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Abstract. Two overlapping Schwarz algorithms are developed for a discontinuous Galerkin finite
element approximation of second order scalar elliptic problems in both two and three dimensions.
The discontinuous Galerkin formulation is based on a staggered discretization introduced by Chung
and Engquist [SIAM J. Numer. Anal., 47 (2009), pp. 3820-3848] for the acoustic wave equation.
Two types of coarse problems are introduced for the two-level Schwarz algorithms. The first is built
on a nonoverlapping subdomain partition, which allows quite general subdomain partitions, and the
second on introducing an additional coarse triangulation that can also be quite independent of the
fine triangulation. Condition number bounds are established and numerical results are presented.
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1. Introduction. Two-level overlapping Schwarz algorithms are developed for
the fast and stable solution of a staggered discontinuous Galerkin method applied to
second order elliptic problems. Discontinuous Galerkin methods allow test functions
which are discontinuous across element boundaries and this feature makes them more
suitable for modeling problems with discontinuous coefficients, singularities, multi-
scales, and multiphysics. Since the first work, by Reed and Hill [29], for hyperbolic
equations, discontinuous Galerkin methods have been applied to various problems and
the field has become an active research area; see, e.g., [21, 17, 30, 9, 5]. The design
of the flux condition across the interelement boundary determines the accuracy of
the discontinuous Galerkin approximation and the properties of the resulting linear
system.

In relatively recent works by Engquist, Chung, and others [13, 14, 16, 15], a
staggered discontinuous Galerkin method is developed and analyzed. A second or-
der problem is written as a system of first order with two unknowns U and u. To
approximate U and u, each triangle/tetrahedron, in a given triangulation, is subdi-
vided and discontinuous functions U}, and wj, are built for the resulting triangulation
so that on each interelement boundary one of these functions is continuous and the
other discontinuous. In addition, we require these functions to satisfy a certain inf-
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sup stability. Using them, a conservative interelement flux condition is then obtained
straightforwardly. Such a flux condition preserves the symmetry of the model prob-
lem and results in an optimal order of approximation. Moreover, the use of this
staggered approximation provides locally and globally conservative schemes. While
many discontinuous Galerkin methods have the advantage that they can be used with
nonmatching meshes with hanging nodes, the discretization technique considered in
this paper has not yet been developed for such meshes.

For elliptic problems, the resulting linear system arising from the staggered dis-
continuous Galerkin formulation is symmetric and positive definite after eliminating
one set of variables locally. These desirable properties are obtained without the use
of additional penalty terms. A low order discontinuous Galerkin method with similar
properties is developed in [11] for nonstaggered meshes.

However, one disadvantage of the staggered discontinuous Galerkin method is that
the resulting linear system is relatively large and less sparse than those from other dis-
continuous Galerkin formulations, because the test functions are built after a further
subdivision of the given triangulation and are also partially continuous. Therefore,
a fast and stable solver for the staggered discontinuous Galerkin formulation is quite
desirable to increase its applicability for real-world problems.

Previous studies have addressed fast and stable solvers for discontinuous Galerkin
methods. In the works by Feng and Karakashian [23, 24], two-level additive Schwarz
methods were developed for second order elliptic problems and fourth order problems,
and in the work by Lasser and Toselli [28] overlapping Schwarz preconditioners were
developed for advection-diffusion problems. A more general framework of Schwarz
preconditioners was studied in [1, 2, 3, 4], including multiplicative Schwarz precondi-
tioners and hp-discontinuous Galerkin formulations. In the work by Dryja, Galvis, and
Sarkis [22], balancing domain decomposition by constraints (BDDC) methods were
applied to discontinuous Galerkin formulations of elliptic problems with discontinuous
coefficients, where the finite element functions are continuous inside each subdomain
and discontinuous across the subdomain boundaries only. Recently, two-level additive
Schwarz preconditioners have also been studied by Barker et al. [6]. In their work,
algorithms are developed and analyzed for several types of coarse problems and their
performance compared for these different choices.

In this paper, we develop a two-level overlapping Schwarz preconditioner for the
staggered discontinuous Galerkin formulation of [14] applied to elliptic problems. In
all previous work on two-level Schwarz preconditioners for the discontinuous Galerkin
formulation, each subdomain is assumed to be an element of a coarse regular partition
or the union of a few such elements. Our algorithm, in contrast, allows for a quite
general subdomain partition without such an assumption. Two types of coarse prob-
lems are introduced. The first one is related only to the subdomain partition where
each subdomain is obtained as the union of elements provided in the problem domain.
On each face, which is the common part of two subdomain boundaries, we introduce a
face-based finite element function; its value is one on the given face and zero on the rest
of the subdomain interface. For these interface values, the values in the interior of each
subdomain are determined by minimizing a certain discrete energy norm. By using
these face-based functions in the construction of the coarse problem, we can prove that
the condition number can be bounded by C(1 + H/6)(1 + H?*~? maxp, 0%, |§{1(Q)),
where d is the dimension, H is the subdomain diameter, § the overlapping width, C'
a positive constant independent of any mesh parameters, and 0%”, (z) a continuous,
face-based finite element function described in section 4. We note that our result can
be applied to quite general subdomain partitions, where each subdomain satisfies a
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Poincaré inequality and a starlike property. We note that all our results are just as
strong as the earlier ones for conforming finite element methods.

