ toStr_t x)

fun f1 ++ f2 = f1 o f2

val NIL: (string fmt) (� hjNILji �)
= fn b => b

fun format (ftrans: string fmt -> 'a fmt)

= ftrans NIL ""

Figure 10.4: printf-style formatting in ML: ad-hoc encoding

Unlike the C printf function, the above ML implementation is type-safe, in

that compilation would reject mismatched �eld speci�cation and input argument.

For example, the type of the expression

format (% Int ++ LIT ": " ++ % Str)

is int! str! str, which ensures that exactly two arguments, one of type int, the

104

other of type str, can be supplied.

The printf example also showcases the power of a higher-order functional

language with the possibility of building constructing �eld speci�ers for com-

pound types, through toStr. The following expression, following Example 10.6

(page 99), illustrates this exibility.

format (LIT "MTA/NJT: " ++ %(List (Pair Str (List Str))))

[("N", ["Prince", "8", "14"]),

("P", ["Newport", "Christopher", "9"])]

It should be clear that for any given type � , we can have di�erent functions

to translate a value of type � to its string representation. By de�ning more

complicated �eld speci�ers, which, e.g., allow variations in paddings, delimiters

for the layout of compound types, and by re�ning the output type from string

to more sophisticated formatting objects, we can construct sophisticated pretty-

printers like John Hughes's [49], through the convenient printf-style interface.

10.5 Variations

The ad-hoc method easily adapts to several variations of type-indexed families.

Multiple translations of indices In the examples up until now, the type

schemes either uses the indices directly, or a single translation of them (such asR

in the string-formatting example). We shall see that having multiple translations

of the indices occurring in the type scheme does not add to the complexity.

105

Other type constructions The type constructions used in the earlier exam-

ples include product, function, and list. One might wonder to what other type

constructions the ad-hoc method is applicable. In fact, since we left unspeci-

�ed the type constructions in our formulation of type-indexed families and their

implementations, type-indexed families with any type constructions can be im-

plemented using the ad-hoc method, as long as they can be cast into the form of

De�nition 9.2 (page 86) (where ei's could be rank-1 polymorphic); we shall see

an example that uses both the reference type and the continuation type (Exam-

ple 10.9). Type constructions that bind type variables, however, do not conform

to our formulation of type-indexed families.

� Polymorphic types: suppose that the universal quanti�er 8� could be used

as a constructor. It should construct from a type � parameterized over a free

type variable � (or, equivalently, a type constructor T such that � = T (�)),

the type 8�:� . A possible type for the corresponding value construction e8�:

could be (8T : F ! F:(8�:QfT (�)=�g ! Qf8�:T (�)=�g)). Unfortunately,

the polymorphism of this type is not rank-1, and it is higher-order; therefore

universal quali�cation can not be used as a type construction.

This analysis, however, does not rule out using a type variable as a base

type (0-ary type constructor), universally quanti�ed over at the top level

of the type expression. In fact, in the atten example, replacing the base

type int by a type variable would cause no problem.

Instead of performing analysis over the universal quanti�er, one might want

to parameterize an index over another index or a constructor. There is no

106

problem with abstracting over an index, since the corresponding encod-

ing is used only monomorphically is building other type encodings. For

an example, we can code ��:� � � list as fn t => Pair t (List Int) for the

polytypic printing example (Example 10.6 (page 99)). In contrast, to ab-

stract over a constructor is generally not permissible, since we want to use

the encoding of type constructors polymorphically in building type encod-

ings. Again taking the polytypic printing example, coding �c:c((c(int)) list)

as fn x => x (List (x Int)) results in a type error.

� Recursive types: as we have seen in the atten example, we can use a

recursive type, such as list, in the type construction; we can as well replace

list with a user-de�ned recursive type, such as Tree. On the other hand, by

the same reason we cannot perform type analysis over a universal quanti�er,

we cannot perform type analysis over a recursive type.

Let us demonstrate some of these possible variations through another exam-

ple: ironing (or, indirection elimination), which eliminates indirections of either

reference type or double-continuation type. It showcases not only some extra

type constructions, but also the use of two separate translations from the in-

dices, one for the domain type, and one for the codomain type.

Example 10.9 (iron). The family F iron of indexes is generated by the following

grammar.

� = int j �1 list j �1 � �2 j �1 ref j ::(�1)

The indices are almost the domain types, except for the constructor ::, which

is mapped into a double-continuation construction. The indices are mapped into

107

the domain types and codomain types through the compositional translations RI

and RO, respectively.

RI(int) = int

RI(�1 list) = RI(�1) list

RI(�1 � �2) = RI(�1)�RI(�2)

RI(�1 ref) = RI(�1) ref

RI(::(�1)) = RI(�1) cont cont

RO(int) = int

RO(�1 list) = RO(�1) list

RO(�1 � �2) = RO(�1)�RO(�2)

RO(�1 ref) = RO(�1)

RO(::(�1)) = RO(�1)

The ironing function is de�ned as an indexed family of functions iron in Fig-

ure 10.5. The double-continuation construction probably is not very useful by

itself; but in conjunction with the reference type, it can be used as the type for

implementing coroutine-style iterators. That is, the type � iter , � cont cont ref

can be used to implement an iterator over an inductive data structure such as

trees, which enumerates elements of type � upon \ironing". We leave the detail

of implementing such iterators to the Example 10.10.

The ML implementation is shown in Figure 10.6. As an example, the program

let val v1 = ref [3,4]

and v2 = ref [5,6]

in

108

iron : 8� 2 F iron:RI(�)!RO(�)

ironintx = x

iron�1 list[x1; : : : ; xn] = [iron�1x1; : : : ; iron�1xn]

iron�1��2(x1; x2) = (iron�1x1; iron�2x2)

iron�1 refx = iron�1(!x)

iron::(�1)c = iron�1(callcc(�k:throw c k))

Figure 10.5: The indexed family of ironing functions

val Int: int -> int (� hjintji �)
= fn x => x

fun List (T: 'a -> 'b): ('a list -> 'b list) (� hjlistji �)
= fn l => map T l

fun Pair (T1: 'a1 -> 'b1) (T2: 'a2 -> 'b2) (� hj� ji �)
: ('a1 * 'a2) -> ('b1 * 'b2)

= fn (x1, x2) => (T1 x1, T2 x2)

fun Ref (T: 'a -> 'b): ('a ref -> 'b) (� hjrefji �)
= fn cell => T (! cell)

fun DblNeg (T: 'a -> 'b): ('a cont cont -> 'b) (� hj::ji �)
= fn (c: 'a cont cont) =>

T (callcc (fn (k: 'a cont) => throw c k))

fun Iter (T: 'a -> 'b): ('a cont cont ref -> 'b) (� hjiterji �)
= Ref (DblNeg T)

fun iron T = T (� firon �)

Figure 10.6: iron in ML: ad-hoc encoding

iron (List (Ref (List Int))) [v1, v2, v1, v2]

end

evaluates to [[3, 4], [5, 6], [3, 4], [5, 6]].

109

Example 10.10 (Coroutine-style iterators). A double continuation type, say

� cont cont, can be understood as the type of one-shoot � -typed value producers.

To invoke such a producer, i.e., to retrieve the � -typed value, the caller should

`throw' to the producer, which is a continuation, its own current continuation,

which is of type � cont. This is realized through the de�nition of iron::(�) in

Figure 10.5.

If we further make the double continuation type mutable through a reference

cell, i.e., employ the type � cont cont ref, we can implement a producer thread

by changing the stored continuation when suspending the thread. The structure

Iterator Figure 10.7 realizes this idea. In particular, the function makeIterator

convert a \producer" function to an iterator of the mutable double continuation

type. This producer function takes as arguments a function to yield the control

of the thread and \produce" an answer. The function makeIterator takes also

a second argument to provide a default value, which the iterator should produce

after the return from the \producer" function.

Figure 10.8 (page 112) presents an example of using structure Iterator; it

turns a tree to such an iterator. As an example, the program

val iter1

= tree2Iter (ND(ND(ND(LF 1, LF 2), LF 3), ND (LF 4, ND(LF 5, LF 6)))) ~1

val iter2 = tree2Iter (ND(ND(LF 5, LF 4), ND(LF 3, ND(LF 2, LF 1)))) ~2

val pI = [iter1, iter2]

val zipped

= iron (List (List (Iron.Iter Int))) [pI, pI, pI, pI, pI, pI, pI, pI]

zips together the traversals of the two trees to produce the following result.

110

structure Iterator =

struct

local open SMLofNJ.Cont in

type 'a iterator = 'a cont cont ref

fun makeIterator (producer: ('a -> unit) -> unit) (dflt: 'a)

: 'a cont cont ref

= let val stream = ref (dblNeg dflt)

val _ =

callcc(fn back: unit cont =>

let val consumer_k_ref =

ref (callcc(fn init_c =>

(stream := init_c; throw back ())))

in

(producer (fn v =>

(consumer_k_ref :=

callcc(fn (c: 'a cont cont) =>

((stream := c);

(throw (!consumer_k_ref) v))))));

(stream := dblNeg dflt);

(throw (!consumer_k_ref) dflt)

end)

in stream

end

end

end

Figure 10.7: Iterators from mutable double continuation

[[1,5],[2,4],[3,3],[4,2],[5,1],[6,~2],[~1,~2],[~1,~2]]

10.6 Assessment of the approach

The ad hoc encoding of a type used in the previous sections is exactly the

specialized value in the indexed family at the particular type index. There are

several advantages to this approach:

� Type safety is automatically ensured by the ML type system: case-analysis

on types, though it appears in the formulation, does not really occur during

111

structure BTIterator =

struct

structure I = Iterator

datatype 'a BTree = ND of 'a BTree * 'a BTree | LF of 'a

fun tree2Iterator (T: 'a BTree) (dflt: 'a): 'a I.iterator

= I.makeIterator

(fn (produce: 'a -> unit) =>

let fun traverse (ND(ltree, rtree))

= ((traverse ltree); (traverse rtree))

| traverse (LF(n))

= produce n

in traverse T

end)

dflt

end

Figure 10.8: Iterators for binary trees

program execution. For a type-indexed family of values v : 8� 2 F:Q, the

encoding hj� ji = v� of a particular type index � already has the required type

T� = Qf�=�g. Often, the value v� is a function that takes some argument

whose type depends on type � . Since the speci�c type of this argument is

manifested in the type T� , input arguments of illegal types are rejected.

� In some other approaches that do not make the type argument explicit

(e.g., using classes of an object-oriented language), one would need to per-

form case-analysis on tagged values (including dynamic dispatching), which

would require the type index to appear at the input position. In our ap-

proach, however, the type index � could appear at any arbitrary position

in type T� ; this has been used, for example, in the implementation of the

" functions for type-directed partial evaluation.

112

But this simple solution has a major drawback: the loss of composability. One

should be able to decompose the task of writing a large type-indexed function

into writing several smaller type-indexed functions and then combining them.

This would require that the encoding of a type be sharable by these di�erent

functions, each of which uses the encoding to obtain the speci�c value indexed

at this type, but from di�erent indexed families. However, the above simple

solution of interpreting every type directly as the speci�c value would result

in each type-indexed function having a di�erent set of interpretations of type

constructors, thereby disallowing sharing of the type encodings.

Consider the following toy example: on the family F int;list of types, we de�ne

yet another type-indexed function super reverse, which recursively reverses a list

at each level.

Example 10.11 (Super reverse). Let us consider the type-indexed family of

functions super reverse, de�ned as follows.

super reverse : 8� 2 F int;list:�! �

super reverseint = �x:x

super reverse�1 list = �[x1; : : : ; xn]:[super reverse�1xn; : : : ; super reverse�1x1]

By interpreting the types, we obtain the ML implementation in Figure 10.9.

fun Int x = x (� hjintji �)
fun List T = rev o (map T) (� hjlistji �)
fun super_reverse T = T (� fsuper reverse �)

Figure 10.9: super reverse in ML: ad-hoc encoding

113

Each of function atten and function super reverse can be used separately,

but we cannot write an expression such as

fn T => (flatten T) o (super_reverse T)

to use them in combination, i.e., to reverse a list recursively and then atten

the result, because the functions Int and List are de�ned di�erently in the two

programs. (Notice that the e�ect of composing function super reverse and func-

tion atten amounts to reversing the attened form of the original list, i.e.,

atten Æ super reverse = super reverse Æ atten.)

This problem can be evaded in a non-modular fashion, if we know in advance

all possible families v; v0 : : : of values that are indexed by the same family of

(type) indices: we can simply tuple all the values together for the type inter-

pretation. Every function fvi , then, is de�ned to project out the appropriate

component from the type interpretation. Indeed, our previous program of type-

directed partial evaluation (Figure 10.3, page 101) illustrates such a tupling.

114

Chapter 11

Value-Independent Type

Encoding

In this chapter, we develop two approaches to encoding types independently of

the type-indexed values de�ned on them, i.e., we should be able to de�ne the

encodings hj� ji of a family F of types � , so that given any value v indexed by this

family of types, a function fv that satis�es Equation (10.2) on page 97 can be

constructed. In contrast to the solution in the previous section, which interprets

types � using values v� directly and is value-dependent, a value-independent type

encoding enables di�erent type-indexed values v; v0; : : : to share a family of type

encodings, resulting in more modular programs using type-indexed values. We

present the following two approaches to value-independent type encoding:

� as an abstraction of the formulation of a type-indexed value, and

� as a universal interpretation of types as tuples of embedding and projection

115

functions between verbatim values and tagged values.

11.1 Abstracting type encodings

If the type encoding is value-independent, the function fv representing type-

indexed value v should carry the information of the value constructions ei in a

speci�cation in the form of the set of equations given in (9.2) on page 87. This

naturally leads to the following approach to type encoding: a type-indexed value

v is characterized as an n-ary tuple ~e = (e1; : : : ; en) of the value constructions,

and the value-independent type interpretation hj� ji maps this speci�cation to the

speci�c value v� .

hj� ji~e = v� (11.1)

With Equation (10.1) on page 96, we require the encoding of type constructors

ci to satisfy

hjciji(hj�1ji; : : : ; hj�mji)~e

= hjci(�1; : : : ; �m)ji~e (by (10.1))

= vci(�1;:::;�m) (by (11.1))

= ei(v�1 ; : : : ; v�m) (by (9.2))

= ei(hj�1ji~e; : : : ; hj�mji~e) (by (11.1))

By this derivation, we have

Theorem 11.1. The value-independent encodings of type constructors

hjciji = �(x1; : : : ; xm):�~e:ei(x1~e; : : : ; xm~e)

and the function fv(x) = x(e1; : : : ; en) implement the corresponding type-indexed

value v.

116

This approach seems to be readily usable as the basis of programming type-

indexed values in ML. However, the restriction of ML type system that universal

quanti�ers on type variables must appear at the top level again makes this ap-

proach impossible. For example, let us try to encode types in the family F exp;func,

and use them to program type-directed partial evaluation in ML (Figure 11.1).

val Base = fn (base_v, func_v) => base_v

fun T1 --> T2 = fn (spec_v as (base_v, func_v))

=> func_v (T1 spec_v) (T2 spec_v)

fun reify T =

let val (reify_T, _) =

T ((fn v => v, fn e => e), (* base_v *)

(* func_v *)

fn (reify_T1, reflect_T1) =>

fn (reify_T2, reflect_T2) =>

... (* (reify_T, reflect_T) *)

)

in reify_T end

Figure 11.1: An unsuccessful encoding of F exp;func and TDPE

The de�nition of reify and reflect at higher types is as before and omitted

here for brevity. This program will not work, because the �-bound variable

spec v can only be used monomorphically in the function body. This forces all

uses of func v to have the same monotype; as an example, the type encoding

Base --> (Base --> Base) causes a type error, because the two uses of variable

func v (one being applied, the other being passed to lower type interpretations)

have di�erent monotypes.

Indeed, the type of the argument of reify, a type encoding hj� ji constructed

117

using Base and -->, is somewhat involved:

hj� ji : 8obj : �! �:

8base type : �:

(base type obj � (� base v �)

(8� : �; � : �:(� obj)! (� obj)! ((�! �) obj)))! (� func v �)

� obj

Here, the type constructor obj constructs the type T� of the speci�c value v�

from a type index � , and the type base type gives the base type index. What

we need here is �rst-class polymorphism, which allows nested quanti�ed types,

as used in the type of argument func v. Substantial work has been done in this

direction, such as allowing selective annotations of �-bound variables with poly-

morphic types [82] or packaging of these variables using polymorphic datatype

components [53]. Moreover, higher-order polymorphism [52] is needed to allow

parameterizing over a type constructor, e.g., the type constructor obj.

In fact, such type encodings are similar to a Martin-L�of-style encoding of

inductive types using the corresponding elimination rules in System F!, which

does support both �rst-class polymorphism and higher-order polymorphism in

an explicit form [36, 92].

11.2 Explicit �rst-class and higher-order polymorphism

in SML/NJ

The module system of Standard ML provides an explicit form of �rst-class poly-

morphism and higher-order polymorphism. Quantifying over a type or a type

118

constructor is done by specifying the type or type constructor in a signature, and

parameterizing functors with this signature. To recast the higher-order functions

in Figure 11.1 (page 117) into functors, we also need to use higher-order functors

which allows functors to have functor arguments or results. Such higher-order

modules are supported by Standard ML of New Jersey [4], which extends Stan-

dard ML with higher-order functors [102]. Figures 11.2 and 11.3 (page 121) gives

a program for type-directed partial evaluation using higher-order functors.

Here, a Type encoding is a functor from a structure with signature IndValue,

which is a speci�cation of type-indexed values, to a structure with signature

SpecValue, which denotes a value of the speci�c type. The type my type gives the

particular type index � , and the type base type and the type constructor obj are

as described in Section 11.1.

It is however cumbersome and time-consuming to use such functor-based en-

codings. The following example illustrates how to partially evaluate (residualize)

the function �x:x with type (base! base)! (base! base).

local structure T = Arrow(Arrow(Base)(Base))

(Arrow(Base)(Base))

structure v_T = T.F(reify_reflect)

in

val result = #1(v_T.v) (fn x => x)

end

Furthermore, since ML functions cannot take functors as arguments, we must

de�ne functors to use such functor-encoded type arguments. Therefore, even

though this approach is conceptually simple and gives clean, type-safe and value-

119

signature SpecValue =

sig

type 'a obj

type my_type

val v: my_type obj

end

signature IndValue =

sig

type 'a obj

type base_type

val Base : base_type obj

val Arrow: 'a obj -> 'b obj -> ('a -> 'b) obj

end

signature Type =

sig

functor F(Obj: IndValue): SpecValue

where type 'a obj = 'a Obj.obj

end

structure Base: Type =

struct

functor F(Obj: IndValue): SpecValue =

struct

type 'a obj = 'a Obj.obj

type my_type = Obj.base_type

val v = Obj.Base

end

end

functor Arrow(T1: Type) (T2: Type): Type =

struct

functor F(Obj: IndValue): SpecValue =

struct

type 'a obj = 'a Obj.obj

structure v_T1 = T1.F(Obj)

structure v_T2 = T2.F(Obj)

type my_type = v_T1.my_type -> v_T2.my_type

val v = Obj.Arrow v_T1.v v_T2.v

end

end

Figure 11.2: Encoding F exp;func using higher-order functors

120

structure TDPE: IndValue =

struct

type 'a obj = ('a -> exp) * (exp -> 'a)

type base_type = exp

val Base = (fn v => v, fn e => e)

fun Arrow (reif1, refl1) (reif2, refl2)

= (fn (f: 'a -> 'b) =>

let val x = Gensym.new()

in LAM(x, reif2 (f (refl1 (VAR x))))

end,

fn (e: exp) =>

fn (v: 'a) => refl2 (APP(e, reif1 v)))

end

Figure 11.3: Type-directed partial evluation using the functor-based encoding

independent type encodings, the syntactic overhead in using the type system

makes the approach somewhat tedious and diÆcult to be used for programming

in ML.

11.3 Embedding/projection functions as type interpreta-

tion

The alternative approach to value-independent type encodings is (maybe some-

what surprisingly) based on programming with tagged values of user-de�ned

universal datatypes. Before describing this approach, let us look at how tagged

values are often used to program functions with type arguments.

First of all, for a type-indexed value v whose type index � appears at the

position of input arguments, the tags attached to the input arguments are enough

to guide the computation. For examples, the tagged-value version of functions

flatten and super reverse is as follows:

121

datatype tagIntList =

INT of int

| LST of tagIntList list

fun flattenTg (INT x)

= [x]

| flattenTg (LST l)

= foldr (op @) [] (map (fn x => flattenTg x) l)

fun super_reverseTg (INT v)

= INT v

| super_reverseTg (LST l)

= LST (rev (map super_reverseTg l))

In more general cases, if the type index � can appear at any position of the type

T� of speci�c values v� , then a description of type � using a datatype must be

provided as a function argument.

However, this approach su�ers from several drawbacks:

1. Verbatim values cannot be directly used.

2. If an explicit encoding of a type � is provided, one cannot ensure at compile

time its consistency with other input arguments whose types depend on

type � ; in other words, run-time `type-errors' can happen due to unmatched

tags.

Can we avoid these problems while still using universal datatypes? To solve

the �rst problem, we want the program to automatically tag a verbatim value

according to the type argument. To solve the second problem, if all tagged values

122

are generated from verbatim values under the guidance of type arguments, then

they are guaranteed to conform to the type encoding, and run-time `type-errors'

can be avoided.

The automatic tagging process that embeds values of various types into values

of a universal datatype is called an embedding function. Its inverse process,

which removes tags and returns values of various types, is called a projection

function. Interestingly, these functions are type-indexed themselves, thus they

can be programmed using the ad-hoc method described in Chapter 10. Using

the embedding function and projection function of a type � as its encoding gives

another value-independent type encoding method for type-indexed values.

For each family T of types � inductively de�ned in the form of Equation (9.1)

on page 86, we �rst de�ne a datatype U of tagged values, as well as a datatype

typeExpU (type expression) to represent the type structure. Next, we use the

following interpretation as the type encoding:

hj� ji = hemb� ; proj � ; tE � i

emb� : � ! U (embedding function)

proj � : U ! � (projection function)

tE � : typeExp (type expression)

(11.2)

Finally, we use the embedding and projection functions as basic coercions to

convert a value based on a universal datatype to the type of the speci�c value v� .

We continue to illustrate the approach in Section 11.3.1, and then formally

present the general approach in Section 11.3.2.

123

11.3.1 Examples

Taking the family F int;list of types, we can encode the type constructors as:

datatype typeExpL = tInt | tLst of typeExpL

val Int = (fn x => INT x, fn (INT x) => x, tInt)

fun List (T as (emb_T, proj_T, tE_T)) =

(fn l => LST (map emb_T l),

fn LST l => map proj_T l,

tLst tE_T)

and then the functions flatten and super reverse are de�ned as

fun flatten (T as (emb, _, _)) v = flattenTg (emb v)

fun super_reverse (T as (emb, proj, _)) v =

proj (super_reverseTg (emb v))

Now that the type encoding is neutral to di�erent type-indexed values, they can

be combined to share the same type argument. For example, the function

fn T => (flatten T) o (super_reverse T)

de�nes a type-indexed function that composes flatten and super reverse.

The other component of the interpretation, the type expression tE, is used

for those functions where the type indices do not appear at the input argument

positions, such as the reflect function. In these cases, a tagged-value version of

the type-indexed value need to perform case analysis on the type expression tE.

As an example, the code of type-directed partial evaluation using this new type

interpretation is presented in Figure 11.4.

124

datatype 'base tagBaseFunc =

BASE of 'base

| FUNC of ('base tagBaseFunc) -> ('base tagBaseFunc)

datatype typeExpF =

tBASE

| tFUNC of typeExpF * typeExpF

infixr 5 -->

val Base = (fn x => (BASE x), fn (BASE x) => x, tBASE)

fun ((T1 as (I_T1, P_T1, tE1)) -->

(T2 as (I_T2, P_T2, tE2))) =

(fn f => FUNC (fn tag_x => I_T2 (f (P_T1 tag_x))),

fn FUNC f => (fn x => P_T2 (f (I_T1 x))),

tFUNC(tE1,tE2))

val rec reifyTg =

fn (tBASE, BASE v) => v

| (tFUNC(tE1,tE2), FUNC v) =>

let val x1 = Gensym.fresh "x" in

LAM(x1, reifyTg

(tE2, v (reflectTg (tE1, (VAR x1)))))

end

and reflectTg =

fn (tBASE, e) => BASE(e)

| (tFUNC(tE1,tE2), e) =>

FUNC(fn v1 => reflectTg

(tE2, APP (e, reifyTg (tE1, v1))))

fun reify (T as (emb, _, tE)) v = reifyTg(tE, emb v)

Figure 11.4: Embedding/projection-based encoding for TDPE

Recall that the de�nition of the functions reifyTg and reflectTg will cause

matching-inexhaustive compilation warnings, and invoking them might cause

run-time exceptions. In contrast, function reify is safe in the sense that if the

argument v type-checks with the domain type of the embedding function emb,

then the resulting tagged expression must comply with the type expression tE.

125

This value-independent type encoding can be used for the form of `type spe-

cialization' proposed by Danvy [14], where the partial evaluator and the projec-

tion function are type-indexed by the same family of types.

11.3.2 Universality

In this section, we argue that the above approach based on embedding and

projection functions indeed provides a value-independent encoding for a majority

of type constructors. The idea is that the embedding/projection encoding forms

a universal type-indexed family of values, in that any other family of values

indexed by the same family can be constructed from this particular family.

We assume the following conditions about the types:

1. All the type constructions ci (in Equations 9.2, page 87) build a type only

from component types covariantly and/or contravariantly. The constructed

type can use the same component type both covariantly and contravariantly

at its di�erent occurrences, as in the example of type-directed partial evalu-

ation. This condition rules out, for example, the reference type constructor.

2. The type Q is covariant or contravariant in every occurrence of the type

variable � .

Universal Type and Embedding/projection Pairs We �rst de�ne an ML

datatype U to distinctively represent values of di�erent types in the type family

F . This is done by tagging all the branches of type constructions ci. Without

loss of generality, we assume no other type variable freely occurring in the type

126

constructions ci. Type variables can be dealt with by parameterization over type

U .

datatype U = tagc1 of c1(

m1z }| {
U; : : : ; U)

...

j tagcn of cn(U; : : : ; U| {z }
mn

)

We also de�ne a datatype typeExpU to describe the structure of a particular

type in the type family F :

datatype typeExpU = tEc1 of (typeExpU)m1

...

j tEcn of (typeExpU)mn

Condition 1 ensures the existence of the embedding/projection pairs between

every inductively constructed type index � 2 F and the universal type U . Such

pairs witness the apparent isomorphisms between the values of type � , denoted

as Val(�), and the corresponding set of tagged values of type U , denoted as

UVal(�).

To see that such pairs always exist, consider the category Type whose ob-

jects are types and whose morphisms are coercions (see section 2.1 of Henglein's

article [45]). Every type construction ci is interpreted as a multi-functor that is

either covariant or contravariant in each of its argument:

Ci : Type
p1 �Typep2 � � � � �Typepmi ! Type

Here pj's are the polarities of the arguments: if the type construction ci is covari-

ant in its j-th argument, then pj = + and Typepi = Type; if it is contravariant

127

in its j-th argument, then pj = � and Typepj = Typeop . Given pairs of embed-

ding emb�j : �j ; U and projection proj �j : U ; �j at the component type, we

can apply the functor Ci to induce another pair of coercions for the constructed

type � = ci(�1; : : : ; �mi
).

"� = Ci(emb
p1
�1
; : : : ; emb

pmi
�mi

) : � ; ci(

miz }| {
U; : : : ; U)

�� = Ci(proj
p1
�1
; : : : ; proj

pmi
�mi

) : ci(U; : : : ; U| {z }
mi

); �

Here, emb+� = emb� , emb
�
� = proj � , proj

+
� = proj � and proj�� = emb� for

all types � . Composing coercions "� and �� with the tagging and untagging

operations for the tag tagci respectively gives the embedding/projection pair at

the type � . By structural induction, all types � in the type family T have the

embedding/projection pairs.

Let us make concrete the above construction for the type constructions in

ML. For Condition 1, we assume that every type construction ci is inductively

generated using the ML type constructions in Figure 11.5.

Lemma 11.2. Let c be a m-ary type construction generated by the grammar

in Figure 11.5. Given types �j (for j = 1; : : : ; m), and for each type a pair of

embedding embj : �j ; U and projection proj j : U ; �j (de�ned on UVal(�j)),

which are inverse to each other between Val�j and UVal�j, one can induce a

pair of functions "� : � ; c(U; : : : ; U) and �� : c(U; : : : ; U) ; � where � =

c(�1; : : : ; �m), which are inverse to each other between the set Val� and UVal� .

Proof. By structural induction on type � = c(�1; : : : ; �m).

c(�1; : : : ; �m) = �j. De�ne "� = embj : �j ; U and �� = proj j : U ; �j. They

128

c(�1; : : : ; �m) = �j (j = 1; : : : ;m) (Type argument)

j � (Free type variable)

j A (Built-in atomic types)

j c1(�1; : : : ; �m)! c2(�1; : : : ; �m) (Function)

j c1(�1; : : : ; �m) list (List)

j c1(�1; : : : ; �m) � � � � � cl(�1; : : : ; �m) (Tuple of length l)

Figure 11.5: Formation of a type construction c

are inverse to each other by the condition of the lemma.

c(�1; : : : ; �m) = �. Here � is a freely occurring type variable, thus c(U; : : : ; U) =

�. De�ne "� = �� = �x:x : � ; �, which are inverse to each other.

c(�1; : : : ; �m) = A. Since c(U; : : : ; U) = A, setting "� = �� = �x:x : A gives the

pair.

c(�1; : : : ; �m) = c1(�1; : : : ; �m)! c2(�1; : : : ; �m). By the induction hypotheses, we

have "c1(�1;:::;�m) : c1(�1; : : : ; �m) ; c1(U; : : : ; U) and its inverse �c1(�1;:::;�m) :

c1(U; : : : ; U) ; c1(�1; : : : ; �m), together with "c2(�1;:::;�m) : c2(�1; : : : ; �m) ;

c2(U; : : : ; U) and its inverse �c2(�1;:::;�m) : c2(U; : : : ; U) ; c2(�1; : : : ; �m).

