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Abstract We present some recent domain decomposition tools and a BDDC al-
gorithm for 3D problems in the space H(curl;Ω). Of primary interest is a face
decomposition lemma which allows us to obtain improved estimates for a BDDC
algorithm under less restrictive assumptions than have appeared previously in the
literature. Numerical results are also presented to confirm the theory and to provide
additional insights.

1 Introduction

We investigate a BDDC algorithm for three-dimensional (3D) problems in the space
H0(curl;Ω). The subject problem is to obtain edge finite element approximations of
the variational problem: Find uuu ∈ H0(curl;Ω) such that

aΩ (uuu,vvv) = ( fff ,vvv)Ω ∀vvv ∈ H0(curl;Ω),

where

aΩ (uuu,vvv) :=
∫

Ω

[(α∇×uuu ·∇× vvv)+(βuuu · vvv)]dx, ( fff ,vvv)Ω =
∫

Ω

fff · vvvdx.

The norm of uuu ∈ H(curl;Ω), for a domain with diameter 1, is given by aΩ (uuu,uuu)1/2

with α = 1 and β = 1; the elements of H0(curl) have vanishing tangential compo-
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nents on ∂Ω . We could equally well consider cases where this boundary condition
is imposed only on one or several subdomain faces which form part of ∂Ω . We will
assume that α ≥ 0 and β > 0 are constant in each of the subdomains Ω1, . . . ,ΩN .
Our results could be presented in a form which accommodates properties which are
not constant or isotropic in each subdomain, but we avoid this generalization for
purposes of clarity.

In the pioneering work of [11], two different cases were analyzed for FETI-DP
algorithms:
Case 1:

αi = α for i = 1, . . . ,N

The condition number bound reported for the preconditioned operator is

κ ≤C max
i

(1+H2
i βi/α)(1+ log(H/h))4, (1)

where H/h := maxi Hi/hi.
Case 2:

βi = β for i = 1, . . . ,N

for which the reported condition number bound is

κ ≤C max
i

(1+H2
i β/αi)(1+ log(H/h))4. (2)

We address the following basic questions regarding [11] in this study.

1. Is is possible to remove the assumption of αi = α or βi = β for all i?
2. Is it possible to remove the factor of H2

i βi/αi from the estimates?
3. Is is possible to reduce the logarithmic factor from four powers to two powers

as is typical of other iterative substructuring algorithms?
4. Do FETI-DP or BDDC algorithms for 3D H(curl) problems have certain com-

plications not present for problems with just a single parameter?

We find in the following sections that the answers are yes to all four questions.
However, due to page limitations, we only consider here the relatively rich coarse
space of Algorithm C of [11]. We remark that the analysis of 3D H(curl) problems
with material property jumps between subdomains is quite limited in the literature.
A comprehensive treatment of problems in 2D can be found in [3]. A different it-
erative substructuring algorithm for 3D problems is given in [6], but the authors
were unable to conclude whether their condition number bound was independent of
material property jumps.

2 Tools

We assume that Ω is decomposed into N non-overlapping subdomains, Ω1, . . . ,ΩN ,
each the union of elements of the triangulation of Ω . We denote by Hi the diameter
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of Ωi. The interface of the domain decomposition is given by

Γ :=

(
N⋃

i=1

∂Ωi

)
\∂Ω ,

and the contribution to Γ from ∂Ωi by Γi := ∂Ωi\∂Ω . These sets are unions of sub-
domain faces, edges, and vertices. For simplicity, we assume that each subdomain
is a shape-regular and convex tetrahedron or hexahedron with planar faces.

We assume a shape-regular triangulation Thi of each Ωi with nodes matching
across the interfaces. The smallest element diameter of Thi is denoted by hi. Associ-
ated with the triangulation Thi are the two finite element spaces W hi

grad ⊂H(grad,Ωi)

and W hi
curl ⊂ H(curl,Ωi) based on continuous, piecewise linear, tetrahedral nodal

elements and linear, tetrahedral edge (Nédeléc) elements, respectively. We could
equally well develop our algorithms and theory for low order hexahedral elements.