Now, de�ne

"�f = "c2(�1;:::;�m) Æ f Æ �c1(�1 ;:::;�m)

��f = �c2(�1;:::;�m) Æ f Æ "c1(�1 ;:::;�m)

It is easy to verify that these two functions have the required types, and

129

they are inverse to each other.

c(�1; : : : ; �m) = c1(�1; : : : ; �m) list. By the induction hypothesis, we have the em-

bedding "c1(�1;:::;�m) : c1(�1; : : : ; �m) ; c1(U; : : : ; U) and as its inverse the

projection �c1(�1;:::;�m) : c1(U; : : : ; U); c1(�1; : : : ; �m). Now, let

"�L = map L "c1(�1;:::;�m)

��L = map L �c1(�1;:::;�m)

It is easy to verify that these two functions have the required types, and

they are inverse to each other.

c(�1; : : : ; �m) = c1(�1; : : : ; �m) � � � � � cl(�1; : : : ; �m). By induction hypothesis, we

have embeddings "ci(�1;:::;�m) and projections �ci(�1;:::;�m), which are pairwise

inverse. Now, let

"� (x1; : : : ; xl) = ("c1(�1;:::;�m)x1; : : : ; "cl(�1;:::;�m)xl)

�� (x1; : : : ; xl) = (�c1(�1;:::;�m)x1; : : : ; �cl(�1;:::;�m)xl)

It is easy to verify that these two functions have the required types, and

they are inverse to each other.

Theorem 11.3. For all types � 2 F , there is a pair of embedding emb� : � ; U

and projection proj � : U ; � which are inverse to each other between Val� and

UVal� .

Proof. By induction on type � .

130

� = ci(�1; : : : ; �mi
). The induction hypotheses for every type �j where 1 � j � mi

says that emb�j : �j ; U and proj �j : U ; �j exist and are inverse to

each other. By Lemma 11.2, we can induce a pair of inverse functions

"� : � ; ci(U; : : : ; U) and �� : ci(U; : : : ; U); � . De�ne

emb� : � ; U

emb� (x) = tagci("�(x))

proj � : U ; �

proj � (tagci(x)) = �� (x)

It is easy to verify that the two functions are inverse to each other.

The proof above essentially gives an algorithm for computing the embedding

/ projection pair for every type � . Notice this algorithm itself is speci�ed in a

type-indexed form, that the pair for a constructed type is computed from the

pairs for its component types; therefore, we can use the ad-hoc approach to

program the type interpretation in the form of Equation (11.2).

Embedding/Projection for the result type The type encoding hj� ji of a type

� 2 F gives the pairs of embedding and projection between this type and the

universal type U . Now, for a type-indexed family v of values with the type

scheme 8� 2 F:Q, we need to compute the embedding and the projection be-

tween type Qf�=�g and type QfU=�g for any given type � 2 F from its type

encoding hj� ji. This makes it possible to �rst compute the universal version of

the value v� , which is of type QfU=�g, and then project it to the speci�c type

131

Qf� 0=�g. Condition 2 (page 126) ensures the existence of these embedding/

projection pairs.

Like before, Condition 2 can be made concrete in terms of ML type construc-

tions. We assume that the type Q is inductively generated using the ML type

constructions in Figure 11.6.

Q = � (indexed type �)

j A (Built-in atomic types)

j Q1 !Q2 (Function)

j Q1 list (List)

j Q1 � � � � �Ql (Tuple of length l)

Figure 11.6: Formation of the type Q of a type-indexed value

Theorem 11.4. Let Q be a type with free type variable � generated by the

grammar in Figure 11.6. Given a type � and the pair of inverse functions emb� :

� ; U and proj � : U ; � , one can induce a pair of functions eQ� : Qf�=�g ;

QfU=�g and pQ� : QfU=�g; Qf�=�g which are inverse to each other.

Proof. By induction on type Q. The proof is similar to the previous ones; for

brevity, here we simply gives the construction of eQ� and pQ� . It is straightforward

to verify that each of them is a pair of inverse functions.

Q = � . De�ne eQ� 0 = emb� 0 and pQ� 0 = proj � 0 .

Q = A. De�ne eQ� 0 = pQ� 0 = �x:x : A! A.

132

Q = Q1 !Q2. De�ne e
Q
� 0 f = eQ1

� 0 Æ f Æ p
Q2

� 0 and pQ� 0 f = pQ1

� 0 Æ f Æ e
Q2

� 0 .

Q = Q1 list. De�ne eQ� 0 L =map L eQ1

� 0 and pQ� 0 L =map L pQ1

� 0 .

Q = Q1 � � � � �Ql. De�ne e
Q
� 0 (x1; : : : ; xl) = (eQ1

� 0 x1; : : : ; e
Ql

� 0 xl)

and pQ� 0 (x1; : : : ; xl) = (pQ1

� 0 x1; : : : ; p
Ql

� 0 xl).

In fact, the proof itself provides an algorithm for computing eQ� and pQ� for a

�xed type Q from the embedding/projection pair of type � , which is included in

the \universal" encoding encoding hj� ji.

Type-indexed values from universal values Now, we can write a function

fUv : typeExpU ! QfU=�g, the universal-datatype version of the type-indexed

value v, such that for each type � 2 T , the value fUv (tE �) is equivalent to the

verbatim value v� embedded into the universal type QfU=�g.

fUv (tE �) = eQ� (v�)

It is then suÆcient to de�ne the function fv as

fvhemb� ; proj � ; tE � i = pQ� (f
U
v (tE�)) (11.3)

where pQ� is constructed from emb� and proj � by Theorem 11.4. Function fv and

the universal encoding hj � ji does implement the type-indexed family v (De�ni-

tion 10.2, page 97); this follows from the fact that pQ� Æe
Q
� is the identity function,

also by Theorem 11.4.

133

Function fUv can be induced from the speci�cation in the form of Equa-

tion (9.2) as follows:

fUv (tEc1(tE �1 ; : : : ; tE �m1
)) = eU1 (f

U
v (tE �1); : : : ; f

U
v (tE �m1

))

...

where eUi : (QfU=�g)mi ! QfU=�g is a properly instrumented version of ei :

8�1; : : : ; �mi
:(Qf�1=�g�� � ��Qf�mi

=�g)!Qfci(�1; � � � ; �mi
)=�g by adding tag-

ging and untagging operations. This process can be purely mechanical: instanti-

ating all the type variables �i to type U , and then applying a coercion function

induced from the data constructor tagci of type U .

Note that the case analysis on the types in Equation (9.2) has been turned

into case analysis on their value representations, which are of the uniform type

typeExpU . This way, the program fUv �ts into the Hindley-Milner type system.

The following theorem summarizes the approach based on the above con-

struction.

Theorem 11.5. Encoding types as embedding/projection functions gives a value-

independent type encoding for a type family F . Every F -indexed family v of

values is implemented by the function fv de�ned in Equation (11.3) and the type

encoding.

11.3.3 Comments

The new approach to value-independent type encodings is general and practical.

Though this approach is based on universal datatype solutions using tagged val-

ues, it overcomes the two original problems of directly using universal datatypes:

134

� Though the universal datatype version of the indexed value is not type-safe,

the coerced value is type-safe in general. This is because verbatim input

arguments of various types are mapped into the universal datatype by the

embedding function, whose type acts as a �lter of input types. Unmatched

tags are prevented this way.

� Users do not need to tag the input and/or untag the output; this is done

automatically by the program fv using the embedding and projection func-

tions. From another perspective, this provides a method of external tagging

using the type structure. While internal tagging incurs a syntactic over-

head proportional to the size of the term, external tagging incurs a syntactic

overhead proportional to only the size of the type.

This approach is not as eÆcient as the ad-hoc, value-dependent approach, due

to the lengthy tagging and untagging operations and the introduction of extra

intermediate data structures. This problem can be overcome using program-

transformation techniques such as partial evaluation [57], by specializing the

general functions with respect to certain type encodings at compile time, and

removing all the tagging/untagging operations. In particular, Danvy showed

how it can be naturally combined with type-directed partial evaluation to get a

2-level embedding/projection function [14].

Sometimes, one need to use more involved type constructions that are beyond

the reach of Conditions 1 and 2 (page 126), such as recursive type constructions.

Here we do not o�er a general solution. We hope, though, to use Henglein and

Rehof's dynamic-typing calculus [45, 46] to get a general treatment for these

135

cases.

11.4 Multiple Type Indices

Though our previous examples only demonstrate type-indexed values which have

only one type index, the embedding/projection-based approach can be readily

applied to implementing values indexed by more than one type index. Figure 11.7

presents an example: an ML function that performs subtype coercion [72]. Given

a from-type, a to-type, a list of subtype coercions at base types, and a value of

the from-type, this function coerces the value to the to-type and returns it.

Following the general pattern, we �rst write a function univ coerce, which

performs the coercions on tagged values. The function coerce then wraps up

function univ coerce, by embedding the input argument and projecting the out-

put. For brevity, we have omitted the obvious de�nition of the related datatypes,

and the type interpretations as embedding/projection functions and type expres-

sions of Int, Str, List, -->, **, some of which have already appeared in previous

examples.

The example below builds a subtype coercion C : str! str; int! str, given

a base coercion int ; str, so that, e.g., the expression C (fn x => x ^ x) 123

evaluates to "123123".

val C = coerce [(tINT, tSTR,

fn (INT x) => STR (Int.toString x))]

(Str --> Str) (Int --> Str)

Again, this approach can be combined with type-directed partial evaluation

136

exception nonSubtype of typeExp * typeExp

fun lookup_coerce [] tE1 tE2 = raise nonSubtype(tE1, tE2)

| lookup_coerce ((t, t', t2t')::Others) tE1 tE2 =

if t = tE1 andalso t' = tE2 then

t2t'

else

lookup_coerce Others tE1 tE2

fun univ_coerce cl (tFUN(tE1_T1, tE2_T1))

(tFUN(tE1_T2, tE2_T2)) (FUN v) =

FUN (fn x => univ_coerce cl tE2_T1 tE2_T2

(v (univ_coerce cl tE1_T2 tE1_T1 x)))

| univ_coerce cl (tLST tE_T1) (tLST tE_T2) (LST v) =

LST (map (univ_coerce cl tE_T1 tE_T2) v)

| univ_coerce cl (tPR(tE1_T1, tE2_T1))

(tPR(tE1_T2, tE2_T2)) (PR (x, y)) =

PR (univ_coerce cl tE1_T1 tE1_T2 x,

univ_coerce cl tE2_T1 tE2_T2 y)

| univ_coerce cl x y v =

if x = y then

v

else

(lookup_coerce cl x y) v

fun coerce cl (T1 as (emb_T1, proj_T1, tE_T1))

(T2 as (emb_T2, proj_T2, tE_T2)) v =

proj_T2 (univ_coerce cl tE_T1 tE_T2 (emb_T1 v))

Figure 11.7: Type-safe coercion function

to obtain 2-level functions, as done by Danvy for coercion functions and by

Vestergaard for \�a la Kennedy" conversion functions [61, 103].

137

Chapter 12

Related work: using more

expressive type systems

The problem of programming type-indexed values in a statically typed language

like ML motivated several earlier works that introduce new features to the type

systems. In the following sections, we briey go through some of these frame-

works that provide solutions to type-indexed values.

12.1 Dynamic typing

Realizing that static typing is too restrictive in some cases, there is a line of work

on adding dynamic typing [1, 2] to languages with static type systems. Such

an approach introduces a universal type Dynamic along with two operations for

constructing values of type Dynamic and inspecting the type tag attached to these

values. A dynamic typing approach extends user-de�ned datatypes in several

138

ways: the set of type constructions does not need to be known in advance|the

type Dynamic is extensible; it also allows polymorphism in the represented data.

Processing dynamic values is however similar to processing tagged values of user-

de�ned type|both require operations that wrap values and case analysis that

removes the wrapping.

A recent approach along the line of dynamic typing, staged type inference [93]

proposes to defer the type inference of some expressions until run-time when

all related information is available. In particular, this approach is naturally

combined with the framework of staged computation [27, 100] to support type-

safe code generation at run-time. Staged programming helped to solve some of

the original problems of dynamic typing, especially those concerning the ease of

use.

However, the way type errors are prevented at run-time is to require users

to provide `default values' that have expected types of expressions whose actual

types are inferred at run-time; when type inference fails, or the inferred type does

not match the context, the default values are used. This is e�ectively equivalent

to providing default exception handlers for run-time exceptions resulting from

type inference. The approach is still a dynamic-typing approach, so that the

bene�t of static debugging o�ered by a static typing system is lost. For example,

the formatting function in [93] will simply return an error when �eld speci�ers do

not match the function arguments. On the other hand, it is also because of this

possibility of run-time `type error' that dynamic typing disciplines provide extra

exibility, as shown in applications such as meta-programming and high-level

data/code transfer in distributed programming.

139

12.2 Intensional type analysis

Intensional type analysis [42] directly supports type-indexed values in the lan-

guage �ML
i in order to compile polymorphism into eÆcient unboxed represen-

tations. The language �ML
i extends a predicative variant of Girard's System

F! with primitives for intensional type analysis, by providing facilities to de�ne

constructors and terms by structural induction on monotypes. However, the

language �ML
i is explicitly polymorphic, requiring pervasive type annotations

throughout the program and thus making it inconvenient to directly program

in this language. Not surprisingly, the language �ML
i is mainly used as a typed

intermediate language.

12.3 Haskell type classes

The type-class mechanism in Haskell [41] also makes it easy to program type-

indexed family of values: the declaration of a type class should include all the

type-indexed value needed, and every value construction ei should be imple-

mented as an instance declaration for the constructed type, assuming the com-

ponent types are already instances of the type class. One way of implementing

type classes is to translate the use of type classes to arguments of polymorphic

functions (or in logic terms, to translate existential quanti�ers to universal quan-

ti�ers at dual position), leading to programs in the same style as handwritten

ones following the ad-hoc approach of Chapter 10. The type-class-based solution,

like the ad-hoc approach, is not value-independent, because all indexed values

need to be declared together in the type class. Also, because each type can only

140

have one instance of a particular type class, it does not seem likely to support,

e.g., de�ning various formatting functions for the same types of arguments.

It is interesting to note that type classes and value-independent types (or

type encodings) form two dimensions of extensibility.

� A type class �xes the set of indexed values, but the types in the type classes

can be easily extended by introducing new instances.

� A value-independent type �xes the family of types, but new values indexed

by the family can be de�ned without changing the type declarations.

It would be nice to allow both kinds of extensibility at the same time. But

this seems to be impossible|consider the problem of de�ning a function when

possible new types of arguments the function need to handle are not known yet.

A linear number of function and type de�nitions cannot result in a quadratic

number of independent variations.

12.4 Conclusion

The approaches above (described in Section 12.1 through Section 12.3) give

satisfactory solutions to the problem of type-indexed values. However, since

ML-like languages dominate large-scale program development in the functional-

programming community, our approach is often immediately usable in common

programming practice.

141

Chapter 13

Concluding remarks for Part II

We have presented a notion of type-indexed values that formalize functions hav-

ing type arguments. We have formulated type-encoding-based implementations

of type-indexed values in terms of type interpretations. According to this for-

mulation, we presented three approaches that enable type-safe programming of

type-indexed values in ML or similar languages.

� The �rst approach directly uses the speci�c values of a given type-indexed

family of values as the type interpretation. It gives value-dependent type

encodings, not sharable by di�erent families indexed by the same family

of types. However, its eÆciency makes it a suitable choice both for appli-

cations where all type-indexed values using the same family of types are

known in advance, and for the target form of a translation from a source

language with explicit support for type-indexed values.

� The second approach is value-independent, abstracting the speci�cation

of a type-indexed value from the �rst approach. Apart from its elegant

142

form, it may be not very practical because it requires �rst-class and higher-

order polymorphism. But with some e�orts, such advanced forms of poly-

morphism are embeddable in some dialects of ML, such as SML/NJ and

Moscow ML.

� The third approach applies the �rst approach to tune a usual tagged-

value-based, type-unsafe approach to give a type-safe and yet syntactically

convenient approach, by interpreting types as embedding/projection func-

tions. Though it is less eÆcient than the �rst approach due to all the

tagging/untagging operations, it allows di�erent type-indexed values to be

combined without going beyond the Hindley-Milner type system.

On one hand, we showed in Part II that with appropriate type encodings,

type-indexed values can be programmed in ML-like languages; on the other

hand, our investigation also feedbacks to the design of new features of type

systems. For example, implicit �rst-class and higher-order polymorphism seem

to be useful in applications such as type encodings. The question of what is

an expressive enough and yet convenient type system will only be answered by

various practical applications.

Concerning programming methodologies, we should note the similarity be-

tween type-directed partial evaluation and our third approach in externalizing

internal tags. Requiring only a single external tag not only alleviates the bur-

den of manually annotating the program or data with internal tags, but also

increases the consistency of these tags. We would like to generalize this idea to

other applications.

143

Part III

The second Futamura projection

for

type-directed partial evaluation

144

Chapter 14

Introduction to Part III

14.1 Background

14.1.1 General notions of partial evaluation

First, let us recall the general notions of partial evaluation.

Given a general program p : �S � �D ! �R and a �xed static input s : �S,

partial evaluation (a.k.a. program specialization) yields a specialized program

ps : �D ! �R. When this specialized program ps is applied to an arbitrary

dynamic input d : �D, it produces the same result as the original program applied

to the complete input (s; d), i.e., [[psd]] = [[p(s; d)]] (Here, [[�]] maps a piece of

program text to its denotation. In this part of the dissertation, meta-variables

in slanted serif font, such as p, s, and d stand for program terms. Variables

in italic font, such as x and y, are normal variables in the subject program).

Often, some computation in program p can be carried out independently of the

dynamic input d , and hence the specialized program ps is more eÆcient than

145

the general program p. In general, specialization is carried out by performing

the computation in the source program p that depends only on the static input

s, and generating program code for the remaining computation (called residual

code). A partial evaluator PE is a program that performs partial evaluation

automatically, i.e., if PE terminates on p and s then

[[PE (p; s)]] = ps

Often extra annotations are attached to p and s so as to pass additional infor-

mation to the partial evaluator.

A program p0 is a generating extension of the program p, if running p0 on

s yields a specialization of p with respect to the static input s (under the as-

sumption that p0 terminates on s). Because the program �s:PE (p; s) computes

a specialized program ps for any input s, it is a trivial generating extension of

program p. To produce a more eÆcient generating extension, we can specialize

PE with respect to p, viewing PE itself as a program and p as part of its input.

In the case when the partial evaluator PE itself is written in its input language,

i.e., if PE is self-applicable, this specialization can be achieved by PE itself. That

is, we can generate an eÆcient generating extension of p as

[[PE (PE ; p)]]:

14.1.2 Self-application

The above formulation was �rst given in 1971 by Futamura [35] in the context of

compiler generation|the generating extension of an interpreter is a compiler|

and is called the second Futamura projection. Turning it into practice, however,

146

proved to be much more diÆcult than what its seeming simplicity suggests; it was

not until 1985 that Jones's group implemented Mix [59], the very �rst e�ective

self-applicable partial evaluator. They identi�ed the reason for previous failures:

The decision whether to carry out computation or to generate residual code gen-

erally depends on the static input s, which is not available during self-application;

so the specialized partial evaluator still bears this overhead of decision-making.

They solved the problem by taking the decision o�ine, i.e., the source program

p is pre-annotated with binding-time annotations that solely determine the de-

cisions of the partial evaluator. In the simplest form, a binding time is either

static, which indicates computation carried out at partial-evaluation time (hence

called static computation), or dynamic, which indicates code generation for the

specialized program.

Subsequently, a number of self-applicable partial evaluators have been im-

plemented, e.g., Similix [9], but most of them are for untyped languages. For

typed languages, the so-called type specialization problem arises [54]: Generat-

ing extensions produced using self application often retain a universal data type

and the associated tagging/untagging operations as a source of overhead. The

universal data type is necessary for representing static values in the partial eval-

uator, just as it is necessary for representing values in a standard evaluator. This

is unsurprising, because a partial evaluator acts as a standard evaluator when

the complete input is static.

Partly because of this, in the 1990's, the practice shifted towards hand-written

generating-extension generators [7, 48]; this is also known as the cogen approach.

Conceptually, a generating-extension generator is a staged partial evaluator, just

147

as a compiler is a staged interpreter. Ideally, producing a generating extension

through self-application of the partial evaluation saves the extra e�ort in stag-

ing a partial evaluator, since it reuses both the technique and the correctness

argument of the partial evaluator. In practice, however, it is often hard to make

a partial evaluator (or a partial-evaluation technique, as in the case of Part III)

self-applicable in the �rst place. In terms of the correctness argument, if the

changes to the partial evaluator in making it self-applicable are minor and are

easily proved to be meaning-preserving, then the correctness of a generating ex-

tension produced by self-application still follows immediately from that of the

partial evaluator.

As we shall see in this work, the problem caused by using a universal data

type can be avoided to a large extent, if we can avoid introducing an implicit

interpreter in the �rst place. The second Futamura projection thus still remains a

viable alternative to the hand-written approach, as well as a source of interesting

problems and a benchmark for partial evaluators.

14.1.3 Type-directed partial evaluation

As we mentioned in the introductionof this dissertation, type-directed partial

evaluation (TDPE) performs program specialization by using an eÆcient reduc-

tion-free normalization algorithm, namely the one formalized as examples in the

earlier parts of this dissertation. It is di�erent from a traditional, syntax-directed

o�ine partial evaluator [57] in several respects:

Binding-Time Annotation In a traditional partial evaluation setting, all sub-

148

expressions require binding-time annotations. It is unrealistic for the user

to annotate the program fully by hand. Fortunately, these annotations are

usually computed by an automatic binding-time analyzer, while the user

only needs to provide binding-time annotations on input arguments. On

the other hand, since the user does not have direct control over the binding-

time annotations, he often needs to know how the binding-time analyzer

works and to tune the program in order to ensure termination and a good

specialization result.

In contrast, TDPE eliminates the need to annotate expression forms that

correspond to function, product and sum type constructions. One only

needs to give a binding-time classi�cation for the base types appearing in

the types of constants. Consequently, it is possible, and often practical, to

annotate the program by hand.

Role of Types The extraction function is parameterized over the type of the

term to be normalized, which makes TDPE \type-directed".

EÆciency A traditional partial evaluator works by symbolic computation on

the source programs; it contains an evaluator to perform the static eval-

uation and code generation. TDPE reuses the underlying evaluator (in-

terpreter or compiler) to perform these operations; when run on a highly

optimized evaluation mechanism, TDPE acquires the eÆciency for free|a

feature shared with the cogen approach.

Flexibility Traditional partial evaluators need to handle all constructs used in

a subject program, evaluating the static constructs and generating code for

149

the dynamic ones. In contrast, TDPE uses the underlying evaluator for

the static part. Therefore, all language constructs can be used in the static

part of a subject program. However, we shall see that this exibility is lost

when self-applying TDPE.

These di�erences have contributed to the successful application of TDPE in

various contexts, e.g., to perform semantics-based compilation [24]. An introduc-

tory account, as well as a survey of various treatments concerning Normalization

by Evaluation (NbE), can be found in Danvy's lecture notes [15].

14.2 Our work

14.2.1 The problem

A natural question is whether one can perform self-application, in particular the

second Futamura projection, in the setting of TDPE. It is diÆcult to see how this

can be achieved, due to the drastic di�erences between TDPE and traditional

partial evaluation.

� TDPE extracts the normal form of a term according to a type that can be

assigned to the term. This type is supplied in some form of encoding as an

argument to TDPE. We can use self-application to specialize TDPE with

respect to a particular type; the result helps one to visualize a particular

instance of TDPE. This form of self-application was carried out by Danvy

in his original article on TDPE [12]. However, it does not correspond to the

second Futamura projection, because no further specialization with respect

150

to a particular subject program is carried out.

� The aforementioned form of self-application [12] was carried out in the

dynamically typed language Scheme. It is not immediately clear whether

self-application can be achieved in a language with Hindley-Milner type

system, such as ML [71]: Whereas TDPE can be implemented in Scheme

as a function that takes a type encoding as its �rst argument, this strategy

is impossible in ML, because such a function would require a dependent

type. Indeed, the ML implementation of TDPE uses the technique of type

encodings developed in Part II: For every type, a particular TDPE program

is constructed. As a consequence, the TDPE algorithm to be specialized is

not �xed.

� Following the second Futamura projection literally, one should specialize

the source program of the partial evaluator. In TDPE, the static com-

putations are carried out directly by the underlying evaluator, which thus

becomes an integral part of the TDPE algorithm. The source code of this

underlying evaluator might be written in an arbitrary language or even be

unavailable. In this case, writing this evaluator from scratch by hand is an

extensive task. It further defeats the main point of using TDPE: to reuse

the underlying evaluator and to avoid unnecessary interpretive overhead.

TDPE also poses some technical problems for self-application. For example,

TDPE treats monomorphically typed programs, but the standard call-by-value

TDPE algorithm uses the polymorphically typed control operators shift and reset

to perform let-insertion in a polymorphically typed evaluation context.

151

14.2.2 Our contribution

This part of the thesis addresses all the above issues, and shows how to e�ec-

tively carry out self-application for TDPE in a language with Hindley-Milner

type system. To generate eÆcient generating extensions, such as compilers, we

reformulate the second Futamura projection in a way that is suitable for TDPE.

More technically, for the typed setting, we show how to use TDPE on the

combinators that constitute the TDPE algorithm, and consequently on the type-

indexed TDPE itself, and how to slightly rewrite the TDPE algorithm, so that

we only use the control operators at the unit and boolean types. As a full-edged

example, we derive a compiler for the Tiny language.

Since TDPE is both the tool and the subject program involved in self-

application, we bring together the formal results from Part I and the imple-

mentation technique from Part II in Chapter 15, and abstract out a setting in

which the later development of self application can be clearly executed. Next,

Chapter 16 provides an abstract account of our approach to self-application for

TDPE, and Chapter 17 details the development in the context of ML. In par-

ticular, Chapter 17.6 describes the derivation of the Tiny compiler, and Chap-

ter 17.7 gives some benchmarks for our experiments. Chapter 18 concludes this

part. The appendix gives further technical details in the generation of a Tiny

compiler (Appendix E). The complete source code of the development presented

in this article is available online [39].

152

Chapter 15

TDPE revisited

This chapter provides both the theoretical and practical setup for the develop-

ment in the following chapters. On the theoretical side, we abstract the formal

results in Part I in a setting that generalizes call-by-name and call-by-value,

and accommodates self-application. On the implementation side, we lay out a

functor-based implementation of TDPE, which provides a convenient means to

switch between di�erent instantiations, and encapsulates the ad-hoc encoding

for the type-indexed extraction functions as combinators.

15.1 A general account of TDPE

In Part I, we observed that TDPE for call-by-name and TDPE for call-by-value

have much in common. In this section we present an abstract setting of which

each version of TDPE is an instance.

153

15.1.1 Languages

The abstract setting involves four languages:

� The object language L, in which the subject program for specialization, and

the generated residual program, are written. The language is parameterized

over a signature of base types and constants. Observational equivalence of

programs can be established using an equational theory, which is sound

with respect to all signatures, consisting of base types and constants, and

their interpretations. In our examples, L is nPCF for call-by-name and

vPCF for call-by-value.

� The two-level language L2, in which binding-time annotated programs are

written. The dynamic part of the language corresponds to the object

language L. Furthermore, a standard instantiation maps L2-phrases to

L-phrases. This standard instantiation is called the annotation erasure,

written as j � j. It provides the reference program for correctness of code

generation.

� The TDPE-style two-level language Ltdpe, in which programs are annotated

according to the TDPE type system, where only constants carry the annota-

tions in a term. For Ltdpe, there is also a standard, evaluating instantiation

(also called erasure), which maps Ltdpe-phrases to L-phrases for the pur-

pose of specifying correctness. The implementation of Ltdpe is reduced to

that of L2, through a residualization instantiation fj�jgri from Ltdpe-phrases

to L2-phrases.

154

� The implementation language Limp, an instance of L with a base type exp

for term representation. A native embedding fj�jg� of L
2 into Limp provides

an adequate implementation of L2 in Limp.

Table 15.1 summarizes the notations and judgment forms that are relevant to

our following development, and identi�es the corresponding elements for call-by-

name and call-by-value. We omit the common ones such as term-in-context.

In the following, for the conciseness of the paper, we will not distinguish L

and Limp, and write L for both of them.

The evaluation function for L, Eval(�), is a computable partial function whose

domain consists of all ground-typed terms. That the equational theory of L

is sound with respect to observational equivalence implies that provably equal

terms can substitute each other without changing program behavior.

Theorem 15.1. If L ` � � E1 = E2 : �, then for all �-typed contexts C[] of

ground return type, Eval(C[E1]) = Eval(C[E2]).

15.1.2 Embedding results

Two key formal results hold in each version of the abstract setting: (1) the

TDPE algorithm, which performs normalization for Ltdpe-terms, formulated in

L2, is semantically and syntactically correct; and (2) evaluation of L2-programs

is faithfully simulated in L, through the embedding translation. These results

take the form of the following theorems.

Theorem 15.2 (Correctness of TDPE in L2). If Ltdpe ` �E : �d and L2 `

NF(E)& O, then

155

Notation Comment Call-by-name Call-by-value

L one-level language nPCF vPCF

L ` ��E1 = E2 : � equation-in-context

L ` ��nf E : � normal-form-in-context ��nf E : � ��nc E : �

L2 two-level language nPCF2 vPCF2

� code type � e�

L2 ` E & O evaluation of a complete E + O E & O

(where �E :�) program with code type

Ltdpe TDPE language nPCFtdpe vPCFtdpe

Limp implementation language nPCF� vPCF�;st

Eval(�) evaluation function from [[�]] from +

of complete programs

j � j standard instantiation

fj�jgri residual instantiation

fj�jg� native embedding fj�jgn� fj�jgv�

D(�) decoding of generated code D(�) fj�jg�1
hi�

NF(E) , ���fjEjgri normalization algorithm

Table 15.1: The abstract setting for TDPE, and its two instances

� L ` � jOj = jEj : � (semantic correctness), and

� L ` �nf jOj : � (syntactic correctness).

Recall that the erasure jOj of code-type value O is the generated code.

Proof. For call by name (column 3 of Table 15.1), we combine Theorem 4.12

156

and Corollary 4.17. For call by value (column 4 of Table 15.1), we combine

Theorem C.28 and Corollary C.29.

Simulation of the execution of a code-typed L2-program E in L is carried out

by running fjEjg� in a \wrapping context" W []. For call-by-name, W [] � [](1);

for call-by-value, W [] � letBind([]).

Theorem 15.3 (Correctness of embedding). If L2 ` �E :�, then for all

code-typed value O, the following statements are equivalent.

(a) L2 ` E & O;

(b) D(Eval(W [fjEjg�])) �� jOj.

Combining the two preceding theorems yields a native implementation of

TDPE algorithm in L. The normal form of a fully-dynamic Ltdpe-term E : �d,

denoted as NF (E), is extracted as

D(Eval(W [fjNF(E)jg�])) � D(Eval(W [fj���fjEjgrijg�])):

Because both fj�jg� and fj�jgri are instantiations, they distribute over the sub-terms,

and their composition is also an instantiation. Writing #� for fj���jg�, "� for fj���jg�,

E for fjfjEjgrijg�, D[[E]] for D(Eval(E)), and omitting the rather simple context

W [] for brevity, we have NF (E) = D(Eval(fj���jg�fjfjEjgrijg�)) = D[[#� E]].

The instantiation E , unlike fjEjgri, is into the one-level language L, but we

shall call it the residualizing instantiation of E in the subsequent text. Working

out the details of the composition, we can de�ne � as follows.

De�nition 15.4 (Residualizing Instantiation). The residualizing instantia-

tion of a Ltdpe-term Ltdpe ` �e : � in L is L ` � e : � , given by e = ef� g

157

and � = �f� g, where instantiation � is a substitution of Ltdpe-constructs

into L-phrases: for base types b, � (b) = b, � (bd) = exp, for constants c,

� (c) = c, � (cd : �d) ="� CST(HdI), and for lifting functions over a base type

b, � ($b) = LITb.

For the conciseness of presentation, we have made a few non-essential changes

in the above de�nition, such as unfolding a few terms, and treating the lifting

constructs in Ltdpe as constants. Also, for clarity, we start to use the following

meta-variable convention: meta-variable t range over one-level terms, e over

two-level terms, � over one-level types, and � over two-level types.

To connect with the informal introduction to TDPE in Section 2.4.2, let us

take a closer look at the residualizing instantiation. In words, the residualizing

instantiation � of a Ltdpe-type � substitutes the type exp for all occurrences

of dynamic base types in � . When type � is fully dynamic, the type � is

constructed solely from type exp, and thus represents a code value or a code

manipulation function (see Section 2.4.2). The residualizing instantiation e of a

term e substitutes all the occurrences of dynamic constants and lifting functions

with the corresponding code-generation versions (cf. Example 2.6 (page 23),

where heightann is �(a : real):�(z : reald):multd ($real(sin a)) z).

To be consistent, we also present the evaluating instantiation in substitutional

form.

De�nition 15.5 (Evaluating Instantiation). The evaluating instantiation

of a Ltdpe-term Ltdpe ` �e : � in L is L ` �jej : j� j, given by jej = ef�jjg

and j� j = �f�jjg, where instantiation �jj is a substitution of Ltdpe-constructs

158

(constants and base types) into L-phrases (terms and types): �jj(b) = �jj(b
d) = b,

�jj(c) = �jj(c
d) = c, �jj($b) = �x:x.

Putting everything together, we have the following correctness theorem for

the direct formulation of the TDPE algorithm in L. For conciseness, we omit

the �xed outer context W [] in the formulation.

Theorem 15.6 (Correctness of TDPE in L). The function NF de�ned in

Equation (15.1) in Figure 15.1 is a static normalization function for Ltdpe in L.

That is, for Ltdpe ` �e : �d, if t = NF (e), then

(a) L ` � jej = t : �; and

(b) L ` �nf t : �.

Proof. We combine the previous two theorems.

Just as self-application reduces the technique of producing an eÆcient gen-

erating extension to the technique of partial evaluation, our results on the cor-

rectness of self-application reduce to Theorem 15.6.

15.1.3 Partial evaluation

Given a Ltdpe-term Ltdpe ` �p : �S � �D ! �R, and its static input L
tdpe ` �s : �S,

where both type �D and type �R are fully dynamic, specialization can be achieved

by applying NbE (Equation (15.1) in Figure 15.1) to statically normalize the

trivial specialization �x:p(s; x):

NF (�x:p(s; x)) = D[[#�D!�R �x:p(s; x)]]

= D[[#�D!�R �x: p (s ; x)]]
(15.2)

159

Normalization by Evaluation

For term Ltdpe ` �e : �d, we use

NF (e) = D[[#� e]] (15.1)

to compute its static normal form, where

1. Term L ` � e : �d is the residualizing instantiation of term e, and

2. Term L ` �#� : �d ! exp is the one-level rei�cation function for type � .

Binding-time annotation The task is, given L ` �t : � and binding-time

constraints in the form of a two-level type � whose erasure is �, to �nd

Ltdpe ` �tann : � that satis�es the constraints and makes the following equation

provable:

L ` � jtannj = t : �

Figure 15.1: A formal recipe for TDPE

In the practice of partial evaluation, one usually is not given two-level terms

to start with. Instead, we want to specialize ordinary programs. This can be

reduced to the specialization of two-level terms through a binding-time anno-

tation step. For TDPE, the task of binding-time annotating a L-term t with

respect to some knowledge about the binding-time information of the input is,

in general, to �nd a two-level term tann such that (1) the evaluating instantia-

tion jtannj agrees with t, i.e., they are equal in the theory of L, and (2) term tann

is compatible with the input's binding-time information in the following sense:

Forming the application of tann to the static input results in a term of fully dy-

160

namic type. Consequently, the resulting term can be normalized with the static

normalization function NF .

Consider again the standard form of partial evaluation. We are given a L-term

L ` �p : �S � �D ! �R and the binding-time information of its static input s of

type �S, but not the static input s itself. The binding-time information can be

speci�ed as a Ltdpe-type �S such that j�Sj = �S; for the more familiar �rst-order

case, type �S is some static base type b, and type �S is simply b. We need to

�nd a two-level term Ltdpe ` �pann : �S � �D ! �R, such that (1) types �D and

�R are the fully dynamic versions of types �D and �R: �D = �d

D and �R = �d

R,

and (2) L ` � jpannj = p : �S � �D ! �R. In most cases, we can require strict

equality: jpannj � p; that is, without using any \binding-time improvement".

For a given static input s : �S, we want to normalize term t , �x:p(s; x).

Given a properly annotated sann : �S (\properly" in the sense that jsannj = s),

we can form the two-level term Ltdpe ` �tann , �x:pann(sann; x) : �D ! �R. By

congruence of the equational theory, Ltdpe ` � tann = t : �D ! �R. If the term

t 0 = NF (tann) is the result of the NbE algorithm, we have, by Theorem 15.6

(page 159), that the following equation is provable in L.

t 0 = jtannj = t

This veri�es the correctness of the specialization.

161

15.2 TDPE in ML

15.2.1 The setting

To be concrete, we will present the implementation of our development in ML.

In the notation of Section 15.1, the one-level language L is ML, with a base

type exp for encoding term representations, the constructors associated with

exp, constants for name generations, etc. All of these can be introduced into

ML as user-de�ned data types and functions; in practice, we do not distinguish

between L and ML. The associated two-level languages L2 (which we do not need

to explicitly use anymore) and Ltdpe are determined through the signature of L.

15.2.2 Implementation

We use the type-encoding technique developed in Part II to implement the type-

indexed functions such as rei�cation and reection. To recall briey, an encoding

combinator hjcji is de�ned for every type constructor c (e.g., � and! in the simple

setting of Pure NbE). For the indexed family of rei�cation-reection functions,

each combinator takes a pair of rei�cation and reection functions for every

argument �i to the (n-ary) type constructor c, and computes the rei�cation-

reection pair for the constructed type c(�1; : : : ; �n). Rei�cation and reection

functions for a certain type � can then be created by combining the combinators

according to the structure of � and projecting out either the rei�cation or the

reection function.

We �rst illustrate the structure of the implementation using the minimal-

istic setting of Pure NbE (Section 2.4.2). As Figure 15.2 shows, we specify

162

signature NBE = (� normalization by evaluation �)
sig

type Exp

type 'a rr (� (#� ; "�) : � rr �)

val a' : Exp rr (� � = � �)
val --> : 'a rr * 'b rr -> ('a -> 'b) rr (� � = �1 ! �2 �)
...

val reify: 'a rr -> 'a -> Exp (� #� �)
val reflect: 'a rr -> Exp -> 'a (� "� �)

end

signature EXP = (� term representation �)
sig

type Exp

type Var

val VAR: Var -> Exp

val LAM: Var * Exp -> Exp

val APP: Exp * Exp -> Exp
...

end

signature GENSYM = (� name generation �)
sig

type Var

val new: unit -> Var (� make a new name �)
val init: unit -> unit (� reset name counter �)

end;

Figure 15.2: NbE in ML, signatures

these combinators in a signature called NBE. Their implementation as the func-

tor makePureNbE|parameterized over two structures of respective signatures EXP

(term representation) and GENSYM (name generation for variables)|is given in

Figure 15.3. The implementation of Pure NbE is a direct transcription from the

formulation.

Example 15.7. We implement an NBE-structure PureNbE by applying the functor

163

functor makePureNbE(structure G: GENSYM

structure E: EXP

sharing type E.Var = G.Var): NBE =

struct

type Exp = E.Exp

datatype 'a rr = RR of ('a -> Exp) * (Exp -> 'a)

(� (#� ; "�) : � rr �)
infixr 5 -->

val a' = RR (fn e => e, fn e => e) (� � = � �)
fun (RR (reif1, refl1)) --> (RR(reif2, refl2)) (� � = �1 ! �2 �)
= RR (fn f =>

let val x = G.new ()

in E.LAM (x, reif2 (f (refl1 (E.VAR x))))

end,

fn e =>

fn v => refl2 (E.APP (e, reif1 v)))

fun reify (RR (reif, refl)) v (� #� �)
= (G.init (); reif v)

fun reflect (RR (reif, refl)) e (� "� �)
= refl e

end

Figure 15.3: Pure NbE in ML, implementation

makePureNbE (Figure 15.3); this provides us with combinators --> and a' and

functions reify and reflect. Normalization of KK (see Example 2.2 (page 17)

and Example 2.3 (page 19)) is carried out as follows:

local open PureNbE; infixr 5 --> in

val K = (fn x => fn y => x)

val KK_norm = reify (a' --> a' --> a' --> a') (K K)

end

After evaluation, the variable KK norm is bound to a term representation of the

normal form of KK .

164

15.2.3 Encoding two-level terms through functors

As mentioned earlier, the input to TDPE is a two-level term in Ltdpe. The ML

module system makes it possible to encode a two-level term p in a convenient

way: De�ne p inside a functor p pe(structure D: DYNAMIC) = ... which param-

eterizes over all dynamic types, dynamic constants and lifting functions. By

instantiating D with an appropriate structure, one can create either the evaluat-

ing instantiation jpj or the residualizing instantiation p .

Example 15.8. In Example 2.6 (page 23) we sketched how the function height

can be partially evaluated with respect to its �rst argument. Figure 15.4 shows

how to provide both evaluating and residualizing instantiation in ML using func-

tors. We encode the term heightann as a functor height pe(structure D:DYNAMIC)

that is parameterized over the dynamic type Real, the dynamic constant mult,

and the lifting function lift real in heightann.

15.2.4 Extensions

We will use an extended version of TDPE, referred to as Full TDPE in Part III.

Full TDPE not only treats the function type constructor, but also tuples and

sums.

Extending TDPE to tuples is straightforward: reifying a tuple is done by pro-

ducing the code of a tuple constructor and applying it to the rei�ed components

of the tuple; reection at a tuple type means producing code for a projection on

every component, reecting these code pieces at the corresponding component

type and tupling the results.

165

signature DYNAMIC = (� Signature of dynamic types and constants �)
sig

type Real

val mult: Real -> Real -> Real

val lift_real: real -> Real

end

(� The functor encodes a two-level term �)
functor height_pe(structure D: DYNAMIC) =

struct

fun height a z = D.mult (D.lift_real (sin a)) z

end

structure EDynamic: DYNAMIC = (� De�ning j � j �)
struct

type Real = real

fun mult x y = x * y

fun lift_real r = r

end

structure RDynamic: DYNAMIC = (� De�ning � �)
struct

local

open EExp PureNbE

infixr 5 -->

in

type Real = Exp

val mult = reflect (a' --> a' --> a') (VAR "mult")

fun lift_real r = LIT_REAL r

end

end

structure Eheight = height_pe (structure D = EDynamic);

(� jheightannj �)
structure Rheight = height_pe (structure D = RDynamic);

(� heightann �)

Figure 15.4: Instantiation via functors

166

signature CTRL = (� control operators �)
sig

type Exp

val shift: (('a -> Exp) -> Exp) -> 'a

val reset: (unit -> Exp) -> Exp

end;

functor makeFullNbE(structure G: GENSYM

structure E: EXP

structure C: CTRL

sharing ...): NBE = ...

Signatures GENSYM, EXP, and NBE are de�ned in Figure 15.2 (page 163).

Figure 15.5: Full NbE in ML

Sum types, as well as computational features which so far were handled using

state, can together be handled by manipulating the code-generation context in

the reection function. This has been achieved by using the control operators

shift and reset [18, 29]. Section 17.5 describes in more detail the treatment of

sum types and call-by-value languages in Full TDPE.

Figure 15.5 displays the signature CTRL of control operators and the skeleton

of a functor makeFullNbE, which implements Full TDPE|an implementation can

be found in Danvy's lecture notes [15]. The relevance of Full TDPE in this article

is that (1) it is the partial evaluator that one would use for specializing realistic

programs; and (2) in particular, it still conforms to the setting of Section 15.1,

in that the implementation language is the same as the object language and it

handles all features used in its own implementation, including side e�ects and

control e�ects. Hence in principle self-application should be possible.

167

Chapter 16

Formulating self-application

In this section, we present two forms of self-application for TDPE. One uses

self-application to generate more eÆcient rei�cation and reection functions for

a type � ; following Danvy [12], we refer to this form of self-application as vi-

sualization. The other adapts the second Futamura projection to the setting of

TDPE. We �rst give an intuitive account of how self-application can be achieved,

and then derive a precise formulation of self-application, based on the formal ac-

count of TDPE presented in Section 15.1.

16.1 An intuitive account of self-application

We start by presenting the intuition behind the two forms of self application,

drawing upon the informal account of TDPE in Section 2.4.2.

168

16.1.1 Visualization

For a speci�c type �, the rei�cation function #� contains one �-redex for each

recursive call following the type structure. For example, the direct unfolding of

#�!�!�!�, according to its de�nition (Figure 2.2, page 19), is

�f0:�x:(�f1:�y:(�f2:�z:(�e:e)(f2((�e:e)z)))(f1((�e:e)y)))(f0((�e:e)x))

rather than the normalized form presented in Example 2.3 (page 19). Normaliza-

tion of such a function can be achieved by self-applying TDPE so as to specialize

the rei�cation function with respect to a particular type. Danvy has carried out

this form of self application in the dynamically typed language Scheme [12]; in

the following, we reconstruct it in our setting.

Recall from Section 2.4.2 that �nding the normal form of a term t : � is

achieved by reifying the residualizing instantiation of a binding-time annotated

version of t:

NF (t) = D[[#� tann]]:

It thus suÆces to �nd an appropriate binding-time annotated version of the term

#�. A straightforward analysis of the implementation of NbE (see Figure 15.2

(page 163) and Figure 15.3 (page 164)), shows that all the base types (Exp, Var,

etc.) and constants (APP, Gensym.init, etc.1) are needed in the code-generation

phase; hence they all should be classi�ed as dynamic. Therefore, to normalize

#� : �d ! exp, we use a trivial binding-time annotation, noted h � i, in which
1These constants appear, e.g., in the underlined portion of the expanded term #�!�!�!�.

169

every constant is marked as dynamic:

NF (h #� i) = D[[#�!� h #� i]]; (16.1)

In order to understand the term h #� i , we analyze the composite e�ect of

the residualizing instantiation and trivial binding-time annotation: for a term

e, the term h e i is formed from e by substituting all constants with their code-

generation counterparts. We write +� for h #� i and *� for h "� i for notational

conciseness.

Term #� and term +� are respectively the evaluating instantiation and resid-

ualizing instantiation of the same (two-level) term h #� i: that is, jh #� ij =#�,

and h #� i =+�; term "� and term *� have an analogous relationship. We will

exploit this fact in Section 17.1 to apply the functor-based approach to the rei�-

cation/reection combinators themselves, thus providing an implementation of

+� and *� in ML.

16.1.2 Adapted second Futamura projection

As we have argued in the introduction to Part III, in the setting of TDPE,

following the second Futamura projection literally is not a reasonable choice for

deriving eÆcient generating extensions. The evaluator for the language in which

we use TDPE might not even be written in this language. Furthermore, making

an evaluator explicit in the partial evaluator to be specialized introduces an extra

layer of interpretation, which defeats the advantages of TDPE. We thus consider

instead the general idea behind the second Futamura projection:

Using partial evaluation to perform the static computations in a `triv-

170

ial' generating extension (usually) yields a more eÆcient generating

extension.

Following the informal recipe for performing TDPE given in Section 2.4.2, the

`trivial generating extension' py of a program p : �S � �D ! �R is

�s:TDPE (p; s) : �S ! exp = �s:#�D!�R �d: pann (s; d)

Since the trivial generating extension is itself a term, we can normalize it using

TDPE: We reify at type �S ! � the residualizing instantiation of the (suitably

binding-time annotated) trivial generating extension. We can use the trivial

binding-time annotation, i.e., to reify h �s:TDPE(p; s) i|in Chapter 16.2 we

shall explain in detail why this choice is actually not too conservative. Because

h � i is a substitution, it distributes over term constructors, and we can move

it inside the terms:

h �s:TDPE (p; s) i = �s: +�D!�R (�d: h pann i (s; d)):

For concreteness, the reader might �nd it helpful to consider the example

of the height function (Example 2.6, page 23): pann corresponds to heightann ,

so h pann i is formed by substituting all the constants in heightann with their

code-generation versions. Such constants include sin, LITreal, and the code-

constructing constants appearing in term multr (Example 2.5 (page 20)).

In practice, however, we do not need to �rst build the residualizing ver-

sion by hand and then apply the TDPE formulation. Instead, we show that

we can characterize h e i in terms of the original two-level term e itself, thus

enabling a functor-based approach: We write e for h e i and call it the GE-

instantiation of term e, where \GE" stands for generating extension. A precise

171

de�nition of the GE-instantiation is derived formally in Chapter 16.2 (De�ni-

tion 16.6 (page 176)). Basically, e instantiates all static constants and lifting

functions in e with their code-generation version and all dynamic constants with

versions that generate \code-generation" code. In other words, static constants

and lifting functions give rise to code that is executed when applying the gener-

ating extension, whereas dynamic constants give rise to code that has to appear

in the result of applying the generating extension.

All in all, the generating extension pz of a program p : �S � �D ! �R can be

calculated as

pz = D[[#�S!� (�s: +�D!�R (�d: pann (s; d)))]]: (16.2)

16.2 A derivation of self-application

In Section 16.1 we gave an intuitive account of how self-application can be

achieved for TDPE. Using the formalization of TDPE presented in Section 15.1

we now derive both forms of self-application; correctness thus follows from the

correctness of TDPE.

16.2.1 Visualization

We formally derive visualization (Section 16.1.1), using the \recipe" outlined in

Figure 15.1 (page 160). First, we need a formal de�nition of the trivial binding-

time annotation h � i in terms of the two-level language:

De�nition 16.1 (Trivial Binding-Time Annotation). The trivial binding-

time annotation of a L-term L ` �t : � is a Ltdpe-term Ltdpe ` �h t i : h � i,

172

given by h t i = tf�h ig and h � i = �f�h ig, where the instantiation �h i is a

substitution of L-constructs into Ltdpe-phrases: �h i(b) = bd, �h i(` : b) = $b` (`

is a literal), �h i(c) = cd (c is not a literal).

Lemma 16.2 (Properties of h � i). For a L-term L ` �t : �, the following

properties hold:

1. jh t ij � t, making h t i a binding-time annotation of t;

2. h � i is always a fully dynamic type;

3. For a fully dynamic Ltdpe-type �d, h �d i = �d .

A simple derivation using the properties (2) and (3) in Lemma 16.2, together

with the fact that h � i and � distribute over all type and term constructors,

yields the formulation of self-application given in Equation (16.1) on page 170:

NF (h #� i) = D[[#�!� (+�)]]:

The following corollary follows immediately from Theorem 15.6 (page 159)

and property (1) of Lemma 16.2.

Corollary 16.3. If t� = NF (h #� i), then

(a) t� is in normal form: L ` �nf t� : �
d ! exp; and

(b) t� is semantically equal to #�: L `#�= t�.

The self-application carried out by Danvy in the setting of Scheme [12] is

quite similar; his treatment explicitly �-abstracts over the constants occurring

in #� , which, by the TDPE algorithm, would be reected according to their

types. This reection also appears in our formulation: For any constant c : �

173

appearing in #� , we have h c i = cd ="� CST(HdI). Consequently, our result

coincides with Danvy's.

16.2.2 Adapted second Futamura projection

We repeat the development from Section 16.1.2 in a formal way. We begin by

rederiving the trivial generating extension, this time from Equation (15.2) on

page 159: In order to specialize a two-level term Ltdpe ` �p : �S � �D ! �R

with respect to a static input Ltdpe ` �s : �S (where j�Sj = �S, �D = �d

D, and

�R = �d

S), we execute the L-program L ` �#�D!�R �d: p (s ; d) : exp. By �-

abstracting over the residualizing instantiation s of the static input s, we can

trivially obtain a generating extension py, which we will refer to as the trivial

generating extension.

L ` �py , �s: #�D!�R (�d:(p (s; d))) : �S ! exp:

Corollary 16.4 (Trivial Generating Extension). The term py is a generat-

ing extension of program p.

Since the term py is itself a L-term, we can follow the recipe in Figure 15.1

(page 160) to specialize it into a more eÆcient generating extension. We �rst

need to binding-time annotate the term py. For the subterm #�D!�R, the analysis

in Section 16.1.1 shows that we should take the trivial binding-time annotation.

For the subterm p , the following analysis shows that it is not too conservative

to take the trivial binding-time annotation as well. Since � = � is an in-

stantiation, i.e., a substitution on dynamic constants and lifting functions, every

constant c0 in p must appear as a subterm of the image of a constant or a lifting

174

function under the substitution � . If c0 appears inside � (cd) ="� CST(HdI)

(where c0 could be a code-constructor such as LAM, APP appearing in term "�) ,

or � ($b) = LITb, then c0 is needed in the code-generation phase, and hence it

should be classi�ed as dynamic. If c0 appears inside � (c) = c, then c0 = c is an

original constant, classi�ed as static assuming the input s is given. Such a con-

stant could rarely be classi�ed as static in py, since the input s is not statically

available at this stage.

Taking the trivial binding-time annotation of the trivial generating extension

py, we then proceed with Equation (15.1) on page 160 to generate a more eÆcient

generating extension.

pz=NF (h �s: #
�D!�R (�d:(p (s; d))) i)

=D[[#�S!� h �s: #
�D!�R (�d:(p (s; d))) i]]

=D[[#�S!� (�s: h #�D!�R i (�d:(h p i (s; d))))]]

Expressing h p i as p , and h #�D!�R i as +�D!�R , we have

pz = D[[#�S!� (�s: +�D!�R (�d: p (s; d)))]];

as originally given in Equation (16.2) on page 172.

The generation of pz always terminates, even though, in general, the normal-

ization function NF may diverge. Recall that the trivial binding-time annotation

used in the preceding computation of pz marks all constants, including all �xed-

point operators, as dynamic. Divergence can only happen when the two-level

program contains static �xed-point operators.

175

The correctness of the second Futamura projection follows from Corollary 16.4

(page 174) and Theorem 15.6 (page 159).

Corollary 16.5 (EÆcient Generating Extension). Program pz is a gener-

ating extension of p in normal form:

1. pz is in normal form: L ` �nf pz : �S ! exp.

2. pz is semantically equal to py: L ` pz = py.

Proof. We combine Theorem 15.6 (page 159) and the property of trivial binding-

time analysis. In particular,

L ` pz = jh �s: #
�D!�R (�d:(p (s; d))) ij = py

That the program pz is a generating extension of p follows from Corollary 16.4

(page 174).

Now let us examine how the term p is formed. Note that p = h p i =

((pf� g)f�h ig)f� g = pf� Æ �h i Æ � g; thus � corresponds to the composi-

tion of three instantiations, � = � Æ �h i Æ � , which is also an instantiation.

We call � the generating-extension instantiation (GE-instantiation); a simple

calculation gives the following explicit de�nition.

De�nition 16.6 (GE-instantiation). The GE-instantiation of a Ltdpe-term

Ltdpe ` �e : � in L is L ` � e : � given by e = ef� g and � = �f� g, where

176

instantiation � is a substitution of Ltdpe-constructs into L-phrases:

� (b)=� (bd) = exp

� (c : �)= h c : � i ="� CST(HcI)

� (cd : �)= "� CST(HcI) =*� h CST i (LITconstHcI)

� ($b)= "�!� CST(HLITbI)

Note that at some places, we intentionally keep the � form unexpanded,

since we can just use the functor-based approach to obtain the residualizing in-

stantiation. Indeed, the GE-instantiation boils down to \taking the residualizing

instantiation of the residualizing instantiation". In Section 17.3, we show how

to extend the instantiation-through-functor approach to cover GE-instantiation

as well.

It is instructive to compare the formulation of the second Futamura projection

with the formulation of TDPE (Equation 15.2, page 159). The crucial common

feature is that the subject program p is only instantiated, i.e., only the constants

are substituted in the program; this feature makes them amenable to a functor-

based treatment and frees them from an explicit interpreter. For TDPE, however,

static constants are instantiated with their standard instantiation, which makes

it possible to use built-in constructs (such as case expressions) in the \static

parts" of a program. This is not the case for the second Futamura projection,

which causes some inconvenience when applying the second Futamura projection,

as we shall see in Chapter 17.6.

177

Chapter 17

Implementation and benchmarks

In this section we treat various issues arising when implementing the abstract

formulation of Chapter 16 in ML. We start with the implementation of the

key components for self application, namely the functions + and *, and the

GE-instantiation. We then turn to two technical issues. First, we show how

to specify the input, especially the types, for the self-application. Second, we

show how to modify the full TDPE algorithm, which uses polymorphically typed

control operators, such that it is amenable to the TDPE algorithm itself, i.e.,

amenable to self-application.

17.1 Residualizing instantiation of the combinators

In Chapter 16.1 we remarked that the terms #� and +� are respectively the

evaluating instantiation and the residualizing instantiation of the same two-level

term h #� i. We can again use the ML module system to conveniently implement

both instantiations. Recall that we formulated rei�cation and reection as type-

178

indexed functions, and we implemented them not as a monolithic program, but as

a group of combinators, one for each type constructor. These combinators can be

plugged together following the structure of a type � to construct a type encoding

as a rei�cation-reection pair (#�; "�). To binding-time annotate (#�; "�) as

(h #� i; h "� i), it suÆces to parameterize all the combinators over the constants

they use: As already mentioned, because h � i is a substitution, it distributes

over all constructs in a term, marking all the types and constants as dynamic.

The combinators, when instantiated with either an evaluating or a residualizing

instantiation, can be combined according to a type � to yield either (#�; "�) or

(+�;*�).