The energy of a vector function uuu ∈W hi
curl for subdomain Ωi is defined as

Ei(uuu) := αi(∇×uuu,∇×uuu)Ωi +βi(uuu,uuu)Ωi , (3)

where αi and βi are assumed constant in Ωi.
Let NNNe ∈W hi

curl and ttte denote the finite element shape function and unit tangent
vector, respectively, for an edge e of Thi . We assume that NNNe is scaled such that
NNNe · ttte = 1 along e. The edge finite element interpolant of a sufficiently smooth
vector function uuu ∈ H(curl,Ωi) is then defined as

Π
hi(uuu) := ∑

e∈M
Ω̄i

ueNNNe, ue := (1/|e|)
∫

e
uuu · ttte ds, (4)

where M
Ω̄i

is the set of edges of Thi , and |e| is the length of e. We will also make
use of other sets of edges of Thi . Namely, M∂Ωi , ME , MF , and M∂F contain
the edges of ∂Ωi, subdomain edge E , subdomain face F , and ∂F , respectively.
We denote by GiF , GiE , and GiV sets of subdomain faces, subdomain edges, and
subdomain vertices for Ωi. The wire basket Wi is the union of all subdomain edges
and vertices for Ωi. We will also make use of the symbol ωi := 1+ log(Hi/hi), and
bold faced symbols refer to vector functions. We denote by p̄i the mean of pi over
Ωi.

The estimate in the next lemma can be found in several references, see e.g.,
Lemma 4.16 of [12].

Lemma 1. For any pi ∈W hi
grad and subdomain edge E of Ωi,

‖pi‖2
L2(E ) ≤Cωi‖pi‖2

H1(Ωi)
. (5)

Lemma 2. For any pi ∈W hi
grad, there exist piV , piE , piF ∈W hi

grad such that
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pi|∂Ωi = ∑
V ∈GiV

piV |∂Ωi + ∑
E∈GiE

piE |∂Ωi + ∑
F∈GiF

piF |∂Ωi , (6)

where the nodal values of piV , piE , and piF on ∂Ωi may be nonzero only at the
nodes of V , E , and F , respectively. Further,

|piV |2H1(Ωi)
≤C‖pi‖2

H1(Ωi)
, (7)

|piE |2H1(Ωi)
≤Cωi‖pi‖2

H1(Ωi)
, (8)

|piF |2H1(Ωi)
≤Cω

2
i ‖pi‖2

H1(Ωi)
. (9)

Proof. The estimates in (7-9) are standard, and follow from Corollary 4.20 and
Lemma 4.24 of [12] and elementary estimates.

We note that a Poincaré inequality allows us to replace the H1-norm of pi by its
H1-seminorm in Lemmas 1 and 2 if p̄i = 0.

The next lemma is stated without proof due to page restrictions.

Lemma 3. Let fi ∈W hi
grad have vanishing nodal values everywhere on ∂Ωi except on

the wire basket Wi of Ωi. For each subdomain face F of Ωi and Chi ≤ d ≤ Hi/C,
C > 1, there exists a vvvi ∈W hi

curl such that vie = ∇ fie for all e ∈ MF , vie = 0 for all
other edges of ∂Ωi, and

‖vvvi‖2
L2(Ωi)

≤C(ωi‖ fi‖2
L2(∂F ) +d2‖∇ fi · ttt∂F ‖2

L2(∂F )), (10)

‖∇× vvvi‖2
L2(Ωi)

≤C(τ(d)‖ fi‖2
L2(∂F ) +‖∇ fi · ttt∂F ‖2

L2(∂F )), (11)

where ttt∂F is a unit tangent along ∂F , and

τ(d) =
{

0 if d > Hi/C
d−2 otherwise.

The Helmholtz-type decomposition and estimates in the next lemma will allow
us to make use of and build on existing tools for scalar functions in H1(Ωi). We
refer the reader to Lemma 5.2 of [4] for the case of convex polyhedral subdomains;
this important paper was preceded by [5], which concerns other applications of the
same decomposition.

Lemma 4. For a convex and polyhedral subdomain Ωi and any uuui ∈W hi
curl, there is

a qqqi ∈W hi
curl, ΨΨΨ i ∈ (W hi

grad)
3, and pi ∈W hi

grad such that

uuui = qqqi +Π
hi(ΨΨΨ i)+∇pi, (12)

‖∇pi‖L2(Ωi) ≤C‖uuui‖L2(Ωi), (13)

‖ΨΨΨ i‖L2(Ωi) ≤C‖uuui‖L2(Ωi), (14)

‖h−1
i qqqi‖2

L2(Ωi)
+‖ΨΨΨ i‖2

H1(Ωi)
≤C‖∇×uuui‖2

L2(Ωi)
. (15)
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Lemma 5. For any uuui ∈W hi
curl with uie = 0 for all e∈M∂F , there exists a vvviF ∈W hi

curl
such that viF e = uie for all e ∈MF , viF e = 0 for all e ∈M∂Ωi \MF , and

Ei(vvviF )≤Cω
2
i Ei(uuui), (16)

where the energy Ei is defined in (3).