We can directly use the functors makePureNbE (Figure 15.3, page 164) and

makeFullNbE (Figure 15.5, page 167) to produce the instantiations, because these

functors are parameterized over the primitives used in the NbE module. Hence,

rather than hard-wiring code-generation primitives, this factorization reuses the

implementation for producing both the evaluating instantiation and the residu-

alizing instantiation. An evaluating instantiation EFullNbE of NbE is produced

by applying the functor makeFullNbE to the standard evaluating structures EExp,

EGensym and ECtrl of the signatures EXP, GENSYM and CTRL, respectively (Fig-

ure 17.1|we show the implementations of structures EExp and EGensym; for struc-

ture ECtrl, we use Filinski's implementation [29]). Residualizing instantiations

RFullNbE of Full NbE and RPureNbE of Pure NbE result from applying the functors

makePureNbE and makePureNbE, respectively, to appropriate residualizing structures

RGensym, RExp, and RCtrl (Figure 17.2, page 181).

For example, in the structure RExp, the type Exp and the type Var are both

179

structure EExp (� Evaluating Inst. j � j on EXP �)
= struct

type Var = string

datatype Exp =

VAR of string (� v �)
| LAM of string * Exp (� �x:e �)
| APP of Exp * Exp (� e1@e2 �)
| PAIR of Exp * Exp (� (e1;e2) �)
| PFST of Exp (� fst �)
| PSND of Exp (� snd �)
| LIT_REAL of real (� $real �)

end

structure EGensym (� Evaluating Inst. j � j on GENSYM �)
= struct

type Var = string

local val n = ref 0

in fun new () = (n := !n + 1; (� make a new name �)
"x" ^ Int.toString (!n))

fun init () = n := 0 (� reset name counter �)
end

end;

(� Evaluating Instantiation �)
structure EFullNbE = makeFullNbE (structure G = EGensym

structure E = EExp

structure C = ECtrl): NBE

Figure 17.1: Evaluating Instantiation of NbE

instantiated with EExp.Exp since they are dynamic base types, and all the code-

constructing functions are implemented as functions that generate `code that

constructs code'; here, to assist understanding, we have unfolded the de�nition

of reection (see also Example 2.4, page 20).

With the residualizing instantiation of rei�cation and reection at our dis-

posal, we now can perform visualization by following Equation (16.1) on page 170.

Example 17.1. We show the visualization of #�!�!�!� (Example 2.3, page 19)

180

structure RExp: EXP = struct

type Exp = EExp.Exp

type Var = EExp.Exp

(� VAR v = VAR@v �)
fun VAR v = EExp.APP (EExp.VAR "VAR", v)

(� LAM (v; e) = LAM@(v;e) �)
fun LAM (v, e) = EExp.APP (EExp.VAR "LAM",

EExp.PAIR (v, e))

(� APP (s; t) = APP@(s;t) �)
fun APP (s, t) = EExp.APP (EExp.VAR "APP",

EExp.PAIR (s, t))
...

end

...

(� Residualizing Instantiations �)
structure RFullNbE = makeFullNbE (structure G = RGensym

structure E = RExp

structure C = RCtrl): NBE

structure RPureNbE = makePureNbE (structure G = RGensym

structure E = RExp): NBE

Figure 17.2: Residualizing Instantiation of NbE

for Pure NbE. Following Equation (16.1) on page 170, we have to compute

#(�!�!�!�)!� (+�!�!�!�). This is done in Figure 17.3; it is not diÆcult to see

that the result matches the execution of the term reify (a' --> a' --> a' --> a')

(see Figure 15.3, page 164). Visualization of the reection function is carried

out similarly.

181

local open EFullNbE

infixr 5 -->

val Ereify_aaaa_a

= reify ((a'-->a'-->a'-->a') --> a') (� #(� ! � ! � ! �) ! � �)
open RPureNbE

infixr 5 -->

val Rreify_aaaa = reify (a'-->a'-->a'-->a') (� +� ! � ! � ! � �)
in val nf = Ereify_aaaa_a (Rreify_aaaa) end

The (pretty-printed) result nf is:

�x1: let r2 = init() r3 = new() r4 = new() r5 = new()

in

�r3:�r4:�r5:x1 r3 r4 r5

end

Figure 17.3: Visualizing #�!�!�!�

17.2 An example: Church numerals

We �rst demonstrate the second Futamura projection with the example of the

addition function for Church numerals. The de�nitions for the Church numeral

0ch, successor sch, and the addition function +ch in Figure 17.4 are all standard;

as the types indicate, they are given as the residualizing instantiation. One

can see that partially evaluating the addition function +ch with respect to the

Church numeral nch = snch(0ch) should produce a term �n2:�f:�x:f
n(n2fx); by

de�nition, this is also the functionality of a generating extension of function +ch.

The term +ch contains no dynamic constants, hence +ch = +ch = +ch.

Following Equation (16.2) on page 172, we can compute an eÆcient generating

extension +ch
z, as shown in Figure 17.4.

182

type 'a num = ('a -> 'a) -> ('a -> 'a) (� Type num �)
val c0 : EExp.Exp num

= fn f => fn x => x (� 0ch : num �)
fun cS (n: EExp.Exp num)

= fn f => fn x => f (n f x) (� sch : num ! num �)
fun cAdd (m: EExp.Exp num, n: EExp.Exp num)

= fn f => fn x =>

m f (n f x) (� +ch : (num � num)! num �)

local open EFullNbE

infixr 5 -->

val Ereify_n_exp

= reify (((a' --> a') --> (a' --> a')) --> a')

(� #num!� �)
open RPureNbE

infixr 5 -->

val Rreify_n_n

= reify (((a'-->a') --> (a'-->a')) -->

((a'-->a') --> (a'-->a'))) (� +num!num �)
in val ge_add

= Ereify_n_exp (fn m => (Rreify_n_n (fn n =>

cAdd (m, n)))) (� +ch
z �)

end;

The (pretty-printed) result +ch
z is:

�x1: let r2 = init() r3 = new() r4 = new() r5 = new() r7 = new()

in

�r3:�r4:�r5:(x1(�x6:(r4@x6)))

(((r3@(�r7:(r4@r7)))@r5)))

end

For example, applying +ch
z to (cS (cS (c0))) generates

�x1:�x2:�x3:x2(x2(x1(�x4:x2 x4)x3)):

Figure 17.4: Church numerals

183

17.3 The GE-instantiation

We generalize the technique of encoding a two-level term p in ML presented at

the end of Section 15.2: We code p inside a functor

p ge(structure S:STATIC structure D:DYNAMIC) = ...

that parameterizes over both static and dynamic constants. With suitable in-

stantiations of the structures S and D, one can thus create not only the evalu-

ation instantiation jpj and the residualizing instantiation p , but also the GE-

instantiation p . The instantiation table displayed in Table 17.1 summarizes

how to write the components of the three kinds of instantiation functors for

S and D. The table follows easily from the formal de�nitions of j � j, � and

� via �jj (De�nition 15.5, page 158), � (De�nition 15.4, page 157) and �

(De�nition 16.6, page 176), respectively.

j � j � �

b b b exp

S
c : � c c "� CST(HcI)

bd b exp exp

D cd : �d c "� CST(HcI) *� h CST i (LITconstHcI)

$b �x:x LITb "�!� CST(HLITbI)

Table 17.1: Instantiation table

Note, in particular, that j � j and � have the same instantiation for the

static signature; hence we can reuse �jj for � .

Example 17.2. We revisit the function height, which appeared in Example 2.6

184

signature STATIC = (� � �)
sig

type SReal (� real �)
val sin: SReal -> SReal (� sin �)

end

signature DYNAMIC = (� �d �)
sig

type SReal (� real �)
type DReal (� reald �)
val mult: DReal -> DReal -> DReal (� multd �)
val lift_real: SReal -> DReal (� $real �)

end

functor height_ge(structure S: STATIC (� heightann �)
structure D: DYNAMIC

sharing type D.SReal = S.SReal) =

struct

fun height a z = D.mult (D.lift_real (S.sin a)) z

end

structure GEStatic: STATIC = (� � on � �)
struct

local open EExp EFullNbE; infixr 5 --> in

type SReal = Exp

val sin = reflect (a' --> a') (VAR "sin")

end

end

structure GEDynamic: DYNAMIC = (� � on �d �)
struct

local open RExp RFullNbE; infixr 5 --> in

type DReal = Exp

val mult = reflect (a' --> a' --> a')

(VAR (EExp.STR "mult"))

fun lift_real r = LIT_REAL r

end

end

(� heightann �)
structure ge_height = height_ge(structure S = GEStatic

structure D = GEDynamic)

Figure 17.5: Instantiation via functors

185

(page 23) and Example 15.8 (page 165). In Figure 17.5 we de�ne the func-

tor height ge along with signatures STATIC and DYNAMIC. Structure GEStatic and

structure GEDynamic provide the GE-instantiation for the signature Ltdpe. The

instantiation of height ge with these structures gives heightann . Applying the

second Futamura projection as given in Equation (16.2) on page 172 yields

�x1: let r2 = init()

r3 = new()

in

�r3:\mult"@(lift real(sin x1))@r3

end

17.4 Type speci�cation for self-application

The technique developed so far is already suÆcient to carry out visualization or

the second Futamura projection, at least in an e�ect-free setting. Still, it requires

the user to manually instantiate self-application Equation (16.1) on page 170 and

Equation (16.2) on page 172, as we have done for all the preceding examples.

In particular, as Example 17.1 (page 180) demonstrates, one needs to use two

di�erent sets of combinators for essentially the same type (� ! � ! � ! �

in this case), one for the residualizing instantiation of NbE, and the other for

the evaluating instantiation. It would be preferable to package the abstract

formulation of Equation (16.1) on page 170 and Equation (16.2) on page 172 as

program modules themselves, instead of leaving them as templates for the user.

In this section, we achieve such an \instantiation-independent" encoding, using

the functor-based approach of Section 11.2.

186

Types are part of the input in both forms of self-application. The user of the

module should specify a type � in a way that is independent of the instantiations;

it is the task of the self-application module to choose whether and where to use

the residualization instantiation (+�;*�) or the evaluation instantiation (#
�; "�).

Since di�erent instantiations have di�erent types, the type argument, even in

the form of an encoding of the corresponding extraction functions, cannot be

abstracted over at the function level. Recall that the type-indexed functions are

formed by plugging together combinators. Specifying a type, therefore, amounts

to writing down how combinators should be plugged together, leaving the actual

de�nition of the combinators (i.e., an NBE-structure) abstract.

To make the above idea more precise, let us consider the example of visu-

alizing the rei�cation functions. The speci�cation of a type � should consist of

not only the type � itself, but also a functor that maps a NBE-structure NbE to

the appropriate instantiation of the pair (h #� i; h "� i), which is of type � NbE:rr .

This suggests that the type speci�cation should have the following dependent

type:
X

� : �:
Y

NbE : NBE:(� NbE:rr);

where
P

is the dependent-sum formation, and
Q

is the dependent-product

formation.

We can then turn this type into a higher-order signature VIS INPUT in Stan-

dard ML of New Jersey, and in turn write a higher-order functor vis reify that

performs visualization of the rei�cation function (Figure 17.6). The example

visualization in Figure 17.3 (page 182) can be now carried out using the type

187

signature VIS_INPUT = (� Signature for a type speci�cation �)
sig

type 'a vis_type (� Type �, parameterized at the base type �)
functor inp(NbE: NBE) : (� parameterized type coding �)
sig

val T_enc: (NbE.Exp vis_type) NbE.rr

end

end

functor vis_reify (P: VIS_INPUT) =

struct

local

structure eVIS (� Evaluating instantiation �)
= P.inp(EFullNbE)

structure rVIS (� Residualizing instantiation �)
= P.inp(RPureNbE)

open EFullNbE

infixr 5 -->

in

val vis = reify (eVIS.T_enc --> a') (� #� ! � (+�) �)
(RPureNbE.reify rVIS.T_enc)

end

end

Figure 17.6: Specifying types as functors

speci�cation given in Figure 17.7.

17.5 Monomorphizing control operators

So far we have shown how to self-apply Pure TDPE. When self-applying Full

TDPE, one complication arises: The implementation of Full TDPE uses control

operators polymorphically in the de�nition of reection, but to determine the

residualizing instantiation of a constant, a �xed monomorphic type has to be

determined. This section shows how to rewrite the algorithm for full TDPE

188

structure a2a : VIS_INPUT = (� A type speci�cation �)
struct

type 'a vis_type = 'a->'a->'a->'a (� � = � ! � ! � ! � �)
functor inp(NbE: NBE) = (� NbE �)
struct

local open NbE infixr 5 --> in

val T_enc = a' --> a' --> a' --> a' (� � NbE.rr �)
end

end

end

structure vis_a2a = vis_reify(a2a); (� Visualization �)

Figure 17.7: Type speci�cation for visualizing #�!�

such that all control operators occur monomorphically.

17.5.1 Let-insertion via control operators

Full TDPE treats call-by-value languages with computational e�ects. In this

setting, let-insertion [9, 44] is a standard partial-evaluation technique to pre-

vent duplicating or discarding computations that have side-e�ects: All compu-

tations that might have e�ects are bound to a variable and sequenced using the

(monadic) let construct. When the TDPE algorithm identi�es the need to insert

a let-construct, however, it usually is not at a point where a let-construct can

be inserted, i.e., a code-generating expression.

Using a technique that originated in the study of continuation-based partial

evaluation [67], Danvy [11] solves this problem by using the control operators

shift and reset [18]: Intuitively speaking, the operator shift abstracts the current

evaluation context up to the closest delimiter reset and passes the abstracted

context to its argument, which can then invoke this delimited evaluation context

189

just like a normal function. Formally, the semantics of shift and reset is expressed

in terms of the CPS transformation (Figure 17.8; see Danvy and Filinski [18]

and Filinski [29] for more details, and Danvy and Yang [25] for an operational

account).

[[shift E]]
CPS

= ��:[[E]]
CPS

(�f:f(�v:��0:�0(� v))(�x:x))

[[resethEi]]
CPS

= ��:�([[E]]
CPS

(�x:x))

Term hEi, \the thunk of E", is shorthand for �():E. The use of a thunk here delays

the computation of E and avoids the need to implement reset as a macro.

Figure 17.8: The CPS semantics of shift/reset

With the help of these control operators, Danvy's treatment [11] follows the

following strategy for let-insertion: (1) use reset to `mark the boundaries' for

code generation, i.e., to surround every expression that has type Exp and could

potentially be a point where let-bindings need to be inserted;1 (2) when let-

insertion is needed, use shift to `grab the context up to the marked boundary'

and bind it to a variable k (thus k is a code-constructing context); (3) apply k to

the intended return value to form the body expression of the let-construct, and

then wrap it with the let-construct. The new de�nitions for the rei�cation and

reection functions as given by Danvy are shown in Figure 17.9; there are two

function-type constructors: a function type without e�ects �1 ! �2, which does
1An e�ect-typing system can provide a precise characterization of where reset has to be used.

Roughly speaking, an operator reset encloses the escaping control e�ect introduced by an inner shift.

See Filinski's work [30] for more details.

190

not require let-insertion, and a function type with possible latent e�ects �1
!!�2,

which does require let-insertion. We extend the type exp of code representations

with a constructor LET of string * Exp * Exp and write let x (t1 in t2 for

LET (x,t1,t2); we implement a new TDPE combinator -!> in ML for the new

type constructor !! .

#� e = e

#�1!�2 f = �x:reseth#�2 (f("�1 x))i (x is fresh)

#�1
!!�2 f = �x:reseth#�2 (f("�1 x))i (x is fresh)

"� e = e

"�1!�2 e = �x:"�2 (e@(#
�1 x))

"
�1

!!�2
e = �x:shift (� k:let x0(e@#�1 x in resethk("�2 x

0)i)

(x0 is fresh)

Figure 17.9: TDPE with let-insertion

17.5.2 Monomorphizing control operators

In the de�nition of reection "
�1

!
!�2

for function types with latent e�ects, the

return type (here �2) of the shift-expression depends on the type of the reection.

Hence it is not immediately amenable to be treated by TDPE itself, because

during self-application, shift is regarded as a dynamic constant, whose type is

needed to determine its residualizing instantiation.

191

However, observe that the argument to the context k is �xed to be "�2 x
0; this

prompts us to move this term into the context surrounding the shift-expression,

and to apply k to a simple unit value (). Following this transformation, no

information needs to be carried around, except for the transfer of the control

ow.

"new
�1

!
!�2

e = � x:(� (): "�2 x
0)(shift (� k:let x0(e@#�1 x in resethk()i))

(x0 is fresh)

Now the aforementioned problem is solved, since the return type of shift is

�xed to unit|the new de�nition is monomorphic.

To show that this change is semantics-preserving, we compare the CPS se-

mantics of the original de�nition and the new de�nition.

Proposition 17.3. The terms [["new
�1

!
!�2

]]
CPS

and [["
�1

!
!�2

]]
CPS

are �v�v-convertible.

Here �v and �v are respectively the � and � rules in Moggi's computational

lambda calculus �c [74], i.e., the restricted forms of the usual � rule, (�x:e0)e �

e0fe=xg, and of the usual � rule, �x:ex � e, where the expression e must be

a value. These rules are sound for call-by-value languages with computational

e�ects.

Proof. First of all, we abstract out the same computations in the two terms:

B � �f:let x0(e@#�1 x in f()

R � "�2 x
0

C [] � �e:�x:let x0(new() in []

192

Then

"
�1

!
!�2

=�v�vC [shift (� k:B(�():resethk(R)i))]

"new
�1

!
!�2

=�v�vC [(�():R)(shift (� k:B(�():resethk()i)))]

Because the CPS transformation is compositional and preserves �v�v equivalence,

it suÆces to prove that the CPS transformations of the two terms enclosed by

C [�] are �v�v-equivalent, for all terms B and R. It is a tedious but straightforward

check.

Recently, Sumii [96] pointed out that the reset in the above de�nition can be

removed. The continuation k, being captured by shift, resets the continuation

automatically when applied to an argument, which makes the reset in the above

de�nition redundant|this is because, in particular, the argument of k is a value.

In contrast, the original de�nition still requires the reset, since the expression

"�2 x0 might have latent escaping control e�ect, as in the case where �2 is of

form � !! �0. This simpli�cation improves the performance of TDPE and the

generating extension generated by self-application.

"new
0

�1
!
!�2

e = � x:(� (): "�2 x
0)(shift (� k:let x0(e@#�1 x in k()))

(x0 is fresh)

Proposition 17.4. The terms [["new
�1

!
!�2

]]
CPS

and [["new
0

�1
!
!�2

]]
CPS

are �v�v-convertible.

Proof. We proceed as in the proof of Proposition 17.3. In particular, using B,

R, and C [] introduced there, we have that

"new
0

�1
!
!�2

=�v�v C [(�():R)(shift (� k:B(�():k())))]:

193

Example 17.5. The monomorphic de�nitions "new
�1

!
!�2

and "new
0

�1
!
!�2

of reection

for function types with latent e�ects are amenable to TDPE itself. Figure 17.10

shows the result of visualizing the rei�cation function at the type (� !!�) !! �.

Note that both shift and reset have e�ects themselves; consequently TDPE has

inserted let-constructs for the result of visualization. For comparison, we also

show the visualization of (�! �)!� of Pure NbE, which is much more compact.

The main di�erence here is the control operators used in Full TDPE, which

remain in the result of self-application; later in Chapter 17.7, we will see how

this di�erence a�ects the speedup achieved by the second Futamura projection.

17.5.3 Sum types

Full TDPE also treats sum types using control operators; this treatment is also

due to Danvy [12]. Briey, the operator shift is used in the de�nition of reection

function for sum types, "�1+�2 . As the type suggests, the return type of this

function should be a value of type �1 + �2 , i.e., a value either of the form

inl (v1 : �1) or inr (v2 : �2) (for some appropriate v1 or v2); on the other hand,

both values are needed to have the complete information. Danvy's solution is to

\return twice" to the context by capturing the delimited context and applying

it separately to inl ("�1 e1) and inr ("�2 e2); the results are combined using a

case-construct which introduces the bindings for e1 and e2. Danvy's de�nition

194

Visualization of #(�
!!�) !!� results in:

�x1:let r2 = init()

r3 = new()

r11 = resethlet r10 = x1(�x5:insertLet(r3@x5)) in r10 endi

in �r3:r11

end

where insertLet(E) abbreviates the expression

let x0 = new()

= shift(�k:let r = k() in (let x0(E in r) end)

in x0

end

In contrast, visualization of #(�!�)!� of Pure NbE results in:

�x1:let r2 = init()

r3 = new()

in �r3:x1(�x4:r3@x4)

end

Figure 17.10: Visualizing TDPE with let-insertion

195

of "�1+�2 is given below:

"�1+�2 e = shift(�k: case e of inl(x1)) resethk(inl ("�1 x1))i

j inr(x2)) resethk(inr ("�2 x2))i)

(x1; x2 are fresh)

where Exp has been extended with constructors for a case distinction and injection

functions in the obvious way. Again, the return type of the shift-expression in

the above de�nition is not �xed; an alternative de�nition is needed to allow

self-application.

Following the same analysis as before, we observe that the arguments to

k must be one of the two possibilities, inl ("�1 e1) and inr ("�2 e2), so the

information to be passed through the continuation is just the binary choice

between the left branch and the right branch. We can thus move these two

�xed arguments into the context and replace them with the booleans tt and �

as the argument to continuation k (again, Sumii's remark on the redundancy of

reset in the program after change applies, and we have dropped the unnecessary

occurrences of reset):

"new�1+�2 e = if shift(�k: case e of inl(x1)) k tt

j inr(x2)) k �)

then inl ("�1 x1) else inr ("�2 x2)

(x1; x2 are fresh)

The use of shift is instantiated with the �xed boolean type. Again, we check

that this change does not modify the semantics.

Proposition 17.6. [["new�1+�2
]]
CPS

and [["�1+�2]]CPS are �v�v-convertible.

196

Using "new�1+�2
and "new

0

�1
!
!�2

instead of the original de�nitions provides us with an

algorithm for Full TDPE that is amenable to self-application. In the following

section, we use self-application of Full TDPE for compiler generation.

17.6 An application: generating a compiler for Tiny

It is well known that partial evaluation allows compilation by specializing an in-

terpreter with respect to a source program. TDPE has been used for this purpose

in several instances [11, 12, 22, 24]. Having implemented the second Futamura

projection, we can instead generate a compiler as the generating extension of an

interpreter.

One of the languages for which compilation with TDPE has been studied is

Tiny [11, 84], a prototypical imperative language. As outlined in Section 15.2,

a functor tiny pe(D:DYNAMIC) is used to carry out type-directed partial evalua-

tion in a convenient way. This functor provides an interpreter meaning that is

parameterized over all dynamic constructs. Appendix E.1 gives an overview of

Tiny and type-directed partial evaluation of a Tiny interpreter. Compiling Tiny

programs by partially evaluating the interpreter meaning corresponds to running

the trivial generating extension meaningy.

Following the development in Section 17.3, we proceed in three steps to gen-

erate a Tiny compiler:

1. Rewrite tiny pe into a di�erent functor tiny ge(S: STATIC D: DYNAMIC) in

which meaning is also parameterized over all static constants and base types.

2. Give instantiations of S and D as indicated by the instantiation table in

197

Table 17.1 (page 184), thereby creating the GE-instantiation meaning .

3. Perform the second Futamura projection; this yields the eÆcient generating

extension meaningz, i.e., a Tiny compiler.

Appendix E.2 describes these steps in more detail.

Tiny was the �rst substantial example we treated; nevertheless we were done

within a day|none of the three steps described above is conceptually diÆcult.

They can be seen as a methodology for performing the second Futamura projec-

tion in TDPE on a binding-time-separated program.

Although conceptually simple, the �rst of the three aforementioned steps is

somewhat tedious:

� Every construct that is not handled automatically by TDPE has to be

parameterized over. This is not a problem for user-de�ned constants, but

is a problem for ML-constructs like recursion and case-distinctions over

recursive data types. Both have to be rewritten, using �xed-point operators

and elimination functions, respectively.

� For every occurrence of a constant in the program, its monotype has to be

determined; constants used at more than one monotype give rise to several

instances. This is a consequence of performing type-directed partial eval-

uation; for the second Futamura projection, every constant is instantiated

with a code-generation function, the form of which depends on the exact

type of the constant in question.

Because the Tiny interpreter we started with was already binding-time sepa-

198

rated, we did not have to perform the binding-time analysis needed when starting

from scratch. Our experience with TDPE, however, shows that performing such

a binding-time analysis is relatively easy, because

� TDPE restricts the number of constructs that have to be considered, since

functions, products and sums do not require binding-time annotations, and

� TDPE uses the ML type system: Type checking checks the consistency of

the binding-time annotations.

17.7 Benchmarks

17.7.1 Experiments and results

In Chapter 16 we claimed that the specialized generating extension pz of a

program p produced by the second Futamura projection for TDPE is, in gen-

eral, more eÆcient than the trivial generating extension py. In order to assess

how much more eÆcient pz is than py, we performed benchmarks for +ch (Sec-

tion 17.2) and the Tiny interpreter (Chapter 17.6).

The benchmarks were performed on a 250 MHz Silicon Graphics O2 worksta-

tion using Standard ML of New Jersey version 110.0.3. We display the results in

Table 17.2. In each row of the table, we compare the time it takes to specialize

the subject program p with respect to the static input s using two di�erent gen-

erating extensions: (1) the trivial generating extension py (i.e., directly running

TDPE on program p), and (2) the specialized generating extension pz (i.e., run-

ning the result of the second Futamura projection). We calculate the speedup

199

program static inp. specialization specialization Speedup

p s time with py (s) time with pz (s) (ratio)

meaning factorial 261.2 194.9 1.34

meaningorig factorial 169.5 99.2 1.71

+ch 80ch 58.45 19.95 2.93

Table 17.2: Benchmarks: time of specializations (1,000,000 repeated executions)

as the ratio of their running times.

The �rst row compares the compilers derived from the interpreter meaning (see

Chapter 17.6 and Appendix E); the result shows a speedup of 1.34 for compiling

the factorial function. One might wonder, however, whether there is any real

gain in using the second Futamura projection: The changes that are necessary to

provide the GE-instantiation of meaning (replace built-in pattern-matching and

recursive function de�nition of ML with user-de�ned �xed-point operators and

case operators, respectively|see Chapter 17.6) slow down both direct compi-

lation with TDPE and compilation using the specialized generating extension.

In fact, as the table's second row shows, direct compilation with the `original'

interpreter meaningorig, i.e., an instantiation of tiny pe rather than tiny ge (cf.

Sections 15.2 and 17.3), runs even faster than the specialized generating exten-

sion meaningz.

We can do better by replacing the user-de�ned �xed point operators and

case operators in the result program meaningz with the built-in constructs.2 This
2Removing the user-de�ned �xed point operator and case operators can be carried out automati-

cally by (1) incorporating TDPE with patterns as generated bindings, and (2) systematically changing

200

yields a program that can be understood as the specialized generating extension

of the program meaningorig, and we thus call it meaningorig
z. The second row of

Table 17.2 shows that running meaningorig
z gives a speedup of 1.71 over running

the original program meaningorig. The speedup over the direct compilation using

the original interpreter here is, in practice, more relevant than the speedup of

the benchmark shown in the �rst row.

The benchmark in the third row compares the generating extensions of an

e�ect-free function, the addition function +ch for Church numerals. Because the

function is free of computational e�ects (we assume that its argument function

is also e�ect-free), we can specialize Pure TDPE instead of Full TDPE in the

second Futamura projection. The speedup of running the specialized generating

extension over direct partial evaluation is consistently around 3 (shown with

Church numeral 80ch).

17.7.2 Analysis of the result

Overall, the speedup of the second Futamura projection with TDPE is dis-

appointing compared to the typical order-of-magnitude speedup achievable in

traditional partial evaluation [57]. This, on the other hand, reects the high

eÆciency of TDPE, which carries out static computations by evaluation rather

than symbolic manipulation. Turning symbolic manipulation (i.e., interpreta-

tion) into evaluation is one of the main goals one hopes to achieve by specializing

a syntax-directed partial evaluator. Since TDPE does not have much interpretive

the residualizing instantiations for the �xed point and case operators used. Danvy and Rhiger [22]

achieved a similar e�ect in TDPE for Scheme, using Scheme macros.

201

overhead in the �rst place, the speedup is bound to be lower.

Logically, the next question to ask|for a better understanding of how and

when the second Futamura projection could e�ectively speedup the process

of TDPE|is what cost of TDPE can or cannot be removed by using self-

application. The higher-order nature of the TDPE algorithm blurs the bound-

aries between the various components that contribute to the running time of the

specialization; we can only roughly divide the cost involved in performing TDPE

as follows:

1. Cost due to computation in the extraction function #�, namely function

invocations of rei�cation and reection for subtypes of �, name and code

generation and, in the case of Full TDPE, the use of control operators shift

and reset.

2. Cost due to computation in the residualizing instantiation ps of input

program and static input, namely, apart from static computation, the in-

vocation of reection by code-generation versions of dynamic constants.

3. Cost due to reducing extra redexes formed by the interaction of #� and ps

in #� ps .

Of the costs due to computation in the extraction function, only the one

caused by function invocations can be eliminated, which amounts to function

inlining. All other computations have to be performed at specialization time.

Similarly, for the cost associated with the residualizing instantiation, inlining

can be performed for the code-generation versions of dynamic constants and

their calls to the reection function. Finally, the extra redexes formed by the

202

interaction of the extraction function and the residualizing instantiation can be

partly reduced by the specialization.

In Full TDPE, the somewhat time-consuming control operators dominate

the cost of extraction algorithm; the low speedup of specializing Full TDPE (the

�rst two benchmarks) as opposed to that of specializing Pure TDPE (the third

benchmark), we think, are mainly due to the fact that these control operators

cannot be eliminated. Furthermore, in the case of the Church addition function,

the program is a higher-order pure �-term, which usually \mixes well" with the

extraction function, in the sense that many extra redexes are formed by their

interaction.

Do certain implementation-related factors, such as the global optimizations of

the ML compiler we used and the fact that we are working in a typed setting, give

positive contribution to the speedup? In our opinion, the help is minimal, if not

negative. First, the specialization carried out by the self-application with respect

to a trivial BTA (Chapter 16.1) has an e�ect similar to a good global inliner.

Therefore, the global optimization of the ML compiler, especially the inlining

optimization, should only reduce the potential speedup of the specialization.

Second, working in a typed setting does complicates the type speci�cation and

the parameterization (Section 17.4), but it does not incur extra cost at runtime

when using TDPE. Indeed, the instantiation through ML functors happens at

compile time. Furthermore, the need to parameterize over built-in constructs

such as �xed point operators and pattern matching is present also in an untyped

setting.

203

Chapter 18

Concluding remarks for Part III

We have adapted the underlying concept of the second Futamura projection to

TDPE and derived an ML implementation for it. By treating several examples,

among them the generation of a compiler from an interpreter, we have examined

the practical issues involved in using our implementation for deriving generating

extensions of programs.

To build a generating-extension generator (cogen), and to formally prove its

correctness at the same time, one possibility is to start with a partial evaluator

and rewrite it into the desired generating extension in several steps, such as

the use of higher-order abstract syntax and deforestation in Thiemann's work

[101]. Correctness follows from showing the correctness of the partial evaluator

and the correctness of each of these steps. In contrast, for generating extensions

produced with the second Futamura projection, the implementation is produced

automatically, and correctness follows immediately from the correctness of the

partial evaluator. Often, however, this conceptual simplicity is compromised by

204

(1) the complications in using self-application, and (2) the need to make the

partial evaluator self-applicable and prove the necessary changes to be meaning

preserving. In the case of TDPE, the implementation e�ort for writing the

GE-instantiation of the object program is similar in level to that of the hand-

written cogen approach, but the only change to the TDPE algorithm itself is the

transformation described and proven correct in Section 17.5.

The third Futamura projection states that specializing a partial evaluator

with respect to itself yields an eÆcient generating-extension generator. The

type-indexed nature of TDPE makes it challenging to implement the third Fu-

tamura projection directly in ML. If it can be done, our experience with the

second Futamura projection suggests that only an insigni�cant speedup would

be obtained.

At the current stage, our contribution seems to be more signi�cant at a

conceptual level, since the speedup achieved by using the generated generating

extensions is rather modest. However we observed that a higher speedup can

be achieved for more complicated type structures, especially in a setting with

no or few uses of computational e�ects; this suggests that our approach to the

second Futamura projection using TDPE might �nd more practical applications

in, e.g., the �eld of type theory and theorem proving.

The technical inconveniences mentioned in Chapter 17.6 are clearly an obsta-

cle for using the second Futamura projection for TDPE (and, to a lesser extent,

for using TDPE itself). A possible solution is to implement a translator from

the two-level language into ML, thus handling the mentioned technicalities au-

tomatically. Of course, such an approach would sacri�ce the exibility of TDPE

205

of allowing the use of all language constructs in the static part of the subject

program. Even so, TDPE would still retain a distinct avor when compared to

traditional partial-evaluation techniques: Only those constructs not handled au-

tomatically by TDPE, i.e., constants, need to be binding-time annotated; other

constructs, such as function application and function abstraction, always fol-

low their standard typing rules from typed lambda calculi. This simpli�es the

binding-time analysis considerably and often makes binding-time improvements,

e.g, eta-expansion, unnecessary, which was one of the original motivations of

TDPE [12, 21].

206

Appendices

207

Appendix A

Call-by-name CPS translation

Danvy and Filinski [18] also presented a one-pass version for Plotkin's call-by-

name CPS transformation. Figure A.1 shows both transformations. The erasure

argument applies here, too.

Other one-pass CPS transformations [43] can be similarly described and

proven correct.

208

a. Source syntax: the pure simply typed �-calculus n�

Types � ::= b j �1 ! �2

Raw terms E ::= x j �x:E j E1E2

Typing judgment n� ` ��E : � (omitted)

b. Plotkin's original transformation:

n� ` ��E : � =) nPCF ` Kfj�jgp� � fjEjgp� : Kfj�jgp� .

Here, K� = (�! Ans)! Ans for an answer type Ans.

Types: fjbjgp� = b,

fj�1 ! �2jgp� = Kfj�1jgp�!Kfj�2jgp�

Terms: fjxjgp� = �k:x k,

fj�x:Ejgp� = �k:k �x:fjEjgp�

fjE1 E2jgp� = �k:fjE1jgp��r1:r1 fjE2jgp� k.

Figure A.1: Call-by-name CPS transformation (1/2)

209

c. Danvy and Filinski's one-pass transformation:

The transformation is speci�ed as a pair of mutually recursive translations.

1. The (higher-order) auxiliary translation

n� ` ��E : � =) nPCF2 ` (Kfj�jgp�)� fjEjgdf2� : K
(fj�jgp�)

Here, K� = (�!Ans)!Ans.

8>>>><
>>>>:

fjxjgdf2� = �k:x@�y:k y

fj�x:Ejgdf2� = �k:k �x:fjEjgdf�

fjE1 E2jgdf2� = �k:fjE1jgdf2� �r1:r1@fjE2jgdf�@�x:k x

2. The complete translation

=) nPCF2 ` (Kfj�jgp�)� fjEjgdf� :(Kfj�jgp�)

8>>>><
>>>>:

fjxjgdf� = x

fj�x:Ejgdf� = �k:k@�x:fjEjgdf�

fjE1 E2jgdf� = �k:fjE1jgdf2� �r1:r1@fjE2jgdf�@k

Figure A.1: Call-by-name CPS transformation (2/2)

210

Appendix B

Expanded proofs for nPCF
2

B.1 Type preservation and annotation erasure

Theorem 4.1 (Type preservation). If��E : � and E + V , then��V :

� .

Proof. Induction on E + V . For the only non-straightforward case, where E �

E1E2, we use a Substitution Lemma of the typing rules: if �; x : �1�E : �2 and

�� E 0 : �1, then �� EfE 0=xg : �2.

Theorem 4.3 (Annotation erasure). If nPCF2 ` � � E : � and nPCF2 `

E + V , then nPCF ` �� jEj = jV j : j� j.

Its proof uses the following Substitution Lemma for erasure.

Lemma B.1 (Substitution lemma for j � j). If nPCF2 ` �; x : � 0�E : � and

nPCF2 ` �� E 0 : � 0, then jEfE 0=xgj �� jEjfjE
0j=xg.

Proof. By a simple induction on the size of term E.

211

Proof of Theorem 4.3. By rule induction on E + V . We show a few cases.

Case [app]: jE1E2j � jE1j jE2j

i:h:
= (�x:jE 0j) jE2j = jE 0jfjE2j=xg

�� jE
0fE2=xgj (Lemma B.1)

i:h:
= jV j:

Case [�x]: j�xEj � �x jEj = jEj(�x jEj) � jE(�xE)j
i:h:
= jV j.

Case [lam]: j�x:Ej � �x:jEj
i:h:
= �x:jOj � j�x:Oj.

B.2 Native embedding

We �rst present the standard denotational semantics of the language nPCF�.

De�nition B.2. (Denotational semantics of nPCF�) Let Z and B denote the

sets (discrete cpos) of integers and of booleans, respectively. Let Cst denote

the set used to represent constants. Let E be the inductive set given as the

smallest solution to the equation X = Z+Z+B+Cst+Z�X +X �X, with

injection functions inVar, inLitint, inLitbool, inCst, inLam, and inApp into the

components of the sum.

The standard domain-theoretical semantics maps nPCF�-types to domains as

follows.

[[int]] = Z?; [[bool]] = B?; [[�]] = E?; [[�1 ! �2]] = [[�1]]! [[�2]]

This mapping extends to provide the meaning of contexts � by taking the product:

[[�]] =
Q

x2dom� [[�(x)]]. The meaning of a term-in-context � � E : � is a

212

continuous function [[E]] : [[�]]! [[�]]:

[[`]]� = val? `

[[x]]� = �x

[[�x:E]]� = �y:[[E]]�[x 7! y]

[[E1E2]]� = [[E1]]� ([[E2]]�)

[[�xE]]� =
F

i�0 ([[E]]�)
i(?)

[[if E1E2E3]]� = let? b([[E1]]� in if b ([[E2]]�) ([[E3]]�)

[[E1
 E2]]� = let? m([[E1]]� in let
? n([[E2]]� in val

? (m
 n)

[[VAR(E)]]� = let? i([[E]]� in val? (inVar(i))

[[LITb(E)]]� = let? l([[E]]� in val? (inLitb(l))

[[CST(E)]]� = let? c([[E]]� in val? (inCst(c))

[[LAM(E1; E2)]]� = let? x([[E1]]� in let
? e([[E2]]� in val

? (inLam(x; e))

[[VAR(E1; E2)]]� = let? e1 ([[E1]]� in let
? e2 ([[E2]]� in val

? (inApp(e1; e2))

It is straightforward to show that the equational theory is sound with respect

to this denotational semantics.

Theorem B.3 (Soundness of the equational theory). If nPCF� ` ��E1 =

E2 : �, then [[E1]] = [[E2]].

We now prove the correctness of the embedding translation, i.e., that evaluat-

ing complete programs of code type in nPCF2 is precisely simulated by evaluating

their embedding translations in nPCF�. We proceed in two steps. First, we show

that if nPCF2-evaluation of a term E generates certain object term as the result,

then [[fjEjgn�(1)]] should give the encoding of this term, modulo �-conversion.

Second, we show that conversely, if [[fjEjgn�(1)]] 6= ?, then evaluation of term E

213

terminates.

Lemma 4.6 (Substitution lemma for fj�jgn�). If nPCF
2 ` �; x : � 0 � E : �

and nPCF2 ` �� E 0 : � 0, then fjEfE 0=xgjgn� �� fjEjgn�ffjE
0jgn�=xg.

Proof. By induction on the size of term E. The most non-trivial case is the

following one.

Case E � �y:E1: There are two sub-cases: Either x � y or x 6� y. If x � y,

then

fj(�y:E1)fE
0=ygjgn� � fj(�y:E1)jgn� � �n�(�y:fjE1jgn�)

� (�n�(�y:fjE1jgn�))ffjE
0jgn�=yg � fj(�y:E1)jgn�ffjE

0jgn�=yg

If x 6� y, then let z be a variable such that z =2 fv(E 0) [fxg

fj(�y:E1)fE
0=xgjgn�

�� fj�z:E1fz=ygfE
0=xgjgn�

� �n�(�z:fjE1fz=ygfE
0=xgjgn�)

�� �n�(�z:(fjE1fz=ygjgn�fE
0=xg)) (ind. hyp. on E1fz=yg)

� (�n�(�z:fjE1fz=ygjgn�))ffjE
0jgn�=xg (z =2 fv(E 0) = fv(fjE 0jgn�))

�� fj(�y:E1)jgn�ffjE
0jgn�=xg

Lemma 4.7 (Evaluation preserves translation). If nPCF2 ` � � E : �

and nPCF2 ` E + V , then nPCF� ` fj�jgn� � fjEjgn� = fjV jgn� : fj� jgn�.

Proof. By rule induction on nPCF2 ` E + V . We show a few cases.

214

Case [app]: fjE1E2jgn� � fjE1jgn� fjE2jgn�

i:h:
= fj�x:E 0jgn�fjE2jgn��(�x:fjE

0jgn�) fjE2jgn�

= fjE 0jgn�ffjE2jgn�=xg (�)

�� fjE
0fE2=xgjgn� (Lemma 4.6)

i:h:
= fjV jgn�:

Case [�x]: fj�xEjgn� � �x fjEjgn�

= fjEjgn� (�x fjEjgn�) (equational rule for �x)

� fjE (�xE)jgn�
i:h:
= fjV jgn�:

The term-building evaluation of the dynamic parts preserves translation, be-

cause the translation of the dynamic constructs is compositional.

Case [lam]: fj�x:Ejgn� � �n�(�x:fjEjgn�)
i:h:
= �n�(�x:fjOjgn�) � fj�x:Ojgn�.

Lemma 4.8 (Translation of code-typed value). If nPCF2 ` v1 :�1; : : : ; vn :

�n �O :�, then there is a value t : � such that

� nPCF� ` � (fjOjgn�(n+ 1))f�i:VAR(1)=v1; : : : ; �i:VAR(n)=vng = t : �,

� nPCF ` v1 : �1; : : : ; vn : �n �D(t) : �, and

� jOj �� D(t).

Proof. By induction on the size of term O. We write �n for the substitution

f�i:VAR(1)=v1; : : : ; �i:VAR(n)=vng.

Case O � $b`: lhs � (($n�b `)(n+1))f�ng = LITb(`). We have that D(LITb(`)) �

` � jOj.

215

Case O � vi: lhs � (vi(n+ 1))f�ng = VAR(i). We have that D(VAR(i)) � vi �

jOj.

Case O � �x:O1:

lhs � (�n�(�x:fjO1jgn�)(n+ 1))f�ng

= LAM(n+ 1; (fjO1jgn�f�i
0:VAR(n + 1)=xg((n + 1) + 1)))f�ng

= LAM(n+ 1; (fjO1fvn+1=xgjgn�((n+ 1) + 1))f�;�i0:VAR(n+ 1)=vn+1g)

i:h:
= LAM(n+ 1; t1)

where D(t1) �� jO1jfvn+1=xg. Here we use the induction hypothesis on term

Ofvn+1=xg, which is typed as v1 :�1; � � � ; vn+1 :�n+1�Ofvn+1=xg :�n+2,

where � = �n+1 ! �n+2. We have that D(LAM(n + 1; t1)) � �vn+1:D(t1) ��

�x:jO1j � jOj.

Case O � O1@O2:

lhs � (@n�fjO1jgn�fjO2jgn�(n+ 1))f�ng

= APP(fjO1jgn�n+ 1f�ng)fjO2jgn�n+ 1f�ng

i:h:
= APP(t1; t2)

where D(t1) �� jO1j and D(t2) �� jO2j. We have that D(APP(t1; t2)) =

D(t1)D(t2) �� jO1j jO2j �� jOj

Case O � d: lhs � ((�i:CST(HdI))(n + 1))f�ng = HdI.

Lemma 4.9 (Computational adequacy). If nPCF2 ` �E :�, and there is

a nPCF�-value t : � such that [[fjEjgn�(1)]] = [[t]], then 9O:E + O.

216

In the following, we write E + for 9V:E + V ; that is, evaluation of E termi-

nates.

We prove Lemma 4.9 using a Kripke logical relation between the denotation

of translated terms and the original two-level terms.

De�nition B.4 (Logical relation, ��
�). For an object-type typing context �,

we de�ne, by induction on an nPCF2-type � , a family of relations v ��
� E, where

v 2 [[fj� jgn�]], and E 2 Expr�� = fE j nPCF2 ` �� E : �g, by

v ��
b E () v = ? _ 9`:(v = val? ` ^ E + `)

f ��
� E () 8n:(f(val? n) = ? _ E +)

f ��
�1!�2

E () 8a 2 [[fj�1jgn�]];�
0 � �; E 0 2 Expr�

0

�1
:

(a ��0

�1
E 0) f(a) ��0

�2
EE 0)

Note that the logical relation at the code types � only requires the termi-

nation of the evaluation of E. This requirement is enough for the proof, because

programs cannot perform intensional analysis on values of types�. In fact, it is

essential for the correctness of the simple native embedding here that intensional

analysis on code is absent from the language.

Before proceeding to prove a \Basic Lemma" for the logical relation, we �rst

establish some of its properties.

\Weakening" holds for ��
� (Lemma B.5) Note that the object-type context

� is used in the de�nition of the logical relation only to ensure that the

term E is well-typed. Naturally we expect a weakening property; and

indeed this property is used in several cases of the proof. It is this property

that \forces" us to use a Kripke-style logical relation.

217

��
� is !-admissible (Lemma B.6) This lemma is necessary for the proof in the

case of a �xed-point operator.

Kleene equivalence respects ��
� (Lemma B.7) At a few places, the opera-

tional semantics and the denotational semantics clash in a technical sense.

The call-by-name denotational semantics, for example, does not use a lifted

function space; the bottom element at type �1 ! �2 is not distinguished

from a function value whose image (of type �2) is constantly bottom. In

the operational semantics, the function needs to be evaluated to a value

before the substitution. At base types, however, the two semantics agree.

The denotational semantics forces us to take a standard call-by-name form

of logical relation at the function type in the de�nition. Another problem

then appears: since we do not evaluate the expression form in the oper-

ational semantics, what we can infer from the induction hypothesis does

not directly give the conclusion. In particular, for the case �x:E, using

the induction hypothesis, we can relate the denotation to the expression

Ef�;E 0=xg, but instead we need to relate it to the expression ((�x:E)f�g)E 0.

The two expressions evaluate to the same value in the operational seman-

tics, i.e., they are Kleene-equivalent. Therefore, we need to show that the

logical relation can be transferred between Kleene-equivalent terms.1

1In the literature, this mismatch problem is resolved by using a di�erent formulation of the logical

relation, usually called computability : the relation at higher types is de�ned by means of full appli-

cations (e.g., Plotkin's proof of adequacy [88] and Gunter's proof [40, Section 4.3]), which reduces

the de�nition at higher-type directly to ground type. The Kleene-equivalence formulation used in the

present article has the same e�ect, but it seems to scale better with respect to other types such as

218

Lemma B.5 (Weakening of ��
�). If � � �0 and v ��

� E, then v ��0

� E.

Proof. By a case analysis on type � .

Case � = b or � =�: Use the weakening property of the nPCF2 typing rules:

Expr�� � Expr�
0

� .

Case � = �1 ! �2: Let f ��
�1!�2

E. First, we have that E 2 Expr�� � Expr�
0

� .

Second, let a, �00 � �0 (which implies �00 � �), and E 0 2 Expr�
00

�1
be such that

a ��00

�1
E 0. Then, by the de�nition of ��

�1!�2
, we have that f(a) ��00

�2
EE 0. This

shows that f ��0

�1!�2
E by de�nition.

Lemma B.6 (��
� is !-admissible). For all E 2 Expr�� , the predicate � ��

� E

is admissible, i.e., (1) it is chain-complete: If a0 v : : : v ai v : : : is a countable

chain in [[fj� jgn�]], such that 8i:ai �
�
� E, then

F
i�0 ai �

�
� E; (2) it is pointed:

? ��
� E.

Proof. By induction on type � .

Case � = b: Since fjbjgn� = b, and base types are interpreted by at domains,

the chain must be constant after a certain position, and the upper bound equals

this constant. Pointedness follows from the de�nition of the logical relation.

Case � =�: Let f0 v : : : v fi v : : : be a chain in [[fj� jgn�]] = Z?!E?. For a

number n, if (
F

i�0 fi)(val
? n) =

F
i�0(fi(val

? n)) 6= ?, then 9m:fm(val
? n) 6=

?. This implies E +, by the de�nition of fm �
�
� E.

product and sum; the de�nition of full applications becomes hairy in the presence of these types.

219

If f = ?, the implication in the de�nition of the logical relation holds vacu-

ously.

Case � = �1 ! �2: The predicate is given by

P (f) =
^

(�0;a;E0)j���0;a��0
�1
E0

(��:�a)f ��0

�2
EE 0:

It is admissible since all the � ��
�2

EE 0 are admissible by induction hypothe-

sis, and admissibility is closed under taking pre-image under strict continuous

function and arbitrary intersection [107].

Lemma B.7 (Kleene equivalence respects ��
�). If v �

�
� E, and E =kl E 0,

i.e., 8V:(E + V , E 0 + V), then v ��
� E 0.

Proof. By induction on type � .

Case � = b or � =�: Immediate.

Case � = �1 ! �2: Let a, �0 � �, and E 00 2 Expr�
0

�1
be such that a ��0

�1
E 00.

Then we have

(1) v(a) ��0

�2
EE 00 (by the de�nition of v ��

� E);

(2) EE 00 =kl E 0E 00 (following from E =kl E 0).

Applying the induction hypothesis for �2 to (1) and (2), we have that v(a) ��0

�2

E 0E 00. This shows that v ��0

�1!�2
E 0.

The logical relation extends naturally from types to typing contexts. Let � be

a nPCF2-typing context (x1 : �1; : : : ; xn : �n), � an object-type typing context,

220

and � a substitution (from� to �) fE1=x1; : : : ; En=xng, where nPCF
2 ` ��

Ei : �i. We de�ne the relation ��
� between environments and substitutions as

follows:

� ��
� �() 8x 2 dom�:�x ��

�(x) xf�g

Now we are ready to prove our version of the \Basic Lemma".

Lemma B.8. Let nPCF2 ` �� E : � , then for all �, �, and �, � ��
� � implies

that [[fjEjgn�]]� �
�
� Ef�g (it should be clear that �� Ef�g : �).

Proof. By induction on the size of the derivation for �� E : � .

The static term formations have fairly standard sub-proofs.

Case `: Trivial.

Case x: We need to show: �x ��
� Ef�g. It follows from the de�nition of � ��

� �.

Case �x:E: We need to show: [[�x:fjEjgn�]]� �
�
�1!�2

(�x:E)f�g. For all �0 � �

and a ��0

�1
E 0, we have � ��0

� � by Lemma B.5, and therefore �[x 7! a] ��0

�;x:�1

(�;E 0=x). By induction hypothesis, we have

([[�x:fjEjgn�]]�)a = [[fjEjgn�]](�[x 7! a]) ��0

�2
Ef�;E 0=xg

Since ((�x:E)f�g)E 0 =kl Ef�;E 0=xg, we can apply Lemma B.7 to conclude that

([[�x:fjEjgn�]]�)a �
�
�2
((�x:E)f�g)E 0:

221

Case E1E2: We need to show: [[fjE1jgn� fjE2jgn�]]� �
�
� (E1E2)f�g. The induction

hypotheses imply that [[fjE1jgn�]]� �
�
�2!� E1f�g and that [[fjE2jgn�]]� �

�
�2

E2f�g.

By de�nition of ��
�2!� (taking �

0 = �), we have

[[fjE1jgn� fjE2jgn�]]� = [[fjE1jgn��]][[fjE2jgn��]] �
�
� (E1f�g)(E2f�g) � (E1E2)f�g

Case �xE: We need to show:
F

i�0 ([[fjEjgn�]]�)
i(?) ��

� (�xE)f�g. We have

? ��
� (�xE)f�g (pointedness)

([[fjEjgn�]]�)(?) ��
� Ef�g((�xE)f�g) =kl (�xE)f�g (ind. hyp.)

...

By induction, for all i � 0, ([[fjEjgn�]]�)
i(?) ��

� (�xE)f�g. Finally, chain-

completeness (Lemma B.6) implies the conclusion.

Case if E1E2E3: We need to show:

[[if fjE1jgn� fjE2jgn� fjE3jgn�]]� �
�
� if E1E2E3:

There are three sub-cases:

� [[fjE1jgn�]]� = ?: trivial.

� [[fjE1jgn�]]� = val? tt: the induction hypotheses imply that

(1) [[if fjE1jgn� fjE2jgn� fjE3jgn�]]� = [[fjE2jgn�]]� �
�
� E2f�g, and

(2) E1f�g + tt, and henceforth E2f�g =
kl (if E1E2E3)f�g.

Applying Lemma B.7 to (1) and (2), we have the conclusion.

� [[fjE1jgn�]]� = val? �: similar to the previous case.

222

Case E1
E2: Simple.

The sub-proofs for dynamic term formations are intuitively very simple: the

denotational semantics of various constructs are strict in the sub-terms, which,

by induction hypotheses, implies that the evaluation of the subterms terminates.

However, in the case of a dynamic �-abstraction �x:E, the change of typing

context requires special attention to ensure that the term we use is well-typed.

For other cases, we only show the proof for $bE.

Case $bE: We need to show: [[$n�b fjEjgn�]]� �
�
b ($bE)f�g. For n 2 Z, if ? 6=

[[$n�b fjEjgn�]]�(val
? n) = [[LITb(fjEjgn�)]]� = let? l([[fjEjgn�]]� in val? (inLitb(l)),

then [[fjEjgn�]]� 6= ?. By induction hypothesis, we have [[fjEjgn�]]� �
�
b Ef�g, which

implies that Ef�g +, and consequently ($bE)f�g +.

Case �x:E: Recall that the typing rule is

�; x : �1 � E :�2
�� �x:E :(�1 ! �2)

We need to show: [[�n�(�x:fjEjgn�)]]� �
�
(�1!�2)

(�x:E)f�g. Without loss of gener-

ality, we assume x =2 dom�; otherwise we can rename the bound variable using

�-conversion. Now for any n 2 Z, if [[�n�(�x:fjEjgn�)]]�(val
? n) 6= ?, then it is

easy to show that [[fjEjgn�]]�[x 7! �w:val? (inVar(n))] 6= ?.

Since x =2 dom�, the context �; x : �1 is well-formed. It is easy to check

that �w:val? (inVar(n)) ��;x:�1
�1

x; furthermore, since � is Kripke, we also have

that � ��;x:�1
� �. Putting them together, we have that

�[x 7! �w:val? (inVar(n))] ��;x:�1
�;x:�1

f�; x=xg:

223

Then, by the induction hypothesis, we get

[[fjEjgn�]](�[x 7! �w:val? (inVar(n))]) ��;x:�1
�2

Ef�; x=xg � Ef�g

Since lhs 6= ?, we have, by the de�nition of the logical relation, that Ef�g +.

Consequently �x:(Ef�g) +.

Finally, Lemma 4.9 is an easy corollary.

Proof of Lemma 4.9. Let � be the empty environment, and � the empty substi-

tution. We have that [[fjEjgn�(1)]]� = [[t]]�. Since t is a value, [[t]]� 6= ?. Thus

[[fjEjgn�]]�(val
? 1) = [[fjEjgn�(1)]]� 6= ?. By Lemma B.8, [[fjEjgn�]]� �

�
� Ef�g � E.

The de�nition of the logical relation at the type � implies that E +.

Theorem 4.10 (Correctness of embedding). If nPCF2 ` �E :�, then the

following statements are equivalent.

(a) There is a value O :� such that nPCF2 ` E + O.

(b) There is a value t : � such that [[fjEjgn�(1)]] = [[t]].

When these statements hold, we further have that

(c) nPCF ` �D(t) : � and jOj �� D(t).

Proof. (a)) (b),(c) Assume (a). By Lemma 4.7, nPCF� ` fjEjgn� = fjOjgn�.

By Lemma 4.8, there is a value t such that nPCF� ` fjOjgn�1 = t, with which

(c) also holds. By the transitivity rule, we have that nPCF� ` fjEjgn�1 = t.

The conclusion now follows by an application of Theorem B.3.

(b)) (a),(c) Assume (a). By Lemma 4.9, E +. Since �E : �, we have

E + O for some value O : �. By the �rst part of this proof, we further

224

have an nPCF�-value t0 : � that satis�es (c) (with t replaced by t0) and

validates [[fjEjgn�(1)]] = [[t0]]. It remains to show that t � t0.

Because [[t]] = [[fjEjgn�(1)]] = [[t0]], and the semantic function of �-typed

values is injective (easy structural induction), we have that t � t0.

B.3 Call-by-name type-directed partial evaluation

Lemma 4.11. For all types �, nPCF ` � j���j = �x:x : �! � and nPCF `

� j���j = �x:x : �! �.

Proof. By a straightforward induction on type � .

Theorem 4.12 (Semantic correctness of TDPE). If nPCFtdpe ` �E : �d

and nPCF2 ` NF(E) + O, then nPCF ` � jOj = jEj : �.

(Note that the two erasures are di�erent: one operates on nPCF2-terms, the

other on nPCFtdpe-terms.)

Proof. First, we prove by induction on nPCFtdpe ` �E : ' that nPCF ` �

jfjEjgrij = jEj : j'j. The proofs for the static part, for which both translations

are homomorphic, are straightforward and omitted. The only remaining cases

are the following ones.

Case $bE: We have jfj$bEjgrij � j$bfjEjgrij � jfjEjgrij
i:h:
= jEj � j$bEj.

225

Case dd : �d: We have jfjddjgrij � j���jjdj
�
= d � jddj, where

�
= uses Lemma 4.11

and the de�nition of erasure for nPCF2-terms.

From this, we can infer that jNF(E)j � j���j jfjEjgrij = jEj, again using

Lemma 4.11. Now, applying Theorem 4.3 to nPCF2 ` NF(E) + O, we can

conclude that jOj = jNF(E)j = jEj.

Theorem 4.13 (Re�ned type preservation). If nPCF2 ` var(�) I E : �

and nPCF2 ` E + V , then nPCF2 ` var(�) I V : � .

Like in the proof of Theorem 4.1, the most interesting case is when E � E1E2,

for which we need a Substitution Lemma.

Lemma B.9 (I-substitutivity). If nPCF2 ` �; y : �1 I E : �2 and nPCF2 `

� I E 0 : �1, then nPCF2 ` � I EfE 0=yg : �2.

Proof. By a straightforward induction on the derivation of the typing judgment

nPCF2 ` �; x : �1 I E : �2.

Proof of Theorem 4.13. By induction on E + V . The only non-straightforward

case in the static part is the rule ([app]), i.e., the evaluation of an application; for

this rule we use Lemma B.9. For the dynamic part, all the rules simply evaluate

the subterms while keeping the top-level constructs; combining the induction

hypotheses suÆces to give the same typing for the result values V as for the

original terms E.