Proof. Let pi in (12) be chosen so p̄i = 0. This is possible since a constant can
be added to pi without changing its gradient. Because uie = 0 for all e ∈ M∂F , it
follows from Lemmas 1 and 4 and elementary estimates that

‖∇pi · tttE ‖2
L2(∂F ) = ‖(Π hi(ΨΨΨ iii)+qqqi) · tttE ‖2

L2(∂F )

≤Cωi‖∇×uuui‖2
L2(Ωi)

. (17)

We then find from Lemmas 2 and 4 that

‖∇piF ‖2
L2(Ωi)

≤Cω
2
i ‖uuui‖2

L2(Ωi)
. (18)

Define

piW := ∑
V ∈GiV

piV + ∑
E∈GiE

piE , d :=
{

Hi if di ≥ Hi
max(di,Chi) otherwise,

where di :=
√

αi/βi. Further, let piW and pppiF denote the functions fi and vvvi, re-
spectively, of Lemma 3. We then find from Lemmas 1 and 3 and (17) that

Ei(pppiF )≤Cω
2
i Ei(uuui), (19)

where piF e = ∇piW e ∀e ∈MF and piF e = 0 ∀e ∈M∂Ωi \MF . With reference to
(12) and (4), we define

qqqiF := ∑
e∈MF

qieNNNe, (20)

and from elementary finite element estimates and Lemma 4 find

‖qqqiF ‖2
L2(Ωi)

≤Ch3
i ∑

e∈MF

q2
ie ≤C‖qqqi‖2

L2(Ωi)
≤C‖uuui‖2

L2(Ωi)
, (21)

‖∇×qqqiF ‖2
L2(Ωi)

≤Chi ∑
e∈MF

q2
ie ≤C‖∇×uuui‖2

L2(Ωi)
. (22)

It follows from Lemmas 2 and 4 that there exists a ΨΨΨ iF ∈ (W hi
grad)

3 such that ΨΨΨ iF =
ΨΨΨ i at all nodes of F , that vanishes at all other nodes of ∂Ωi, and

‖ΨΨΨ iF ‖2
L2(Ωi)

≤C‖ΨΨΨ i‖2
L2(Ωi)

≤C‖uuui‖2
L2(Ωi)

, (23)

‖∇×ΨΨΨ iF ‖2
L2(Ωi)

≤Cω
2
i ‖ΨΨΨ i‖2

H1(Ωi)
≤Cω

2
i ‖∇×uuui‖2

L2(Ωi)
. (24)
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From Lemmas 1 and 4, we obtain

‖ΨΨΨ i‖2
L2(∂F ) ≤Cωi‖ΨΨΨ i‖2

H1(Ωi)
≤Cωi‖∇×uuui‖2

L2(Ωi)
. (25)

Let ΨΨΨ i∂F ∈ (W hi
grad)

3 be identical to ΨΨΨ i at all nodes of ∂F and vanish at all other
nodes of Ωi. For ggg := Π hi(ΨΨΨ i∂F ), we define

gggiF := ∑
e∈MF

ghi
e NNNe. (26)

From elementary estimates and (25,) we then obtain

‖gggiF ‖2
L2(Ωi)

≤Ch2
i |ΨΨΨ i‖2

L2(∂F ) ≤Cωih2
i ‖∇×uuui‖2

L2(Ωi)
, (27)

‖∇×gggiF ‖2
L2(Ωi)

≤Cωi‖∇×uuui‖2
L2(Ωi)

. (28)

Defining
vvviF := ∇piF + pppiF +qqqiF +Π

hi(ΨΨΨ iF )+gggiF , (29)

we find that viF e = uie ∀e ∈ MF and viF e = 0 ∀e ∈ M∂Ωi \MF . The estimate in
(16) then follows from the bounds for each of the terms on the right-hand-side of
(29) along with elementary estimates for Π hi(ΨΨΨ iF ). 2

3 BDDC

Background information and related theory for BDDC can be found in several ref-
erences including [2, 9, 10, 8, 1]. Let ui and u denote vectors of finite element
coefficients associated with Γi and Γ . In general, entries in ui and u j are allowed to
differ for j 6= i even though they refer to the same finite element edge. Entries in
the vector ũi are partially continuous in the sense that specific edge values or edge
averages over certain subsets of Γ are required to match for adjacent subdomains.
In order to obtain consistent entries, we define the weighted average

ûi = Ri

N

∑
j=1

RT
j D jũ j, (30)

where R j is a 0-1 (Boolean) matrix that selects the rows of u j from u and D j is a
weight matrix. The weight matrices form a partition of unity in the sense that