Theorem 4.14 (Normal-form code types). If V is an nPCF2-value (Fig-

ure 4.2), then

226

(1) if nPCF2 ` var(�) I V :at(�), then V � O for some O and ��at jOj : �;

(2) if nPCF2 ` var(�) I V :nf (�), then V � O for some O and ��nf jOj :

�.

Proof. First of all, if a value V is of any code type var(�), at(�), ornf (�),

then a simple examination of the rules shows that V can be neither of the form

` nor of the form �x:E, and thus it must be of the form O. Furthermore, if

nPCF2 ` var(�) I O : var(�), then O must be a variable x such that

x : � 2 �, since in all other cases of O, the type could not be var(�).

According to the BNF for a code-typed value O, the only rules that can be

used in the derivation of O's typing are the rules in the (new) dynamic part plus

the rules for literals and variables. Now, a simple rule induction proves (1) and

(2).

Lemma 4.15. (1) The extraction functions (Figure 4.5c) have the following

normal-form types (writing �nf for �fnf (b)=b : b 2 Bg).

I ��� : �nf !nf (�);I ��� :
at(�)! �nf :

(2) If nPCFtdpe ` � � E : ', then nPCF2 ` fj�jgnfri I fjEjgri : fj'jg
nf
ri , where

fj'jgnfri = 'fnf (b)=bd : b 2 Bg

Proof.

(1) By induction on type �.

Case � = b: Because at the base type, bnf = nf (b), we just need to show:

I �x:x :nf (b)!nf (b). This is simple.

227

Case � = �1!�2: Noting that (�1!�2)
nf = �nf

1 !�nf
2 , we give the following

typing derivation for ���1!�2 based on the induction hypotheses (we use weakening

freely and implicitly, write �1 for the context f : �nf
1 ! �nf

2 ; x :var(�1), and

omit the typing of ���1 and ���2 from the induction hypotheses):

�1 I f : �nf
1 ! �nf

2

�1 I x :var(�1)

�1 I x :at(�1)

�1 I ���1x : �
nf
1

�1 I f (���1x) : �
nf
2

�1 I ���2(f (���1x)) :
nf (�2)

f : �nf
1 ! �nf

2 I �x:���2(f (���1x)) :
nf (�1 ! �2)

I �f:�x:���2(f (���1x)) : (�
nf
1 ! �nf

2)!nf (�1 ! �2)

A similar derivation works for ���1!�2 , which is compactly described as the fol-

lowing:

e :at(�1 ! �2); x : �
nf
1 I ���2(

at (�2)z }| {
e@(���1x|{z}

nf (�1)

)) : �nf
2

(2) By a simple induction on nPCFtdpe ` � � E : '. For the case when E � dd

with Sg(d) = �, we use the typing of ��� from part (1) and the fact that fj�djgnfri �

fj�fbd=b : b 2 Bgjgnfri � �fnf (b)=b : b 2 Bg � �nf.

Theorem 4.16. If nPCFtdpe ` �E : �d, then nPCF2 `I NF(E) :nf (�).

Proof. By Lemma 4.15(2), we have nPCF2 `I fjEjgri : fj�
djgnfri . Since fj�djgnfri �

�nf , applying ��� : �nf !nf (�) (Lemma 4.15(1)) to fjEjgri yields the conclu-

sion.

Corollary 4.17 (Syntactic correctness of TDPE). For nPCFtdpe ` �E : �d,

if nPCF2 ` NF(E) + V , then V � O for some O and nPCF ` ��nf jOj : �.

228

Proof. We use Theorem 4.16, Theorem 4.13, and Theorem 4.14.

229

Appendix C

Call-by-value two-level language

vPCF
2: detailed development

Since we are working with vPCF2 in this section, we leave vPCF2 ` implicit.

C.1 Type preservation

Lemma C.1 (Substitution Lemma for vPCF2-typing). If �; y : �1 � E : �2

and �� E 0 : �1, then �� EfE 0=yg : �2.

For a concise presentation, we introduce the following notations.

De�nition C.2 (Binder-in-context). For a binder B � (x1 :�1 = O1; : : : ; xn :

�n = On), we write � � [B] if �; x1 : v�1; : : : ; xi�1 : v�i�1 � Oi : e�i for all

1 � i � n. In this case, we also write �; vB for the context �; v�1; : : : ; v�n.

De�nition C.3 (Binder extension and di�erence). We write ��[B] � [B0],

if binder B0 is a pre�x of binder B, and � � [B]. In this case, it makes sense

230

to write B � B0 to denote the di�erence of the two binders, and we have that

�; vB � [B � B0].

We can restate De�nition 5.1 using the preceding notions.

De�nition 5.1 (Binder-term-in-context). We write �� [B]E : � if �� [B]

and �; vB � E : � .

To ease analyses of binder-terms-in-context, we prove an \inversion" lemma.

Informally, it states that one can apply inversion to a binder-term-in-context as

if to a term-in-context,

Lemma C.4 (\Inversion" holds for binder-terms-in-context). Let � �

[B]E : � .

� If E = �x:E 0, then � = �1! �2 and �; x : �1 � [B]E 0 : �2. This corresponds

to the typing rule [lam].

� If E = E1E2, then 9�2 such that � � [B]E1 : �2 ! � and � � [B]E2 : �2.

This corresponds to the typing rule [app].

�
... (similar inversion principles for all the other typing rules, except the rule

[var], which uses the context explicitly.)

Corollary C.5. (Substitution for binder-term-in-context) If �; y : �1� [B]E : �2

and �� [B]E 0 : �1, then �� [B]EfE 0=xg : �2.

Proof. The provability of binder-term-in-context � � [B]E 0 : �1, by de�nition,

implies the following.

231

(1.a) �� [B].

(1.b) �; vB � E 0 : �1.

From (1.a) and �; y : �1 � [B]E : �2 we have

(2) (�; vB); y : �1 � E : �2.

Applying Lemma C.1 to (1.b) and (2) yields the conclusion.

Lemma C.6. If �� [B]E : � and �� [B0] � [B], then �� [B0]E : � .

Proof. The de�nition of �� [B]E : � implies

(1) �; vB � E : � .

The de�nition of �� [B0] � [B] implies

(2.a) �� [B0].

(2.b) �; vB � �; vB0.

Weakening (1) with respect to (2.b) yields �; vB0
� E : � , which, along with

(2.a), is exactly the de�nition of �� [B0]E : � .

If a binder-term-in-context has a code type e� , then we can convert it into

a term-in-context using the let-construct. This observation is manifested in the

following lemma.

Lemma C.7. If �� [B]O : e� , then �� let� B in O : e� .

We slightly strengthen the type preservation theorem 5.2, so as to make the

induction go through.

232

Theorem 5.2 (Type preservation). If v�� [B]E : � and �� [B]E + [B0]V ,

then (1) v�� [B0]V : � , and (2) v�� [B0] � [B].

Proof. By induction on �� [B]E + [B0]V . For (2), note that, for all the implicit

rules, � � [Bn+1] � : : : � [B1] follows immediately from transitivity of \�"

and the induction hypotheses; for the three rules where binders are explicitly

mentioned, it is also clear that (2) holds.

For (1), we show a few cases.

Case [lit], [lam]: There is nothing to prove.

Case [app]: The rule in its full from is

�� [B1]E1 + [B2]�x:E
0 �� [B2]E2 + [B3]V

0 �� [B3]E
0fV 0=xg + [B4]V

�� [B1]E1E2 + [B4]V

for which we reason as follows:

(1) By assumption, v�� [B1]E1 E2 : � .

(2) Inverting (Lemma C.4) (1) gives

a. v�� [B1]E1 : �2 ! � , and

b. v�� [B1]E2 : �2.

(3) From (2.a), by induction hypothesis 1 (counting from left to right),

a. v�� [B2]�x:E
0 : �2 ! � , and

b. v�� [B2] � [B1].

(4) Applying Lemma C.6 to (2.b) and (3.b) yields

233

v�� [B2]E2 : �2

By induction hypothesis 2,

a. v�� [B3]V
0 : �2

b. v�� [B3] � [B2].

(5) Applying Lemma C.6 to (4.b) and (3.a), and then inversion yields

v�; x : �2 � [B3]E
0 : �

(6) Applying Substitution (Corollary C.5) to (5) and (4.a) yields

v�� [B3]E
0fV 0=xg : � .

By induction hypothesis 3,

v�� [B4]V : � .

Case [�x]: The rule in its full form is

�� [B1]E + [B2]�x:E
0 �� [B2]E

0f�x (�x:E 0)=xg + [B3]V

�� [B1]�xE + [B3]V

for which we reason as follows:

(1) By assumption, v�� [B1]�xE : � (where � = �1! �2 for some �1 and �2).

(2) Inverting (1) gives

v�� [B1]E : � ! � .

(3) Applying induction hypothesis 1 to (2) yields

234

v�� [B2]�x:E
0 : � ! � .

(4) Inverting (3) gives

a. v�; x : � � [B2]E
0 : �

An application of the typing rule ([�x]) to (3) gives

b. v�� [B2]�x�x:E
0 : �

(5) Applying Substitution to (4.a) and (4.b) yields

v�� [B2]E
0f�x (�x:E 0)=xg : � .

(6) Applying induction hypothesis 2 to (5) yields

v�� [B3]V : � .

Case [lam]: The rule is

�; y : �;B � [�]Efy=xg + [B0]O y =2 domB [dom�

�� [B]�x:E + [B]�y:let� B0 in O

for which we reason as follows:

(1) By assumption, v�� [B]�x:E : e(�1 ! �2)

(2) Inverting (1) gives

v�; x : v�1 � [B]E : e�2

from which it follows that v�; y : v�1� [B]Efy=xg : e�2. That is (noting

that v�; y : v�1 � v(�; y : �1))

a. v(�; y : �1)� [B], and

235

b. v(�; y : �1; B)� Efy=xg : e�2.

(3) Use the induction hypothesis on (2.b) (noting that ��E : � , ��[�]E : �),

we have

v(�; y : �1; B)� [B0]O : e�2

(4) Apply Lemma C.7 to (3) yields

v(�; y : �1; B)� let
� B0 in O : e�2

Finally, applying the typing rule for dynamic lambda �y:E, [lam], yields

v�; vB � �y:let� B0 in O : e(�1 ! �2).

Case [let]: Similar to the case of rule [lam].

Case [#]: The rule is

�� [B]E + [B0]O x =2 domB0 [dom�

�� [B]#E + [B0; x : � = O]x

for which we reason as follows:

(1) By assumption, v��[B]#E : � . Without loss of generality, we can assume

that � = v�; the other case, where � = e�, can be reduced to this case

using one inversion. Therefore, we have,

v�� [B]#E : v�.

(2) Inverting (1) gives

v�� [B]E : e�

236

(3) Use induction hypothesis on (2) gives

v�� [B0]O : e�.

Because x =2 domB0 [dom�, we have v�� [B0; x : � = O] by de�nition.

We also have v(�; B); x : v� � x : v�. Therefore, by de�nition, we have

v�� [B0; x : � = O]x : v�.

Recall that the observation of a complete program is de�ned to be that of

code type.

De�nition 5.3 (Observation of complete program). For a complete pro-

gram �E : e�, we write E & let� B in O if �[�]E + [B]O.

In accordance with this understanding of complete-program semantics, the

following corollary of the Type Preservation theorem (Theorem 5.2) provides

type preservation for a complete program.

Corollary 5.4 (Type preservation for complete programs). If �E : e�

and E & O, then �O : e�.

Proof. Assume �[�]E + [B]O0 where O � let� B in O0. We have

�E : e�

=) �[�]E : e�

(�)
=) �[B]O0 : e�

(��)
=) �let� B in O0 : e�

where (�) follows from Theorem 5.2 and (��) follows from Lemma C.7.

237

C.1.1 Determinacy

Next, we would like to show that the operational semantics of vPCF2 is deter-

ministic. At the top level, determinacy can be easily phrased as \evaluating a

whole program gives a unique result, modulo �-equivalence". Going into the

inductive steps for the proof, however, requires an extension of the notion of �-

equivalence to take into account of binders, and in turn, of contexts. This extra

conceptual complexity is induced, in particular, by the explicit name generations

and context manipulation in rules such as [lam].

De�nition C.8 (Name substitution). A name substitution is a substitution

that maps variable names to variable names. Applying a name substitution � to

a context � substitutes the variable names in �:

�f�g , f(xf�g : �)j(x : �) 2 �g

De�nition C.9 (�-equivalence for terms-in-context). Let � � E : � and

�0 � E 0 : � be two valid terms-in-context. We say that they are �-equivalent,

noted as (�� E) �� (�
0
� E 0), if there exists a name substitution � such that

�0 � �f�g

E 0 �� Ef�g

We then de�ne the corresponding notion of �-equivalence for binders-in-

context (omitted, cf. De�nition C.2), and the subsequent notion of �-equivalence

for binder-terms-in-context.

De�nition C.10 (�-equivalence for binder-terms-in-context). Let � �

[B]E : � and �0 � [B0]E 0 : � . We say that they are �-equivalent if (�� [B]) ��

(�0 � [B0]) and (�; vB � E) �� (�
0; vB0

� E 0).

238

All the above notions of �-equivalences de�ne equivalence relations. This fol-

lows immediately from the fact that the usual �-equivalence de�nes a equivalence

relation.

Lemma C.11 (Collecting binders preserves �-equivalence). Let ��[B]E :

� and �0 � [B0]E 0 : � be two valid terms-in-contexts. If (�� [B]E) ��

(�0 � [B0]E 0), then (�� let� B in E) �� (�
0
� let� B0 in E 0).

Proof. Immediate.

Lemma C.12. Let (�� [B]�x:E) �� (�0 � [B0]�x0:E 0) and (�� [B]E1) ��

(�0 � [B0]E 0
1). Then, (�� [B]EfE1=xg) �� (�

0
� [B0]E 0fE 0

1=xg).

Theorem C.13 (Determinacy modulo �-conversion). Let v�� [B1]E1 : �

and v�0
� [B0

1]E
0
1 : � be valid terms-in-contexts such that (v�� [B1]E1) ��

(v�0
� [B0

1]E
0
1). If � � [B1]E1 + [B2]E2, then (1) for all B0

2 and E 0
2 such that

�0
� [B0

1]E
0
1 + [B0

2]E
0
2, we have (v�� [B2]E2) �� (v�0

� [B0
2]E

0
2); and (2) such

B0
2 and E 0

2 exist.

Furthermore, the derivation trees for � � [B1]E1 + [B2]E2 and for �0
�

[B0
1]E

0
1 + [B0

2]E
0
2 have exactly the same shape.

Proof. By induction on �� [B1]E1 + [B2]E2, we prove that for all such �0, B0
1,

E 0
1, B

0
2, E

0
2 that satisfy the rest of the premises, it holds that (v�1 � [B0

1]E
0
1) ��

(v�2 � [B0
2]E

0
2). The proof for (2) is easy, so we concentrate on (1).

We demonstrate two cases. For the expression forms E 0 that have a unique

inversions (i.e., those that are not if-expressions), we omit the inversion of E 0.

239

Case [app]: The derivations end with

�� [B1]E1 + [B2]�x:E3 �� [B2]E2 + [B3]V1 �� [B3]E3fV1=xg + [B4]V

�� [B1]E1E2 + [B4]V

for which we have the following reasoning:

(1) The assumption (v�� [B1]E1 E2) �� (v�0
� [B0

1]E
0
1E

0
2) implies

a. (v�� [B1]E1) �� (v�0
� [B0

1]E
0
1), and

b. (v�� [B1]E2) �� (v�0
� [B0

1]E
0
2).

(2) From (1.a), by induction hypothesis 1:

(v�� [B2]�x:E3) �� (v�0
� [B0

2]�x:E
0
3).

(3) From (1.b) and that binders B2 and B0
2 extend B1 and B0

1, by induction

hypothesis 2:

(v�� [B3]V1) �� (v�0
� [B0

3]V
0
1)

(4) An application of Lemma C.12 to (2) and (3) (with binders properly ex-

tended), followed by an application of hypothesis 3, gives the conclusion.

Case [lam]: The derivations end with

�; y : �;B1 � [�]Efy=xg + [B2]O y =2 domB1 [dom�

�� [B1]�x:E + [B1]�y:let
� B2 in O

for which we have the following reasoning:

(1) The assumption (v�� [B1]�x:E) �� (v�0
� [B0

1]�x
0:E 0) implies that

(v�; vB1 � �x:E) �� (v�0; vB0
1 � �x0:E 0)

240

which, by de�nition, implies that

(v(�; y : �1); vB1 � Efy=xg) �� (v(�0; y0 : �1); vB0
1 � E 0fy0=x0g).

(2) An application of the induction hypothesis to (1) yields

(v(�; y : �1); vB1 � [B2]O) �� (v(�0; y0 : �1); vB0
1 � [B0

2]O
0)

By Lemma C.11, we have

(v(�; y : �1); vB1 � let
� B2 in O)

��

(v(�0; y0 : �01); vB0
1 � let

� B0
2 in O

0)

This implies the conclusion.

C.2 Annotation erasure

First, we display the equational rules of vPCF in Figures C.1 and C.2. As men-

tioned in Chapter 5, vPCF is an instance of Moggi's computational �-calculus

[74].

Lemma C.14 (Erasure of �-typed values). Let V be a vPCF2-value (see

Figure 5.2). If � � V : � (i.e., V is of a substitution-safe type), then jV j is a

vPCF-value.

Lemma 5.5 (Annotation erasure). If vPCF2 ` v�� [B]E : � and vPCF2 `

�� [B]E + [B0]V , then vPCF ` �� let� jBj in jEj = let� jB0j in jV j : j� j.

241

Types � ::= b j �1 ! �2

Raw terms E ::= ` j x j d j �x:E j E1E2 j �xE

j if E1E2E3 j E1
E2 j let x(E1 in E2

Typing Judgment vPCF ` ��E : �

The typing rules are very close to that of nPCF. For the convenience of the reader,

we display the complete rules here.

[lit]
` 2 L(b)

�� ` : b
[var]

x : � 2 �

�� x : �
[cst]

Sg(d) = �

�� d : �
[lam]

�; x : �1 �E : �2
�� �x:E : �1 ! �2

[app]
��E1 : �2 ! � ��E2 : �2

��E1E2 : �
[�x]

��E : (�1 ! �2)! (�1 ! �2)

�� �xE : �1 ! �2

[if]
��E1 : bool ��E2 : � ��E3 : �

�� if E1E2E3 : �

[bop]
��E1 : b1 ��E2 : b2

��E1
E2 : b
(
 : b1 � b2 ! b)

[let]
�; x : �1 �E2 : �2 ��E1 : �1

�� let x(E1 in E2 : �2

Figure C.1: One-level call-by-value language vPCF: syntax

Proof. We prove by induction on �� [B]E + [B0]V that

�;B � jEj = let� jB0 � Bj in V : j� j;

from which the conclusion follows using the congruence rule for let. We write

Æi;jB (j � i) for Bj � Bi.

Case [lit], [lam]: There is nothing to prove.

242

Equational Rules vPCF ` ��E1 = E2 : �

The equational rules distinguish a subset of (possibly non-closed) terms,

called values, ranged over by meta-variable V .

Values V ::= ` j x j �x:E j d

Let x, f , and g range over variables in the rules.

Congruence rules: = is a congruence. (Detailed rules omitted)

Equations for let-expressions

[unit] �� let x(E in x = E : �

[assoc] �� let x2 ((let x1 (E1 in E2) in E
= let x1 (E1 in let x2 (E2 in E : �

[let.�] �� let x(V in E = EfV=xg : �

[let.app] ��E1E2 = let x1 (E1 in let x2 (E2 in x1 x2 : �

[let.�x] �� �xE = let x(E in �x x : �1 ! �2

[let.if] �� if E1E2E3 = let x1 (E1 in if xE2E3 : �

[let.
] ��E1
E2 = let x1 (E1 in let x2 (E2 in x1
 x2 : b

Other rules

[�v] �� (�x:E)V = EfV=xg : �

[�v] �� (�x:f x) = f : �1 ! �2

[�x-dinat]�� �x (f Æ g) = f(�x (g Æ f)) : �1 ! �2

[if-tt] �� if ttE2E3 = E2 : �

[if-�] �� if � E2E3 = E3 : �

[if-�] �� if xE E = E : �

[
] �� `1
 `2 = ` : b (`1
 `2 = `)

Figure C.2: One-level call-by-value language vPCF: equational theory

243

Case [app]: Applying Theorem 5.2 to E2 + V 0, and then using Lemma C.14,

we have that jV 0j is a vPCF-value. Now we have

jE1E2j � jE1j jE2j

i:h:
= (let� jÆ1;2Bj in j�x:E

0j) (let� jÆ2;3Bj in jV
0j)

= let� jÆ1;2Bj in let� jÆ2;3Bj in (�x:jE 0j) jV 0j

[�v]
= let� jÆ1;3Bj in jE

0jfV 0=xg

i:h:
= let� jÆ1;3Bj in let� jÆ3;4Bj in V � let� jÆ1;4Bj in V:

Case [if-tt]: jif E1E2E3j � if jE1j jE2j jE3j

i:h:
= if (let� jÆ1;2Bj in tt) jE2j jE3j

= let� jÆ1;2Bj in (if tt jE2j jE3j) = let� jÆ1;2Bj in jE2j

i:h:
= let� jÆ1;2Bj in let� jÆ2;3Bj in jV j � let� jÆ1;3Bj in jV j:

Case [�x]: j�xEj � �x jEj
i:h:
= �x (let� jÆ1;2Bj in j�x:E

0j)

= let� jÆ1;2Bj in �x (�x:jE 0j)

= let� jÆ1;2Bj in jE
0jf�x (�x:jE 0j)=xg

i:h:
= let� jÆ1;2Bj in let� jÆ2;3Bj in jV j � let� jÆ1;3Bj in jV j:

Case [if-�],[
]: Simple; similar to the case of Rule ([if-tt]).

Case [lift],[var],[cst]: Trivial.

Case [lam]: �;B � j�x:Ej � �x:jEj �� �y:jEfy=xgj

i:h:
= �y:(let� jB0j in jOj)

� let� j[B �B]j in j�y:(let� B0 in O)j:

For this step we use the induction hypothesis; we also apply the congruence for

244

�-abstractions.

Case [app]: jE1@E2j � jE1j jE2j

i:h:
= (let� jÆ1;2Bj in jO1j) (let

� jÆ2;3Bj in jO2j)

= let� jÆ1;2Bj in let� jÆ2;3Bj in jO1j jO2j

� let� jÆ1;3Bj in jO1@O2j:

Case [let]: jlet x(E1 in E2j � let x(jE1j in jE2j

�� let y(jE1j in jE2fy=xgj

i:h:
= let y((let� jB0 �Bj in jO1j) in (let� jB00j in jO2j)

= let� jB0 � Bj in let y(jO1j in (let� jB00j in jO2j):

Case [#]: j#Ej = jEj
i:h:
= let� jB0 � Bj in jOj

= let� jB0 �Bj in let x(jOj in x

= let� j[B0; x : � = O]�Bj in jxj:

Lemma 5.5 has the following immediate corollary for complete programs.

Theorem 5.6 (Annotation erasure for complete programs). If vPCF2 `

�E : e� and vPCF2 ` E & O, then vPCF ` � jEj = jOj : �.

Proof. Assume that �E : e� and E & O. That is, �[�]E + [B]O0 where O �

let� B in O0). By Lemma 5.5, we have � jEj = let� jBj in jO0j � jOj : �.

245

C.3 Native implementation

C.3.1 A more \realistic" language: hviPCF2

The semantics of vPCF2 could re-evaluate values of code types|though such re-

evaluation does not change the result. Consider, for example, the evaluation of

the term (�x:x) (print@($int1 + 2)). The semantics �rst evaluates the argument

to the code value print@($int3), then proceeds to evaluate xfprint@($int3)=xg �

print@($int3), which needs a complete recursive descent though it is already a

value. Such re-evaluation does not change the semantics, but it nevertheless is

less eÆcient, and does not model the actual implementation.

To establish a native implementation, we thus consider a variant of vPCF2,

hviPCF2, which marks evaluated terms with angle brackets and prevents them

from re-evaluation.1 The detailed changes of hviPCF2 over vPCF2 are given in

Figure C.3. Note that binders consist of only already evaluated terms, so there

is no need to mark them with angle brackets.

The two languages vPCF2 and hviPCF2 are e�ectively equivalent, through the

following operation to remove the angle brackets in hviPCF2-terms:

De�nition C.15 (Unbracketing). The unbracketing of an hviPCF2-term E,

noted as unbr(E), is the vPCF2-term resulted from E by removing all the angle

brackets in it, i.e., unbr(hEi) � E and all other constructs are translated homo-
1The reader might notice that angle brackets here have a similar functionality to quote in Lisp

and Scheme. But they serve two di�erent purposes: angle brackets here prevent re-evaluation at the

semantics level, thereby removing an artifact of the substitution-based semantics and bringing the

semantics closer to the actual implementation; quote in Lisp allows programmers to distinguish data

from the surrounding programs. A similar concern arises when implementing, e.g., syntactic theories.

246

Syntax

Raw terms E ::= ::: j hOi

Values V ::= ` j �x:E j hOi

Typing Judgment Add the following rule

(Dynamic) [eval'd]
��O : �

�� hOi : �

Evaluation Semantics The dynamic part is replaced by the following rules.

[eval'd]
hOi + hOi

[lift]
E + `

$bE + h$b`i
[var]

x + hxi
[cst]

d + hdi

[lam]
�; y : �;B � [�]Efy=xg + [B0]hOi y =2 domB [dom�

�� [B]�x:E + [B]h�y:let� B0 in Oi

[app]
E1 + hO1i E2 + hO2i

E1@E2 + hO1@O2i

[let]

�� [B]E1 + [B0]hO1i �; y : �;B � [�]E2fy=xg + [B00]hO2i

y =2 domB0 [dom�

�� [B]let y(E1 in E2 + [B0]hlet x(O1 in (let� B00 in O2)i

[#]
�� [B]E + [B0]hOi x =2 domB0 [dom�

�� [B]#E + [B0; x : � = O]hxi

Figure C.3: Changes of hviPCF2 over vPCF2

morphically.

We have that hviPCF2 ` �� E : � implies hviPCF2 ` �� unbr(E) : � .

Theorem C.16 (Equivalence of vPCF2 and hviPCF2).

1. If vPCF2 ` �� [B]unbr (E) + [B0]V 0, then there exists a hviPCF2-value V

247

such that hviPCF2 ` �� [B]E + [B0]V and unbr(V) � V 0.

2. If hviPCF2 ` � � [B]E + [B0]V , then it also holds that vPCF2 ` � �

[B]unbr(E) + [B0]unbr(V).

Proof. Simple induction.

Corollary C.17. If hviPCF2 ` �� E : e�, and hviPCF2 ` � � [B]E + [B0]V ,

then V is of the form hOi.

Proof. By Theorem C.16, we have vPCF2 ` � � [B]unbr(E) + [B0]unbr(V).

Using the type preservation of vPCF2, we have unbr(V) is of the form O. Since

V is a hviPCF2-value, it must be hOi.

Note that every vPCF2-term E is also a hviPCF2-term, and unbr(E) � E.

Thus, to evaluate a closed vPCF2-term E of type e� (i.e., vPCF2 ` �E : e�),

we can evaluate E using hviPCF2 semantics. Either the evaluation does not

terminate, which implies, by Theorem C.16(1), that the evaluation E in vPCF2

semantics does not terminate. Or hviPCF2 ` E & hOi (de�ned appropriately

using Corollary C.17), which, by Theorem C.16(2), implies that vPCF2 ` E & O.

Now that we have established the equivalence of vPCF2 and hviPCF2, it suf-

�ces to give a native implementation of hviPCF2. In the rest of the section, we

will only work with hviPCF2 and leave it (instead of vPCF2) implicit whenever

possible.

248

C.3.2 The implementation language: vPCF�;st

Here we present the implementation language vPCF�;st, which can be viewed

as a subset of Standard ML [71]. In detail, vPCF�;st is vPCF with dynamic

constants removed, and enriched with a global state and an inductive type � for

representing hviPCF2 code types.

� = VAR of int j LITb of b j CST of const j LAM of int� �

j APP of �� � j LET of int� �� �

For the state, we only model the part in which we are interested. A state

S thus consists of a cell n for keeping the counter of name generation, and a

cell B for keeping the accumulated bindings: S = hn;Bi. We also use three

specialized primitives (they can be implemented using SML operations := (set)

and ! (get), as shown in Figure C.4): genvar() generates a new variable name

using the counter; addBind(E : �) : � adds a binding x = E to the accumulated

bindings such that x is a newly generated name, and returns the variable x;

�nally letBind(E : �) creates a dynamic local scope for accumulating bindings

during the evaluation of term E, and inserts the accumulated bindings after the

evaluation of E. The three primitives are governed by the following typing rules.

The evaluation semantics of vPCF�;st is given in Figure C.5.

�� genvar() : int

�� E : �

�� addBind(E) : �

�� E : �

�� letBind(E) : �

249

val n : int ref = ref 0 (� name generation counter �)
val B : (int * exp) list ref = ref [] (� accumulated bindings �)

fun init () = n := 0 (� reset the counter �)
fun genvar () = (� genvar() �)

!n before n := ! n + 1

fun letBind e_thunk = (� letBind(E) �letBind (fn () => E) �)
let val b = ! B before B := []

val r = e_thunk ()

fun genLet [] body =

body

| genLet ((x, e) :: rest) body =

genLet rest (LET(x, e, body))

in

genLet (! B) r before B := b

end

fun addBind e = (� addBind(E) �addBind(E) �)
let val name = genvar () in

(B := (name, e) :: ! B); (VAR name)

end

Figure C.4: ML implementation of vPCF�;st-primitives

C.3.3 Native embedding

De�nition C.18 (Embedding translation fj�jgv� of hviPCF
2 into vPCF�;st).

hviPCF2 ` �� E : � =) vPCF�;st ` fj�jgv� � fjEjgv� : fj� jgv�

250

State S ::= hn;Bi (n 2 N)

Bindings B ::= nil j (n; V) :: B (n 2 N)

Judgment Form vPCF�;st ` E;S + V; S0

We use the following abbreviations.

E1 + V1 : : : En + Vn
E + V

�
E1; S1 + V1; S2 : : : En; Sn + Vn; Sn+1

E;S1 + V; Sn+1

LET� (n1; V1) :: : : : :: (nm; Vm) :: nil in V

� LET(nm; Vm; : : : LET(n1; V1; V) : : :)

(Core)

[app]
E1 + �x:E0 E2 + V 0 E0fV 0=xg + V

E1E2 + V
[if-tt]

E1 + tt E2 + V

if E1E2E3 + V

[if-�]
E1 + � E3 + V

if E1E2E3 + V
[�x]

E + �x:E0 E0f�x (�x:E0)=xg + V

�xE + V

[
]
E1 + V1 E2 + V2
E1
E2 + V

(V1
 V2 = V)

(Term and State)

[cons]
E1 + V1 : : : En + Vn

c(E1; : : : ; En) + c(V1; : : : ; Vn)
(c 2 fVAR; LITb;CST; LAM;APP; LETg)

[genvar]
genvar(); hn;Bi + n; hn+ 1; Bi

[addBind]
E;S + V; hn;Bi

addBind(E); S + VAR(n); hn+ 1; (n; V) :: Bi

[letbind]
E; hn; nili + V; hn0; B0i

letBind(E); hn;Bi + LET� B0 in V; hn0; Bi

Figure C.5: The evaluation semantics of vPCF�;st

251

Types : fj e�jgv� = fjv�jgv� = �; fjbjgv� = b; fj�1 ! �2jgv� = fj�1jgv�!fj�2jgv�

Terms : fj$bEjgv� = LITb(fjEjgv�); fjdjgv� = CST(HdI); fj�x:Ejgv� = �v��x:fjEjgv�;

fjE1@E2jgv� = APP(fjE1jgv�; fjE2jgv�); fj#Ejgv� = #v�(fjEjgv�);

fjlet x(E1 in E2jgv� = letv�fjE1jgv��x:fjE2jgv�; fjhOijgv� = fjOjghi�

\Evaluated" terms:

fj$b`jghi� = LITb(`); fjvijghi� = VAR(i); fj�vi:Ojghi� = LAM(i; fjOjghi�);

fjO1@O2jghi� = APP(fjO1jghi�; fjO2jghi�); fjdjghi� = CST(HdI);

fjlet vi(O1 in O2jghi� = LET(i; fjO1jghi�; fjO2jghi�)

Bindings:

fj�jgv� = nil

fjB; vi : � = Ojgv� = (i; fjOjghi�) :: fjBjgv�

where we use the following terms:

�v� � �f:let i(genvar() in LAM(i; letBind(f (VAR(i))))

letv� � �e:�f:let i(genvar() in LET(i; e; letBind(f (VAR(i))))

#v� � �e:addBind(e)

Note that the embedding translation is partial: among \evaluated" terms

(i.e., those enclosed in angle brackets), only those whose variables (both free

and bound) range in the set fvi : i 2 Zg have a translation. A hviPCF2-term is

v�-embeddable if all its \evaluated" subterms satisfy this condition. Clearly, all

vPCF2-terms, viewed as hviPCF2-terms, are without \evaluated" subterms and

thus v�-embeddable. In the following, when we write fjEjgv�, we implicitly state

that E is v�-embeddable.

Note also that �-conversion is not preserved by the embedding translation:

bound variables vi are translated to integer i under the translation for the \eval-

252

uated" terms. As a consequence, a general substitution lemma of the following

form fails for this translation.

fjEfE 0=xgjgv� �� fjEjgv�ffjE
0jgv�=xg

The problem occurs when the capture-free substitution goes under a dynamic �-

abstraction inside an \evaluated" term, which possibly requires the renaming of

the bound variable. For example, the substitution h�v1:x@v1ifhv1i=xg should re-

name the bound variable v1 and yield h�v2:v1@v2i: the substitution of the trans-

lated terms, fjh�v1:x@v1ijgv�ffjhv1ijgv�=xg � LAM(1;APP(VAR(1);VAR(1))), is dif-

ferent from the translation of the substitution LAM(2;APP(VAR(1);VAR(2))).

Fortunately, such problematic substitutions do not actually occur in an eval-

uation. Intuitively, all variables occurring inside an evaluated term are already

generated, and thus not amenable to substitution. This intuition is captured by

the following well-formedness condition.

De�nition C.19 (Well-formed hviPCF2-terms). A hviPCF2-term E is well-

formed, if for all its \evaluated" subterms hOi, no free variable in O is bound

by a static or dynamic �-abstraction.

The class of well-formed terms is closed under evaluation. It includes all the

vPCF2-terms.

Lemma C.20. If �x:E and E 0 are both well-formed, then so is EfE 0=xg.

Lemma C.21. If E is well formed and [B]E + [B0]E 0, then all terms occurring

in its derivation, which include E 0, are well formed.

253

Proof. By induction on the derivation. We use the previous lemma for function

application.

For well-formed terms, capture-free substitution used in the �-reduction has

a substitution lemma.

Lemma C.22 (Substitution lemma for well-formed terms). If �x:E is

well-formed, then fjEfE 0=xgjgv� � fjEjgv�ffjE
0jgv�=xg.

2

Proof. By the de�nition of a well-form term, x does not appear inside any \eval-

uated" subterms of E. Now we proceed by induction. In particular, for the case

of hOi, we have hOifE 0=xg � hOi; and for the case of �y:E 0, renaming y does

not a�ect variable names that appear inside the evaluated terms, again by the

de�nition of a well-formed term.

The correctness proof of the native embedding also uses a few other notations.

� We write VI for the set of variable names indexed by set I, where I is a

subset of the integer set Z, i.e., VI = fvi : i 2 Ig.

� We write [n] for the set f0; 1; : : : ; n� 1g.

� For hviPCF2 ` v� � E : � where dom� � VZ, we write fjEjg
C
v� (\closed

embedding translation") for the term fjEjgv�f�
Cg where the substitution

�C = fVAR(i)=vi : i 2 Zg. It is clear that the resulting term must be

closed.
2Here, strict syntactic equality is possible, because we are free to pick a representative from the

�-equivalent class formed by the possible results of the substitution.

254

We are ready to prove the correctness of the native embedding. We �rst prove

the soundness of the implementation (that its evaluation gives a correct result

whenever it terminates), and then prove the completeness of the implementation

(that its evaluation must terminate if the source program terminates according to

the hviPCF2-semantics). As for the notation, we write iV for the iimplementation

of a value V .

Lemma C.23 (Soundness of the Implementation). If

(a) v�� [B]E : � where dom� [domB � V[n],

(b) E is well-formed, and

(c) vPCF�;st ` fjEjgCv�; S + iV ; S 0 where S = hn; fjBjgCv�i,

then there exist a hviPCF2-value V , a hviPCF2-binding B0, and an integer n0 � n

such that

� hviPCF2 ` �� [B]E + [B0]V ,

� S 0 = hn0; fjB0jgCv�i, iV = fjV jgCv�, and

� dom� [domB0 � V[n0].

Proof. By induction on the derivation of vPCF�;st ` fjEjgCv�; S + iV ; S 0 (Condition

(c)). It is a routine task to ensure Condition (a) during the induction. To ensure

Condition (b) during the induction, we use Lemma C.21.

We perform a case analysis on E.

Case E � `: Simple.

255

Case E � hOi: Since fjhOijgCv� must be a value already (a simple inductive

proof), we have, by inversion, that iV � fjhOijgCv� and S 0 = S. Therefore, we put

B0 = B, V = hOi and n0 = n: hOi + hOi.

Case E � vi: Since fjvijg
C
v� � VAR(i) is a value, we have that iV � VAR(i) and

S 0 = S. We can put B0 = B, V = hvii, and n0 = n: vi + hvii.

Case E � �x:E0: Since fj�x:E 0jgCv� � �x:fjE 0jgCv� is a value, we have that iV �

�x:fjE 0jgCv� and S 0 = S. We can put B0 = B, V = �x:E 0, and n0 = n: �x:E 0 +

�x:E 0.

Case E � E1E2: We have that fjE1E2jg
C
v� � fjE1jg

C
v� fjE2jg

C
v�. By inversion, the

last step in the derivation of vPCF�;st ` fjE1jg
C
v� fjE2jg

C
v�; S + iV ; S 0 must be of the

following form (let S1 = S and S4 = S 0).

fjE1jg
C
v�; S1 + �x:iE 0; S2 fjE2jg

C
v�; S2 + iV 0; S3 iE 0fiV 0=xg; S3 + iV ; S4

fjE1jgCv� fjE2jgCv�; S1 + iV ; S4

where S1 = hn; fjBjgCv�i. We have the following reasoning:

(1) By induction hypothesis 1 (and by the fact that only �-abstractions trans-

lates to �-abstractions under the v�-translation), there exist B2, E
0, and n2

such that

a. �� [B]E1 + [B2]�x:E
0, fjE 0jgCv� = iE 0; and

b. n2 � n, S2 = hn2; fjB2jg
C
v�i, dom� [domB2 � V[n2].

(2) By induction hypothesis 2 and (1.b), there exist B3, V
0, and n3 such that

256

a. �� [B2]E2 + [B3]V
0, fjV 0jgCv� = iV 0; and

b. n3 � n2, S3 = hn3; fjB3jg
C
v�i, dom� [domB3 � V[n3].

(3) By Lemma C.21, �x:E 0 is well-formed, thus by Lemma C.22, we have

iE 0fiV 0=xg � fjE 0jgCv�ffjV
0jgCv�=xg

� fjE 0fV 0=xgjgCv�

(4) By (2), (3), and induction hypothesis 3, there exist B4, V , and n4 such

that

a. �� [B3]E
0fV 0=xg + [B4]V , fjV jg

C
v� = iV ; and

b. n4 � n3, S4 = hn4; fjB4jg
C
v�i, dom� [domB4 � V[n4].

Finally, one application of the hviPCF2 evaluation rule ([app]) to (1.a), (2.a), and

(4.a) yields: �� [B1]E1E2 + [B4]V .

Case E � �xE1: We have that fj�xE1jg
C
v� � �x fjE1jg

C
v�. By inversion, the

derivation ends with

fjE1jg
C
v�; S1 + �x:iE 0; S2 iE 0f�x�x:iE 0=xg; S2 + iV ; S3

�x fjE1jgCv�; S1 + iV ; S3

where S1 = hn; fjBjgCv�i. Then we reason as follows:

(1) By induction hypothesis 1 (and by the fact that only �-abstractions trans-

late to �-abstractions under the v�-translation), there exist B2, E
0, and n2

such that

a. �� [B]E1 + [B2]�x:E
0, fjE 0jgCv� = iE 0; and

257

b. n2 � n, S2 = hn2; fjB2jg
C
v�i, dom� [domB2 � V[n2].

(2) Applying Lemma C.21 to (1.a) gives that �x:E 0 is well-formed, and thus

by Lemma C.22, we have

iE 0f�x�x:iE 0=xg � fjE 0jgCv�ffj�x�x:E
0jgCv�=xg

� fjE 0f�x�x:E 0=xgjgCv�

(3) By (2) and induction hypothesis 2, there exist B3, V , and n3 such that

a. �� [B2]E
0f�x�x:E 0=xg + [B3]V , fjV jg

C
v� = iV ; and

b. n3 � n2, S3 = hn3; fjB3jg
C
v�i, dom� [domB3 � V[n3].

Finally, one application of the evaluation rule ([�x]) to (1.a) and (3.a)

yields: �� [B1]�xE1 + [B3]V .

Case E � if E1E2E3 or E � E1
 E2: Similar to the proofs for E1E2 and for

�xE1, and only simpler, since these cases are free of the complication introduced

by capture-free substitution.

Case E � $bE1, E � E1@E2, or E � d: Simple.

Case E � �x:E1: We have fj�x:E1jg
C
v� � �v� ((�x:fjE1jgv�)f�

Cg). By a few inver-

sions from vPCF�;st ` fj�x:E1jg
C
v�; hn; fjBjg

C
v�i + iV ; S 0, we have the following two

immediate subderivations (omitting some trivial branches)

genvar(); hn; fjBjgCv�i + n; hn+ 1; fjBjgCv�i

258

fjE1jgv�fVAR(n)=xgf�
Cg; hn+ 1; nili + iV 0; hn0; iB 0i

((�x:fjE1jgv�)f�Cg) (VAR(n)); hn+ 1; nili + iV 0; hn0; iB 0i

L; hn+ 1; fjBjgCv�i + LET� iB 0 in iV 0; hn0; fjBjgCv�i

LAM(n; L); hn+ 1; fjBjgCv�i + LAM(n; LET� iB 0 in iV 0); hn0; fjBjgCv�i

where L � letBind(((�x:fjE1jgv�)f�
Cg) (VAR(n))).

Note that

fjE1jgv�fVAR(n)=xgf�
Cg � fjE1fvn=xgjgv�fVAR(n)=vngf�

Cg � fjE1fvn=xgjgv�f�
Cg

(the second equality follows from the de�nition of �C). From v�� [B]�x:E1 :

e(�1 ! �2) and dom� [domB � V[n], it follows that vf�; vn : �1;Bg �

E1fvn=xg : v�2 and dom(�; vn : �1)[domB � V[n+1]. Furthermore, E1fvn=xg is

clearly well-formed. Thus, by induction hypothesis, there exist B00 and V 00 such

that

a. �; vn : �1;B � [�]E1fvn=xg + [B0]V 00 and fjV 00jgCv� = iV 0. Type Preservation

shows that V 00 � hOi for some O; and

b. iB0 = fjB0jgCv�, dom� [domB0 � V[n0], and n0 � n+ 1.

Finally, put V = h�vn:let
� B00 in Oi and B0 = B, and apply the evaluation

rule ([lam]) to (a). Noting that vn =2 V[n] � dom� [domB, we have that

�� [B]E1 : [B]V . It is easy to check that fjV jgv� � LAM(n; LET� iB 0 in iV 0).

Case E � let x(E1 in E2: Similar to the case of �x:E1.

Case E � #E1: By inversion on the assumption, the derivation ends with

fjE1jg
C
v�; S1 + iV 0; S2 addBind(iV 0); S2 + iV ; S 0

#v� fjE1jgCv�; S1 + iV ; S 0

where S1 = hn; fjBjgCv�i. Then we reason as follows.

259

(1) By induction hypothesis 1, there exist B2, V
0, and n2 such that

a. �� [B]E1 + [B2]V
0 and fjV 0jgCv� = iV 0. By type preservation, V 0 � hOi

for some O; and

b. n2 � n, S2 = hn2; fjB2jg
C
v�i, and dom� [domB2 � V[n2].

(2) Inverting the second premise, we have that iV = VAR(n2), and S 0 = hn2 +

1; (n2; iV
0) :: fjB2jg

C
v�i. We can put V � hvn2i, B

0 � (B2; vn2+1 : � = O),

and n0 � n2 + 1; it is easy to check that fjV jgCv� = iV and hn0; fjB0jgCv�i = S 0.

Note also that vn2 =2 V[n2] � dom� [domB2. Now we can apply the

rule ([#]) to get the result.

Lemma C.24 (Completeness of the Implementation). If

(a) v�� [B]E : � where dom� [domB � V[n],

(b) E is well-formed, and

(c) hviPCF2 ` �� [B]E + [B2]V ,

then there exist B0
2, V

0, and n0 � n such that

� hviPCF2 ` �� [B]E + [B0
2]V

0,

� vPCF�;st ` fjEjgCv�; hn; fjBjg
C
v�i + V 0; hn0; fjB0

2jg
C
v�i, and

� dom� [domB0 � V[n0].

260

Proof. By induction on the height of the derivation of hviPCF2 ` � � [B]E +

[B2]V (Condition (c)). It is a routine task to ensure Condition (a) during the

induction. To ensure Condition (b) during the induction, we use Lemma C.21.

We perform case analysis on the last rule used in the derivation.

Case [lit], [lam]: Simple.

Case [app]: We combine the induction hypotheses and Lemma C.22.

Case [�x]: We combine the induction hypotheses and Lemma C.22.

Case [if-tt], [if-�], [
]: We combine the induction hypotheses, and use the fact

that constants of base types translate to themselves.

Case [eval'd], [lift], [var], [cst], [app]: Simple. See also the corresponding cases in

the soundness proof (Lemma C.23).

Case [lam]: The derivation tree takes the following form

D

�; y : �;B � [�]Efy=xg + [B0]hOi y =2 domB [dom�

�� [B]�x:E + [B]h�y:let� B0 in Oi

Since vn =2 dom� [domB, we have

(�; y : �;B � Efy=xg) �� (�; vn : �;B � Efvn=xg) :

261

By Theorem C.13, there exist B00 and O0 such that (�; vn : �;B � [B0]O) ��

(�0; vn : �;B � [B00]O0) and there is a a derivation for

�; vn : �;B � [�]Efvn=xg + [B00]hO0i

that has the same size as derivation D. Noting further that Efvn=xg is well-

formed, we can apply the induction hypothesis to conclude that 9B000;O00; n0 �

n+ 1 such that the following hold.

(1) �; vn : �;B � [�]Efvn=xg + [B000]hO00i. Again, by Theorem C.13, we have

that (�; vn : �;B � [B00]O0) �� (�; vn : �;B � [B000]O00).

(2) vPCF�;st ` fjEfvn=xgjg
C
v�; hn+ 1; nili + fjhO00ijgCv�; hn

0; fjB000jgCv�i.

(3) dom� [fvng [domB0 � V[n0].

We can then construct derivations for

� hviPCF2 ` �� [B]E[B]hlet� B000 in O00i + , by applying rule ([lam]) to (1),

and

� vPCF�;st ` fj�x:EjgCv�; hn; fjBjg
C
v�i + fjh�vn:let

� B000 in O00ijgCv�; hn; fjBjg
C
v�i, us-

ing a derivation in the form appeared in the case E � �x:E1 of the sound-

ness proof (Lemma C.23)

The conclusion follows immediately.

Case [let]: Similar to the case of rule ([lam]).

262

Case [#]: We build the derivation from the induction hypothesis. See also the

corresponding cases in the soundness proof (Lemma C.23).

De�nition C.25 (Simulating the evaluation in vPCF�;st). Let vPCF2 `

�E : �. We write simEval(E; t) for a vPCF�;st-term t : �, if 9S 0:vPCF�;st `

letBind(fjEjgv�); h0; nili + t; S 0.

Theorem C.26 (Total correctness). Let vPCF2 ` �E :�.

1. If vPCF2 ` E & O for some O, then there is a term O0 such that O0 �� O

and simEval(E; fjO0jgv�).

2. If simEval(E; t) for some t : �, then there is a term O such that t � fjOjgv�

and vPCF2 ` E & O.

Proof. We combine Theorem C.16, Lemma C.23, and Lemma C.24.

C.4 Call-by-value type-directed partial evaluation

C.4.1 Semantic correctness

Lemma C.27. For all types �, nPCF ` � j���j = �x:x : �! � and nPCF `

� j���j = �x:x : �! �.

Proof. By a straightforward induction on type � .

Theorem C.28 (Semantic correctness of TDPE). If vPCFtdpe ` �E : �d

and vPCF2 ` NF(E) + O, then vPCF ` � jOj = jEj : �.

(Note that the two erasures are di�erent: One operates on vPCF2-terms, the

other on vPCFtdpe-terms.)

263

Proof. Similar to the proof of the corresponding theorem in the call-by-name

case, Theorem 4.12, but using Lemma C.27 and Theorem 5.6 instead.

C.4.2 Syntactic correctness

Theorem 5.8 (Re�ned type preservation). If vPCF2 ` vvar(�) I [B]E : �

and vPCF2 ` �� [B]E + [B0]V , then vPCF2 ` vvar (�) I [B0]V : � .

Proof. (Sketch) Similar to the proof of Theorem 5.2. As always, the most non-

trivial case is the rule ([app]), for which we prove a substitution lemma for the

re�ned type system (similar to Lemma B.9.)

Corollary 5.9 (Re�ned type preservation for complete programs). If

I E : enc(�) and E & O, then I O : enc(�).

Theorem 5.10 (Normal-form code types). If V is an vPCF2-value (Fig-

ure 5.1), and vPCF2 ` vvar (�) I V : vX(�) where X is av, nv, bd, or nc, then

V � O for some O and ��X jOj : �.

Proof. Similar to the proof of Theorem 4.14.

Lemma 5.11. (1) The extraction functions (Figure 5.3c) have the following

normal-form types (writing �nv for �fvnv(b)=b : b 2 Bg.)

I ��� : �nv ! vnv (�);I ��� : v
av (�)! �nv:

(2) If vPCFtdpe ` � � E : ', then vPCF2 ` fj�jgnvri I fjEjgri : fj'jg
nv
ri , where

fj'jgnvri = 'fvnv(b)=bd : b 2 Bg.

Proof.

(1) By induction on type �.

264

Case � = b: Because at the base type, bnv = vnv(b), we just need to show:

I �x:x : vnv(b)! vnv(b) for ��b, and I �x:x : vav(b)! vnv(b) for ��b. This is

simple.

Case � = �1!�2: Noting that (�1!�2)
nv = �nv

1 !�nv
2 , we give the following

typing derivations, in the compact style used in the proof of Lemma 4.15.

� For I ���1!�2 : (�nv
1 ! �nv

2)! vnv(�1 ! �2):

f : �nv
1 ! �nv

2 ; x : vvar(�1) I ���2(

�
nv

2z }| {
f (���1x|{z}

�
nv

1

))

| {z }
vnv

(�2)

: enc(�2)

Note the use of implicit coercions for term x and for ���2(f (���1x)).

� For I ���1!�2 : v
av(�1 ! �2)! (�nv

1 ! �nv
2):

e : vav (�1 ! �2); x : �
nv
1 I ���2(#(

ebd
(�2)z }| {

e@(���1x|{z}
vnv

(�1)

))

| {z }
vvar

(�2)

) : �nv
2

(2) By a simple induction on vPCFtdpe ` � � E : '. For the case where E � dd

with Sg(d) = �, we use the typing of ��� from part (1) and the fact that fj�djgnvri �

fj�fbd=b : b 2 Bgjgnvri � �fvnv(b)=b : b 2 Bg � �nv.

Theorem 5.12. If vPCFtdpe ` �E : �d, then vPCF2 `I NF(E) : vnv(�).

Proof. By Lemma 5.11(2), we have vPCF2 `I fjEjgri : fj�
djgnvri . Since fj�djgnvri �

�nv, applying ��� : �nv ! vnv(�) (Lemma 5.11(1)) to fjEjgri yields the conclu-

sion.

265

Corollary C.29 (Syntactic correctness of TDPE). For vPCFtdpe ` �E : �d,

if vPCF2 ` NF(E)& V , then V � O for some O and vPCF ` ��nc jOj : �.

Proof. We use Theorem 5.12, Corollary 5.9, and Theorem 5.10.

266

Appendix D

Notation and symbols

Meta-variables and fonts

E (one-level or two-level) terms

x; y; z variables

� (resp. �) two-level (resp. one-level) types 35,36,

58,242

' two-level types in TDPE languages 47,65

� substitution-safe types (vPCF2) 58

� (resp. �) two-level/one-level typing contexts 35,36

B accumulated bindings 64

b base types 34

` literals (constants of base types) 34

d dynamic constants in signature Sg 35

V values (canonical terms) 35,64

267

O code-typed values 35,64

S state 251

Sans serif (bool;CST) syntax

Underlined (�x:;@) dynamic constructs 35,58

dd; bd dynamic constants and base types in

TDPE languages

47,65

Language and Judgments

L ` J judgment J holds in language L.

General judgments

�� E : � term-in-context: \term E is of type �

under context �"

�� E1 = E2 : � equation-in-context: \E1 and E2 are equal

terms of type � under context �"

nPCF2: call-by-name two-level language 35

E + V evaluation of a statically closed term 35

� I E : � term-in-context with re�ned typing for

��-normal object terms

52

268

nPCF: call-by-name one-level language 36

��X E : �

(X 2 fat ; nf g)

typing judgments for ��-normal forms 51

nPCF�: CBN language with a term type 42

nPCFtdpe and vPCFtdpe: two-level languages for TDPE 47,65

v� and n�: pure simply typed �-calculus 39,209

vPCF2 and hviPCF2: call-by-value two-level languages 64,247

�� [B]E : � binder-term-in-context 60,231

�� [B] binder-in-context 230

�� [B] � [B0] binder extension 230

B � B0 di�erence of binder B and its pre�x B0 230

(�� E) ��

(�0 � E 0)

�-equivalence for terms-in-context 238

(�� [B]E) ��

(�0 � [B0]E 0)

�-equivalence for binder-terms-in-context 238

�� [B]E + [B0]V evaluation of a binder-term-in-context 64

E & O evaluation of a complete program 60

� I E : � term-in-context with re�ned typing for

�c-normal object terms

66

269

vPCF: call-by-value one-language with e�ects 242

��X E : �

X = av ; nv ; bd ; nc

typing judgments for �c-normal forms 66

vPCF�;st: CBV language with a term type and state 251

E; S + V; S 0 evaluation 251

General notations

[[�]] (denotational) meaning function 42,212

fj�jg syntactic translation

fj�jgn� native embedding of nPCF2 into nPCF� 43

fj�jgv�; fj�jghi� native embedding of hviPCF2 into vPCF�;st 250

fj�jgp� Plotkin's CPS transformations 39,209

fj�jgdf2�; fj�jgdf� Danvy and Filinski's one-pass CPS

transformation

39,209

j � j annotation erasure of two-level terms 40,47,60

� strict syntactic equality 32

�� �-equivalence 32

�; v�;at(�); : : : code types 35,52,

64,66

D(�) decoding of a term representation 42

unbr(�) unbracketing of hviPCF2-terms 246

270

Ef�g application of the substitution � to E

TDPE-speci�c notations

��� rei�cation function at type � 47,65

��� reection function at type � 47,65

fj�jgri residualizing instantiation 47,65

NF(�) static normalization function 47,65

271

Appendix E

Compiler generation for Tiny

E.1 A binding-time-separated interpreter for Tiny

Paulson's Tiny language [84] is a prototypical imperative language|the BNF

of its syntax is given in Figure E.1. Figure E.2 displays the factorial function

coded in Tiny.

Experiments in type-directed partial evaluation of a Tiny interpreter with

respect to a Tiny program [11, 12] used an ML implementation of a Tiny inter-

preter (Figure E.3, page 274): For every syntactic category a meaning function

is de�ned|see Figure E.4 (page 275) for the ML data type representing Tiny

syntax. The meaning of a Tiny program is a function from store to store; the

interpreter takes a Tiny program together with a initial store and, provided it

terminates on the given program, returns a �nal store. Compilation by partially

evaluating the interpreter with respect to a program thus results in the ML code

of the store-to-store function denoted by the program.