N

∑
i=1

RT
i DiRi = I, (31)

where I is the identity matrix. To summarize, ûi is fully continuous while ũi is only
partially continuous. The number of continuity constraints that must be satisfied by
all the ũi determines the dimension of the coarse space.
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The energy of uuu for Ωi can be expressed as

Ei(uuu) = Ei(ui) = uT
i Siui, (32)

where Si is the Schur complement matrix associated with Ωi and Γi. The system
operator for BDDC is the assembled Schur complement

S =
N

∑
i=1

RT
i SiRi. (33)

From Theorem 25 of [10], the condition number of the BDDC preconditioned oper-
ator is bounded above by

κ(M−1S)≤ sup
ũi

∑
N
i=1 ûT

i Siûi

∑
N
i=1 ũT

i Siũi
. (34)

This remarkably simple expression shows that the continuity constraints for ũi
should be chosen so that large increases in energy do not result from the averag-
ing operation in (30).

Let Ri∂Fi j select the rows of ui corresponding to the edge coefficients on the
boundary of the face Fi j, the closure of which is ∂Ωi ∩ ∂Ω j. Similarly, let RiFi j
select the rows of ui corresponding to the interior of the face Fi j. We define the
vector of face edge coefficients by uiF := RiFi j ui and the face Schur complement
matrix by SiFF := RiFi j SiRT

iFi j
.

Because of page restrictions, we only consider a very rich coarse space which
includes every edge variable of each subdomain edge. This coarse space corresponds
to Algorithm C of [11]. For this case, we choose the weighted average of uiF and
u jF as

ûF = (SiFF +S jFF)−1(SiFF uiF +S jFF u jF). (35)

Thus,
uiF − ûF = (SiFF +S jFF)−1S jFF(uiF −u jF). (36)

Using the eigenvectors of the generalized eigenvalue problem SiFF x = λS jFF x as a
convenient basis, we find

uT
kF S̄iFF ukF ≤ uT

kF SkFF ukF , ∀ukF k ∈ {i, j}, (37)

where
S̄iFF := S jFF(SiFF +S jFF)−1SiFF(SiFF +S jFF)−1S jFF (38)

Let us assume for the moment that there are vectors ui j, u ji, and a scalar Ĉ > 0 such
that



10 Clark R. Dohrmann and Olof B. Widlund

Ri∂Fi j ui j = R j∂Fi j u ji = u∂F , (39)

RiFi j ui j = R jFi j u ji, (40)

uT
i jSiui j +uT

jiS ju ji ≤ Ĉ(uT
i Siui +uT

j S ju j). (41)

In other words, ui j, u ji, ui and u j are all identical along the boundary of Fi j. Fur-
ther, ui j and u ji are identical in the interior of Fi j, and the sum of their energies is
bounded uniformly by the sum of the energies of ui and u j.

In order to establish a condition number bound for Algorithm C, we need an
estimate for Ei(RT

iFi j
(uiF − ûF)); see (34). By construction, we have Ri∂Fi j(ui −

ui j) = 0 and R j∂Fi j(u j − u ji) = 0. Since uiF − u jF = (uiF − ui jF)− (u jF − u jiF), it
then follows from (36), (37), (41), and Lemma 5 that

Ei(RT
iFi j

(uiF − ûF)) =Ei(RT
iFi j

(SiFF +S jFF)−1S jFF(uiF −u jF))

≤2(uiF −ui jF)T SiFF(uiF −ui jF)+

2(u jF −u jiF)T S jFF(u jF −u jiF)

≤ ĈCω
2
i (Ei(ui)+E j(u j)). (42)

We are able to show there exist ui j and u ji which satisfy the conditions in (39-41)
with Ĉ independent of mesh parameters and the material properties αi, βi, α j, and
β j under the assumption

αm ≤Cαn and βm ≤Cβn for {m,n}= {i, j} or {m,n}= { j, i}. (43)

This can be done using Lemma 4 together with an extension theorem for H1 func-
tions on Lipschitz domains. We note that numerical experiments suggest that no
assumptions on subdomain material properties are needed, other than them being
constant in each subdomain, for Ĉ in (41) to be uniformly bounded.

Our main result follows from the estimate in (42).

Theorem 1 (Condition Number Estimate). Under the assumption in (43), the con-
dition number of the BDDC preconditioned operator for this study is bounded by

κ ≤Cω
2, (44)

where
ω = max

i
(1+ log(Hi/hi)). (45)

In summary, we have obtained a favorable condition number estimate with less re-
strictive assumptions on the material properties of the subdomains than in previous
studies. Comparing the condition number estimate of Theorem 1 with those in (1)
and (2), we see that the factor of H2

i βi/αi can be removed provided the assumption
in (43) holds. In addition, the logarithmic factor has been reduced from four pow-
ers to two. We note that the estimate in Theorem 1 also holds for FETI-DP due its
spectral equivalence with BDDC.
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We note that the algorithm involves a non-standard averaging given by (35). This
averaging requires the solution of Dirichlet problems over the union of each pair of
subdomains sharing a face. The importance of this method of averaging for some
problems is shown in the next section.