272

program ::= block declaration in command end

declaration ::= identi�er�

command ::= skip

j command ; command

j identi�er := expression

j if expression then command else command

j while expression do command end

expression ::= literal

j identi�er

j (expression primop expression)

identi�er ::= a string

literal ::= an integer

primop ::= + j - j * j < j =

Figure E.1: BNF of Tiny programs

block res val aux in

aux := 1;

while (0 < val) do

aux := (aux * val);

val := (val - 1)

end;

res := aux

end

Figure E.2: Factorial function in Tiny

Performing a binding-time analysis on the interpreter (under the assumptions

that the input program is static and the input store is dynamic) classi�es all the

constants in the bodies of the meaning functions as dynamic; literals have to be

lifted. As described at the end of Section 15.1, the interpreter is implemented

within a functor that abstracts over all dynamic constants (for example cond, fix

273

fun meaning p store =

let fun mp (PROGRAM (vs, c)) s (� program �)
= md vs 0 (fn env => mc c env s)

and md [] offset k (� declaration �)
= k (fn i => ~1)

| md (v :: vs) offset k

= (md vs (offset + 1)

(fn env => k (fn i => if v = i

then offset

else env i)))

and mc (SKIP) env s (� command �)
= s

| mc (SEQUENCE(c1, c2)) env s

= mc c2 env (mc c1 env s)

| mc (ASSIGN(i, e)) env s

= update (lift_int (env i), me e env s, s)

| mc (CONDITIONAL(e, c_then, c_else)) env s

= cond (me e env s,

mc c_then env,

mc c_else env,

s)

| mc (WHILE(e, c)) env s

= fix (fn w => fn s

=> cond (me e env s,

fn s => w (mc c env s),

fn s => s,

s)) s

and me (LITERAL l) env s (� expression �)
= lift_int l

| me (IDENTIFIER i) env s

= fetch (lift_int (env i), s)

| me (PRIMOP2(rator, e1, e2)) env s

= mo2 rator (me e1 env s) (me e2 env s)

and mo2 b v1 v2 (� primop �)
=

case b of

Bop_PLUS => add (v1, v2)

| Bop_MINUS => sub (v1, v2)

| Bop_TIMES => mul (v1, v2)

| Bop_LESS => lt (v1, v2)

| Bop_EQUAL => eqi (v1, v2)

in

mp p store

end

Figure E.3: An interpreter for Tiny

274

type Identifier = string

datatype

Program = (� program and declaration �)
PROGRAM of Identifier list * Command

and

Command = (� command �)
SKIP (� skip �)

| SEQUENCE of Command * Command (� ; �)
| ASSIGN of Identifier * Expression (� := �)
| CONDITIONAL of Expression * Command * Command (� if �)
| WHILE of Expression * Command (� while �)

and

Expression = (� expression �)
LITERAL of int (� literal �)

| IDENTIFIER of Identifier (� identi�er �)
| PRIMOP2 of Bop * Expression * Expression (� primop �)

and

Bop = (� primop �)
Bop_PLUS (� + �)

| Bop_MINUS (� - �)
| Bop_TIMES (� * �)
| Bop_LESS (� < �)
| Bop_EQUAL (� = �)

Figure E.4: Datatype for representing Tiny programs

and update in mc). This allows one to easily switch between the evaluating instan-

tiation jmeaningj and the residualizing instantiation meaning . For the evaluating

instantiation we simply instantiate the functor with the actual constructs, for

example

fun cond (b, kt, kf, s) = if b <> 0 then kt s else kf s

fun fix f x = f (fix f) x

For the residualizing instantiation meaning we instantiate the dynamic constants

with code-generation functions; as pointed out in Example 2.4 (page 20) and

275

made precise in De�nition 15.4 (page 157), reection can be used to write code-

generation functions:

fun cond e = reflect (rrT4 (a', a' -!> a', a' -!> a', a')

-!> a')

(VAR "cond") e

fun fix f x = reflect (((a' -!> a') --> (a' -!> a')) -->

(a' -!> a'))

(VAR "fix") f x

E.2 Generating a compiler for Tiny

As mentioned in Chapter 17.6, we derive a compiler for Tiny in three steps:

1. rewrite tiny pe into a functor tiny ge(S:STATIC D:DYNAMIC) such that meaning

is also parameterized over all static constants and base types

2. give instantiations of S and D as indicated by the instantiation table in

Table 17.1 (page 184), thereby creating the GE-instantiation meaning

3. use the GE-instantiation meaning to perform the second Futamura projec-

tion

The following two sections describe the �rst two steps in more detail. Once

we have a GE-instantiation, the third step is easily carried out with the help of

an interface similar to the one for visualization described in Section 17.4.

276

E.3 \Full parameterization"

Following Section 17.3 we re-implement the interpreter inside a functor to param-

eterize over both static and dynamic base types and constants. Note, however,

that the original implementation of Figure E.3 (page 274) makes use of recur-

sive de�nitions and case distinctions; both constructs cannot be parameterized

over directly. Hence we have to express recursive de�nitions with a �xed point

operator and case distinctions with appropriate elimination functions. Consider

for example case distinction over Expression; Figure E.5 shows the type of the

corresponding elimination function.

val case_Expression

: Expression -> ((Int_s -> 'a) *

(Identifier -> 'a) *

(Bop * Expression * Expression -> 'a)

) -> 'a

Figure E.5: An elimination function for expressions

The resulting implementation is sketched in Figure E.6. The recursive de�ni-

tion is handled by a top-level �xed point operator, and all the case distinctions

have been replaced with a call to the corresponding elimination function.

Now that we are able to parameterize over every construct, we enclose the

implementation in a functor as shown in Figure E.7 (page 279). The func-

tor takes two structures; their respective signatures STATIC and DYNAMIC declare

names for all base types and constants that are used statically and dynamically,

respectively. A base type (for example int) may occur both statically (int) and

277

fun meaning p store =

let val (mp, _, _, _, _) =

fix5

(fn (mp, md, mc, me, mo2) =>

let fun mp' prog (� program �)
= ...

and md' idList (� declaration �)
= ...

and mc' c (� command �)
= (case_Command c

((� mc (SKIP) env s �)
fn _ => fn env => fn s

=> s,

(� mc (SEQUENCE(c1, c2)) env s �)
fn (c1, c2) => fn env => fn s

=> mc c2 env (mc c1 env s),

(� mc (ASSIGN(i, e)) env s �)
fn (i, e) => fn env => fn s

=> update (lift_int (env i), me e env s, s),

(� mc (CONDITIONAL(e,c_then,c_else)) env s �)
fn (e, c_then, c_else) => fn env => fn s

=> cond (me e env s,

mc c_then env,

mc c_else env,

s),

(� mc (WHILE (e, c)) env s �)
fn (e, c) => fn env => fn s

=> fix (fn w

=> fn s

=> cond (me e env s,

fn s => w (mc c env s),

fn s => s,

s)) s

))

and me' e (� expression �)
= (case_Expression e (...))

and mo2' bop (� primop �)
= (case_Bop bop (...))

in

(mp', md', mc', me', mo2')

end)

in

mp p store

end

Figure E.6: A fully parameterizable implementation

278

functor tiny_ge (structure S : STATIC

structure D : DYNAMIC

sharing type S.Int_s = D.Int_s
...)=

struct

local open S D

in

fun meaning p store

= ...

end

end

Figure E.7: Parameterizing over both static and dynamic constructs

dynamically (intd)|in this case two distinct names (for example Int s and Int d)

have to be used.

As mentioned in Chapter 17.6, the monotype of every instance of a constant

appearing in the interpreter has to be determined. It is these monotypes that

must be declared in the signatures STATIC and DYNAMIC. Figure E.8 shows a

portion of signature STATIC: The polymorphic type of caseExpression (Figure E.5,

page 277) gives rise to a type abbreviation case Exp type, which can be used to

specify the types of the di�erent instances of caseExpression. Note that if a

static polymorphic constant is instantiated with a type that contains dynamic

base types|like Int d in the case of caseExpression|then these dynamic base

types have to be included in the signature STATIC of static constructs.1 For base
1Note that static base types appear also in the signature of dynamic constructs, because we make

the lifting functions part of the latter. However there is a conceptual di�erence: in a two-level language,

it is natural that the dynamic signature has dependencies on the static signature, whereas the static

signature should not depend on the dynamic signature.

279

types that occur both in signatures STATIC and DYNAMIC, sharing constraints have

to be declared in the interface of functor tiny ge (Figure E.7).

...

type 'a case_Exp_type (� Type abbreviation �)
= Expression -> ((Int_s -> 'a) *

(Identifier -> 'a) *

(Bop * Expression * Expression -> 'a)

) -> 'a

type case_Exp_res_type (� Result type �)
= (Identifier -> Int_s) -> sto -> Int_d

...

(� Declaration of elimination function for expressions �)
val case_Expression: case_Exp_res_type case_Exp_type

...

Figure E.8: Excerpts from signature STATIC

Finding the monotypes for the various instantiations of constants in the in-

terpreter can be facilitated by using the type-inference mechanism of ML: We

transcribe the output of ML type inference into a type speci�cation by hand.

This transcription is straightforward, because the type speci�cations of TDPE

and the output of ML type inference are very much alike.

E.4 The GE-instantiation

After parameterizing the interpreter as described above, we are in a position

to either run the interpreter by using its evaluating instantiation (see De�ni-

tion 15.5 (page 158)), perform type-directed partial evaluation by employing

280

the residualizing instantiation (De�nition 15.4 (page 157)), or carry out the sec-

ond Futamura projection with the GE-instantiation (De�nition 16.6 (page 176)).

Section 17.3 shows how the static and dynamic constructs have to be instanti-

ated in each case. For the GE-instantiation, all base types become Exp; static

and dynamic constants are instantiated with code-generation functions. The

latter are constructed using the evaluating and the residualizing instantiation

of reection, respectively. Because the signatures STATIC and DYNAMIC hold the

precise type at which each constant is used, it is purely mechanical to write down

the structures needed for the GE-instantiation.

281

Bibliography

[1] Martin Abadi, Luca Cardelli, Benjamin Pierce, and Gordon Plotkin. Dy-

namic typing in a statically typed language. ACM Transactions on Pro-

gramming Languages and Systems, 13(2):237{268., April 1991.

[2] Martin Abadi, Luca Cardelli, Benjamin Pierce, and Didier R�emy. Dynamic

typing in polymorphic languages. Journal of Functional Programming,

5(1):111{130, January 1995.

[3] Alex Aiken, editor. Proceedings of the Twenty-Sixth Annual ACM Sympo-

sium on Principles of Programming Languages, San Antonio, Texas, Jan-

uary 1999.

[4] Andrew W. Appel and David B. MacQueen. Standard ML of New Jersey.

In Jan Maluszy�nski and Martin Wirsing, editors, Third International Sym-

posium on Programming Language Implementation and Logic Program-

ming, number 528 in Lecture Notes in Computer Science, pages 1{13,

Passau, Germany, August 1991. Springer-Verlag.

282

[5] Alan Bawden. Quasiquotation in Lisp. In Danvy [16], pages 4{12. Available

online at http://www.brics.dk/~pepm99/programme.html.

[6] Ulrich Berger and Helmut Schwichtenberg. An inverse of the evaluation

functional for typed �-calculus. In Gilles Kahn, editor, Proceedings of the

Sixth Annual IEEE Symposium on Logic in Computer Science, pages 203{

211, Amsterdam, The Netherlands, July 1991.

[7] Lars Birkedal and Morten Welinder. Hand-writing program generator gen-

erators. In Manuel Hermenegildo and Jaan Penjam, editors, Sixth Inter-

national Symposium on Programming Language Implementation and Logic

Programming, number 844 in Lecture Notes in Computer Science, pages

198{214, Madrid, Spain, September 1994.

[8] Hans-J. Boehm, editor. Proceedings of the Twenty-First Annual ACM

Symposium on Principles of Programming Languages, Portland, Oregon,

January 1994.

[9] Anders Bondorf and Olivier Danvy. Automatic autoprojection of recur-

sive equations with global variables and abstract data types. Science of

Computer Programming, 16:151{195, 1991.

[10] Cristiano Calcago, Eugenio Moggi, and Walid Taha. Closed types as a sim-

ple approach to safe imperative multi-stage programming. In Ugo Monta-

nari, Jos�e D. P. Rolim, and Emo Welzl, editors, 27th International Collo-

quium on Automata, Languages, and Programming, volume 1853 of Lecture

Notes in Computer Science, pages 25{36, Geneva, Switzerland, July 2000.

283

[11] Olivier Danvy. Pragmatics of type-directed partial evaluation. In Danvy

et al. [19], pages 73{94. Extended version available as the technical report

BRICS RS-96-15.

[12] Olivier Danvy. Type-directed partial evaluation. In Steele [94], pages 242{

257.

[13] Olivier Danvy. Functional unparsing. Technical Report BRICS RS-98-12,

Department of Computer Science, University of Aarhus, Aarhus, Denmark,

May 1998. Supersedes the earlier report BRICS RS-98-5. Extended version

of an article to appear in the Journal of Functional Programming.

[14] Olivier Danvy. A simple solution to type specialization. In Kim G. Larsen,

Sven Skyum, and Glynn Winskel, editors, Proceedings of the 25th Inter-

national Colloquium on Automata, Languages, and Programming, num-

ber 1443 in Lecture Notes in Computer Science, pages 908{917. Springer-

Verlag, 1998.

[15] Olivier Danvy. Type-directed partial evaluation. In John Hatcli�, Tor-

ben �. Mogensen, and Peter Thiemann, editors, Partial Evaluation {

Practice and Theory; Proceedings of the 1998 DIKU Summer School, LNCS

1706, pages 367{411, Copenhagen, Denmark, July 1998.

[16] Olivier Danvy, editor. ACM SIGPLAN Workshop on Partial Evaluation

and Semantics-Based Program Manipulation, San Antonio, Texas, January

1999. ACM Press.

[17] Olivier Danvy and Peter Dybjer, editors. Proceedings of the 1998 APPSEM

284

Workshop on Normalization by Evaluation, NBE '98, (Gothenburg, Swe-

den, May 8{9, 1998), number NS-98-8 in Note Series, Department of Com-

puter Science, University of Aarhus, May 1998. BRICS.

[18] Olivier Danvy and Andrzej Filinski. Representing control, a study of

the CPS transformation. Mathematical Structures in Computer Science,

2(4):361{391, December 1992.

[19] Olivier Danvy, Robert Gl�uck, and Peter Thiemann, editors. Partial Eval-

uation, number 1110 in Lecture Notes in Computer Science, Dagstuhl,

Germany, February 1996.

[20] Olivier Danvy and John Hatcli�. CPS transformation after strictness anal-

ysis. ACM Letters on Programming Languages and Systems, 1(3):195{212,

1993.

[21] Olivier Danvy, Karoline Malmkj�r, and Jens Palsberg. Eta-expansion does

The Trick. ACM Transactions on Programming Languages and Systems,

8(6):730{751, 1996.

[22] Olivier Danvy and Morten Rhiger. Compiling actions by partial evaluation,

revisited. Technical Report BRICS RS-98-13, Department of Computer

Science, University of Aarhus, Aarhus, Denmark, June 1998.

[23] Olivier Danvy and Morten Rhiger. A simple take on typed abstract syn-

tax in Haskell-like languages. In Herbert Kuchen and Kazunori Ueda,

editors, Fifth International Symposium on Functional and Logic Program-

ming, number 2024 in Lecture Notes in Computer Science, pages 343{358,

285

Tokyo, Japan, March 2001. Springer-Verlag. Extended version available as

the technical report BRICS RS-00-34.

[24] Olivier Danvy and Ren�e Vestergaard. Semantics-based compiling: A case

study in type-directed partial evaluation. In Herbert Kuchen and Doaitse

Swierstra, editors, Eighth International Symposium on Programming Lan-

guage Implementation and Logic Programming, number 1140 in Lecture

Notes in Computer Science, pages 182{197, Aachen, Germany, September

1996. Extended version available as BRICS technical report RS-96-13.

[25] Olivier Danvy and Zhe Yang. An operational investigation of the CPS

hierarchy. In Swierstra [98], pages 224{242.

[26] Rowan Davies. A temporal-logic approach to binding-time analysis. In Ed-

mund M. Clarke, editor, Proceedings of the Eleventh Annual IEEE Sympo-

sium on Logic in Computer Science, pages 184{195, New Brunswick, New

Jersey, July 1996.

[27] Rowan Davies and Frank Pfenning. A modal analysis of staged computa-

tion. In Steele [94], pages 258{283. Extended version to appear in Journal

of the ACM, and also available as CMU Technical Report number CMU-

CS-99-153, August 1999.

[28] Peter Harry Eidor�, Fritz Henglein, Christian Mossin, Henning Niss, and

Morten Heine S�rensen. AnnoDomini: From type theory to Year 2000

conversion tool. In Aiken [3], pages 1{14.

[29] Andrzej Filinski. Representing monads. In Boehm [8], pages 446{457.

286

[30] Andrzej Filinski. Representing layered monads. In Aiken [3], pages 175{

188.

[31] Andrzej Filinski. A semantic account of type-directed partial evaluation.

In Gopalan Nadathur, editor, International Conference on Principles and

Practice of Declarative Programming, LNCS 1702, pages 378{395, Paris,

France, September 1999.

[32] Andrzej Filinski. Normalization by evaluation for the computational

lambda-calculus. In Samson Abramsky, editor, Typed Lambda Calculi and

Applications, 5th International Conference, TLCA 2001, number 2044 in

Lecture Notes in Computer Science, pages 151{165, Krak�ow, Poland, May

2001. Springer-Verlag.

[33] Marcelo Fiore, Gordon Plotkin, and Daniele Turi. Abstract syntax and

variable binding. In John Mitchell, editor, Proceedings of the 14th Annual

Symposium on Logic in Computer Science, pages 193{202, Trento, Italy,

July 1999.

[34] The FoxNet homepage. http://foxnet.cs.cmu.edu.

[35] Yoshihiko Futamura. Partial evaluation of computation process { an ap-

proach to a compiler-compiler. Higher-Order and Symbolic Computation,

12(4):381{391, 1999. Reprinted from Systems � Computers � Controls 2(5),

1971.

[36] Jean-Yves Girard. The system F of variable types, �fteen years later.

Theoretical Computer Science, 45(2):159{192, 1986.

287

[37] Carsten K. Gomard. A self-applicable partial evaluator for the lambda-

calculus: Correctness and pragmatics. ACM Transactions on Programming

Languages and Systems, 14(2):147{172, 1992.

[38] Bernd Grobauer and Zhe Yang. The second Futamura projection for type-

directed partial evaluation. In Lawall [66], pages 22{32. Extended version

to appear in the journal Higher-Order and Symbolic Computation, 14(2/3),

2001.

[39] Bernd Grobauer and Zhe Yang. Source code for the second Futamura

projection for type-directed partial evaluation in ML, 2000. Available from

http://www.brics.dk/~tdpe/second_FP/sources.tgz.

[40] Carl A. Gunter. Semantics of Programming Languages: Structures and

Techniques. The MIT Press, Cambridge, Massachusetts, 1992.

[41] Cordelia Hall, Kevin Hammond, Simon Peyton-Jones, and Philip Wadler.

Type classes in Haskell. ACM Transactions on Programming Languages

and Systems, 18(2):109{138, March 1996.

[42] Robert Harper and Greg Morrisett. Compiling polymorphism using inten-

sional type analysis. In Peter Lee, editor, Proceedings of the Twenty-Second

Annual ACM Symposium on Principles of Programming Languages, pages

130{141, San Francisco, California, January 1995.

[43] John Hatcli� and Olivier Danvy. A generic account of continuation-passing

styles. In Boehm [8], pages 458{471.

288

[44] John Hatcli� and Olivier Danvy. A computational formalization for partial

evaluation. Mathematical Structures in Computer Science, 7(5):507{541,

1997.

[45] Fritz Henglein. Dynamic typing: syntax and proof theory. Science of

Computer Programming, 22(3):197{230, June 1994.

[46] Fritz Henglein and Jakob Rehof. Safe polymorphic type inference for a

dynamically typed language: Translating Scheme to ML. In Simon Peyton

Jones, editor, Proceedings of the Seventh ACM Conference on Functional

Programming and Computer Architecture, pages 192{203, La Jolla, Cali-

fornia, June 1995.

[47] J. Roger Hindley. The principal type-scheme of an object in combinatory

logic. Transactions of the American Mathematical Society, 146:29{60, 1969.

[48] Carsten Kehler Holst and John Launchbury. Handwriting cogen to avoid

problems with static typing. In Rogardt Heldal, Cartsen K. Holst, and

Philip L. Wadler, editors, Draft Proceedings, 4th Annual Glasgow Workshop

on Functional Programming, Workshops in Computing, pages 210{218,

Skye, Scotland, 1991. Springer-Verlag.

[49] John Hughes. The design of a pretty-printing library. In Jansson Jeuring

and Erik Meijer, editors, Advanced Functional Programming, volume 925

of Lecture Notes in Computer Science, pages 53{96. Springer-Verlag, 1995.

[50] Patrik Jansson and Johan Jeuring. PolyP|a polytypic programming lan-

guage extension. In Jones [56], pages 470{482.

289

[51] John McCarthy et al. LISP 1.5 Programmer's Manual. The MIT Press,

Cambridge, Massachusetts, 1962.

[52] Mark P. Jones. A system of constructor classes: overloading and implicit

higher-order polymorphism. Journal of Functional Programming, 5(1):1{

35, January 1995. An earlier version appeared in FPCA '93.

[53] Mark P. Jones. First-class polymorphism with type inference. In Jones

[56], pages 483{496.

[54] Neil D. Jones. Challenging problems in partial evaluation and mixed com-

putation. In Dines Bj�rner, Andrei P. Ershov, and Neil D. Jones, editors,

Partial Evaluation and Mixed Computation, pages 1{14. North-Holland,

1988.

[55] Neil D. Jones, editor. Special issue on Partial Evaluation, Journal of Func-

tional Programming, Vol. 3, Part 3. Cambridge University Press, July 1993.

[56] Neil D. Jones, editor. Proceedings of the Twenty-Fourth Annual ACM Sym-

posium on Principles of Programming Languages, Paris, France, January

1997.

[57] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation

and Automatic Program Generation. Prentice-Hall International, 1993.

Available online at http://www.dina.kvl.dk/~sestoft/pebook/pebook.html.

[58] Neil D. Jones and Steven S. Muchnick. TEMPO: A Uni�ed Treatment

of Binding Time and Parameter Passing Concepts in Programming Lan-

290

guages, volume 66 of Lecture Notes in Computer Science. Springer-Verlag,

1978.

[59] Neil D. Jones, Peter Sestoft, and Harald S�ndergaard. MIX: A self-

applicable partial evaluator for experiments in compiler generation. Lisp

and Symbolic Computation, 2(1):9{50, 1989.

[60] Richard Kelsey, William Clinger, and Jonathan Rees, editors. Revised5

report on the algorithmic language Scheme. Higher-Order and Symbolic

Computation, 11(1):7{105, 1998. Also appears in ACM SIGPLAN Notices

33(9), September 1998. Available online at http://www.brics.dk/~hosc/

11-1/.

[61] Andrew Kennedy. Relational parametricity and units of measure. In Jones

[56], pages 442{455.

[62] Eugene E. Kohlbecker, Daniel P. Friedman, Matthias Felleisen, and Bruce

Duba. Hygienic macro expansion. In William L. Scherlis and John H.

Williams, editors, Proceedings of the 1986 ACM Conference on Lisp and

Functional Programming, pages 151{161, Cambridge, Massachusetts, Au-

gust 1986.

[63] Eugene E. Kohlbecker and Mitchell Wand. Macro-by-example: Deriv-

ing syntactic transformations from their speci�cations. In Michael J.

O'Donnell, editor, Proceedings of the Fourteenth Annual ACM Symposium

on Principles of Programming Languages, pages 77{84, M�unchen, West

Germany, January 1987.

291

[64] Peter J. Landin. The mechanical evaluation of expressions. Computer

Journal, 6:308{320, 1964.

[65] Peter J. Landin. The next 700 programming languages. Communications

of the ACM, 9(3):157{166, 1966.

[66] Julia L. Lawall, editor. ACM SIGPLAN Workshop on Partial Evaluation

and Semantics-Based Program Manipulation, SIGPLAN Notices, Vol. 34,

No 11, Boston, Massachusetts, November 2000. ACM Press.

[67] Julia L. Lawall and Olivier Danvy. Continuation-based partial evaluation.

In Carolyn L. Talcott, editor, Proceedings of the 1994 ACM Conference on

Lisp and Functional Programming, LISP Pointers, Vol. VII, No. 3, pages

227{238, Orlando, Florida, June 1994.

[68] Peter Lee. Realistic Compiler Generation. The MIT Press, 1989.

[69] Albert R. Meyer and Mitchell Wand. Continuation semantics in typed

lambda-calculi (summary). In Rohit Parikh, editor, Logics of Programs {

Proceedings, LNCS 193, pages 219{224, Brooklyn, New York, June 1985.

[70] Robin Milner. A theory of type polymorphism in programming. Journal

of Computer and System Sciences, 17:348{375, December 1978.

[71] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The

De�nition of Standard ML (Revised). The MIT Press, 1997.

[72] John C. Mitchell. Coercion and type inference. In Ken Kennedy, edi-

tor, Proceedings of the Eleventh Annual ACM Symposium on Principles

292

of Programming Languages, pages 175{185, Salt Lake City, Utah, January

1984.

[73] John C. Mitchell. Foundations for Programming Languages. MIT Press,

1996.

[74] Eugenio Moggi. Computational lambda-calculus and monads. In Rohit

Parikh, editor, Proceedings of the Fourth Annual IEEE Symposium on

Logic in Computer Science, pages 14{23, Paci�c Grove, California, June

1989.

[75] Eugenio Moggi. Functor categories and two-level languages. In Maurice

Nivat, editor, Foundations of Software Science and Computation Struc-

ture, First International Conference, LNCS 1378, pages 211{225, Lisbon,

Portugal, 1998.

[76] Eugenio Moggi, Walid Taha, Zine El-Abidine Benaissa, and Tim Sheard.

An Idealized MetaML: Simpler, and more expressive. In Swierstra [98],

pages 193{207.

[77] Lockwood Morris. The next 700 formal language descriptions. Lisp and

Symbolic Computation, 6(3/4):249{258, 1993.

[78] Peter D. Mosses. Action Semantics, volume 26 of Cambridge Tracts in

Theoretical Computer Science. Cambridge University Press, 1992.

[79] Flemming Nielson and Hanne Riis Nielson. Two-Level Functional Lan-

guages. Cambridge University Press, 1992.

293

[80] Flemming Nielson and Hanne Riis Nielson. Multi-level lambda-calculi: an

algebraic description. In Danvy et al. [19], pages 338{354.

[81] Flemming Nielson and Hanne Riis Nielson. Prescriptive frameworks for

multi-level lambda-calculi. In Charles Consel, editor, Proceedings of the

ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based

Program Manipulation, pages 193{202, Amsterdam, The Netherlands,

June 1997.

[82] Martin Odersky and Konstantin L�aufer. Putting type annotations to work.

In Steele [94], pages 54{67.

[83] Jens Palsberg. Correctness of binding-time analysis. In Jones [55], pages

347{363.

[84] Lawrence C. Paulson. Compiler generation from denotational semantics.

In Bernard Lorho, editor, Methods and Tools for Compiler Construction,

pages 219{250. Cambridge University Press, 1984.

[85] John Peterson, Kevin Hammond, et al. Report on the programming lan-

guage Haskell, a non-strict purely-functional programming language, ver-

sion 1.4. Available at the Haskell homepage: http://www.haskell.org, April

1997.

[86] Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In

Mayer D. Schwartz, editor, Proceedings of the ACM SIGPLAN'88 Confer-

ence on Programming Languages Design and Implementation, SIGPLAN

Notices, Vol. 23, No 7, pages 199{208, Atlanta, Georgia, June 1988.

294

[87] Gordon D. Plotkin. Call-by-name, call-by-value and the �-calculus. The-

oretical Computer Science, 1:125{159, 1975.

[88] Gordon D. Plotkin. LCF considered as a programming language. Theoret-

ical Computer Science, 5(3):223{255, December 1977.

[89] Gordon D. Plotkin. A structural approach to operational semantics.

Technical Report FN-19, Department of Computer Science, University of

Aarhus, Aarhus, Denmark, September 1981.

[90] Gordon D. Plotkin. An illative theory of relations. In Richard Cooper,

K. Mukai, and John Perry, editors, Situation Theory and Its Applications

(Vol. 1), pages 133{146. CSLI, Stanford, California, 1990.

[91] Calton Pu, Henry Massalin, and John Ioannidis. The Synthesis kernel.

Computing Systems, 1(1):11{32, winter 1988. University of California

Press.

[92] John C. Reynolds. Towards a theory of type structure. In Programming

Symposium, number 19 in Lecture Notes in Computer Science, pages 408{

425, Paris, France, April 1974.

[93] Mark Shields, Tim Sheard, and Simon Peyton Jones. Dynamic typing as

staged type inference. In Luca Cardelli, editor, Proceedings of the Twenty-

Fifth Annual ACM Symposium on Principles of Programming Languages,

pages 289{302, San Diego, California, January 1998.

[94] Guy L. Steele, editor. Proceedings of the Twenty-Third Annual ACM Sym-

295

posium on Principles of Programming Languages, St. Petersburg Beach,

Florida, January 1996.

[95] Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Approach to

Programming Language Theory. The MIT Press, 1977.

[96] Eijiro Sumii, 2000. Email exchange, February 2000.

[97] Eijiro Sumii and Naoki Kobayashi. Online-and-o�ine partial evaluation:

A mixed approah. In Lawall [66], pages 12{21. Extended version titled \A

hybrid approach to online and o�ine partial evaluation" to appear in the

journal Higher-Order and Symbolic Computation, 14(2/3), 2001.

[98] S. Doaitse Swierstra, editor. Proceedings of the Eighth European Sympo-

sium on Programming, Amsterdam, Netherlands, March 1999.

[99] Walid Taha. A sound reduction semantics for untyped CBN multi-stage

computation. or, the theory of MetaML is non-trival (extended abstract).

In Lawall [66], pages 34{43.

[100] Walid Taha and Tim Sheard. Multi-stage programming. In Mads Tofte, ed-

itor, Proceedings of the 1997 ACM SIGPLAN International Conference on

Functional Programming, pages 321{321, Amsterdam, The Netherlands,

June 1997.

[101] Peter Thiemann. Combinators for program generation. Journal of Func-

tional Programming, 9(5):483{525, 1999.

296

[102] Mads Tofte. Principal signatures for higher-order program modules. Jour-

nal of Functional Programming, 4(3):285{335, July 1994.

[103] Ren�e Vestergaard. From proof normalization to compiler generation and

type-directed change-of-representation. Master's thesis, DAIMI, Depart-

ment of Computer Science, University of Aarhus, Aarhus, Denmark, May

1997.

[104] Mitchell Wand. Deriving target code as a representation of continuation

semantics. ACM Transactions on Programming Languages and Systems,

4(3):496{517, 1982.

[105] Mitchell Wand. Specifying the correctness of binding-time analysis. In

Jones [55], pages 365{387.

[106] Philip Wickline, Peter Lee, and Frank Pfenning. Run-time code genera-

tion and Modal-ML. In Keith D. Cooper, editor, Proceedings of the ACM

SIGPLAN'98 Conference on Programming Languages Design and Imple-

mentation, pages 224{235, Montr�eal, Canada, June 1998.

[107] Glynn Winskel. The Formal Semantics of Programming Languages. Foun-

dation of Computing Series. The MIT Press, 1993.

297