4 Numerical Results

In this section, we present some numerical results to verify the theory and also to
provide some additional insights. The domain is a unit cube discretized into smaller
cubic elements. All the examples are solved to a relative residual tolerance of 10−8

for random right-hand-sides using the conjugate gradient algorithm with BDDC as
the preconditioner. The number of iterations and condition number estimates from
conjugate gradients are under the headings of iter and cond in the tables. We con-
sider three different types of weights for the averaging operator. The first one, des-
ignated SC, is the one based on (35). Unless otherwise specified in the tables, this
is the weighting used. The second type, stiff, is based on a conventional approach
in which the weights are proportional to the entries on the diagonals of subdomain
matrices. The third, card, uses the inverse of the cardinality of an edge, i.e. the re-
ciprocal of the number of subdomains sharing the edge, for the weight.

The results in Table 1 are consistent with theory, suggesting condition numbers
that are bounded independently of the number of subdomains, while the results in
Table 2 are consistent with the log(H/h)2 estimate of Theorem 1.

We also consider a checkerboard distribution of material properties in which
(α,β ) for a subdomain is either (α1,β1) or (α2,β2), and note that subdomains with
the same properties only share a subdomain vertex and no degrees of freedom. Re-
sults for 64 cubic subdomains each with H/h = 4 are shown in Table 3. Notice that
for only one choice of material properties in the table do all three types of weighting
lead to small condition numbers, and only the SC approach always gives condition
numbers which are independent of the material properties. We have also investi-
gated another type of weighting similar to card, but with weights γ , 0 < γ < 1 for
faces of subdomains with properties α1,β1 and 1− γ for faces of subdomains with
properties α2,β2. Regardless of the choice of γ , large condition numbers were ob-
served for the coefficients of the final row of Table 3. We note also that the choice
of material properties in the final row is not covered by the theory of [11].

In the final example, we consider a cubic mesh of 203 elements that is parti-
tioned into different numbers of subdomains using the graph partitioner Metis [7].
Although this example is not covered by our theory because the subdomains have
irregular shapes, the results in Table 4 indicate that the algorithm of this study con-
tinues to perform well. The results in Tables 3 and 4 suggest that the SC weighting
of this study may be necessary in order to effectively solve problems with material
property jumps or with subdomains of irregular shape.
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Table 1 Results for N cubic subdomains, each with β = 1 and H/h = 4.

N α = 102 α = 1 α = 10−2

iter (cond) iter (cond) iter (cond)

43 15 (2.70) 14 (2.63) 10 (1.77)
63 16 (2.88) 15 (2.81) 11 (2.05)
83 16 (2.95) 15 (2.87) 12 (2.23)
103 17 (2.98) 16 (2.91) 13 (2.33)

Table 2 Results for 64 cubic subdomains, each with β = 1.

H/h α = 102 α = 1 α = 10−2

iter (cond) iter (cond) iter (cond)

4 15 (2.70) 14 (2.63) 10 (1.77)
6 17 (3.30) 16 (3.21) 11 (2.14)
8 18 (3.77) 16 (3.66) 13 (2.46)
10 19 (4.16) 18 (4.03) 13 (2.72)

Table 3 Checkerboard material property results for 64 cubic subdomains with H/h = 4.

α1 β1 α2 β2 SC stiff card
iter (cond) iter (cond) iter (cond)

1 1 103 1 10 (1.59) 19 (4.57) 196 (1.64e3)
1 1 1 103 11 (1.96) 84 (2.69e2) 109 (4.72e2)
1 1 1 1.01 14 (2.63) 14 (2.63) 14 (2.63)
102 10−2 1 1 6 (1.07) 65 (3.17e2) 74 (1.65e2)

Table 4 Results for 203 elements partitioned into N subdomains using a graph partitioner. Material
properties are constant with α = 1 and β = 1.

N SC stiff card
iter (cond) iter (cond) iter (cond)

60 19 (4.30) 189 (6.31e2) 24 (9.06)
65 19 (4.40) 184 (6.34e2) 29 (1.55e3)
70 18 (3.89) 188 (6.47e2) 23 (7.48)
75 19 (4.16) 176 (6.12e2) 23 (6.49)
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