The second type of coarse problem is obtained by introducing an additional coarse
triangulation. In this case, the subdomains again need not be a union of coarse
tetrahedra/triangles. With the less strong assumption that the diameter of each
subdomain is comparable to those of the coarse tetrahedra/triangles which intersect
it, we can prove a condition number bound of C(1 + H/J).

The rest of this paper is organized as follows. In section 2, the staggered dis-
continuous Galerkin formulation is introduced for a model elliptic problem, and in
sections 3 and 4, our first two-level Schwarz algorithm is developed and analyzed. In
section 5, the algorithm with the second type of the coarse problem is introduced
and analyzed. In section 6, numerical experiments are reported for the proposed al-
gorithms. Throughout this paper, C' denotes a generic positive constant, which is
independent of any mesh parameters.

2. The staggered discontinuous Galerkin formulation.

2.1. Variational form. We consider a scalar, elliptic model problem in a bounded
domain Q € R? with d =2 or 3:

find u € H}(Q) such that

(21) V- (p(@)Vu(z) = f(z) VzeQ,

where p(z) > pg > 0 with pg a constant. The domain €2 is subdivided into potentially
many subdomains €2;, which may have quite irregular boundaries. Moreover, we will
assume that p is a constant in each of these subdomains; we could easily extend
our results to cases where the coefficients vary moderately in each subdomain. In
the following, we will use d to denote the dimension of 2. In our description of the
algorithm, we will primarily discuss the case of d = 3.

An equivalent variational formulation is obtained by integrating by parts:

find u € H}(2) such that

(2:2) (PVat, Vo) g2y = (F10)12() Vo € H(Q).

By introducing an additional unknown, namely, U := pVu, we can recast this problem
and obtain a suitable framework for our discontinuous Galerkin discretization, also
known as a two-unknown or saddle point problem:

ﬁnd (u,U) € H}(Q) x L*(9) such that
(2.3) (07U, V)p2iq) — (Vu,V)peg) =0 VV € L*(Q),
(U, Vv)Lz Q) = = (f,v)r2@ Vve HO(Q)

2.2. The staggered discontinuous Galerkin discretization. Following
Chung and Engquist [13, 14], we first define an initial triangulation 7, satisfying
the standard quasi-uniform assumption in each subdomains. Thus, the domain 2 is
triangulated using a set of tetrahedra in three dimensions and triangles in two dimen-
sons. JF, will denote the set of all faces in this triangulation and F0 the subset of all
interior faces, i.e., the set of faces in F, that are not embedded in 0f2.

For each tetrahedron, we select an interior point v and denote this tetrahedron
by S(v). We then further subdivide each tetrahedron into four subtetrahedra by con-
necting the point v to the four vertices of the tetrahedron. The resulting triangulation
is denoted by 7. We assume that we select points v so that this triangulation also
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Fic. 1. Triangulation in 2D.

satisfies the standard shape regularity assumption. We will denote by F, the set
of all the new faces obtained by the second subdivision and set F := F, U F, and
FO:=FOUF,.

For each face f € F,, we denote by R(f) the union of the two subtetrahedra
sharing the face f. If f is a boundary face, then R(f) is just the one tetrahedron
having this face. See Figure 1 for an illustration of this concept in two dimensions.

We define a unit normal vector ny for each face f € F as follows. If f € F\F?,
then n is the unit normal vector of f pointing toward the outside of Q. If f € FY,
an interior face, we then fix ny as one of the two possible unit normal vectors on f;
when it is clear which face is being considered, we will simplify the notation and use
n instead of ny.

We are now ready to introduce our finite element spaces. Let k& > 0 be a non-
negative integer. Let 7 € T and let P*(7) be the space of polynomials of degree less
than or equal to k£ on 7.

We first introduce our discrete scalar field space.

Locally H!(€2)-conforming finite element space for the scalar field.

(2.4) Sp={v]|v, € P*(7), V7 € T; v continuous across f € F0; vjan = 0}.

We define two norms in the space Sy, the discrete L2-norm ||v||x and the discrete
H'-norm ||v||z, by

(2.5) llvl|% z/ﬂvz dzr + Z hf/fvz do,

fers

(2.6) 12 :/Q|w2 dr+ 3 h;lff[v]Q do,

feFp

where hy is the diameter of f and the integral of Vv in (2.6) should be understood
as defined elementwise:

/ Vol de = Y [ 1902 de.
Q

TeT VT

Here we recall that, by definition, v € S, is always continuous across each face of F0
but that it can be discontinuous across any face of F,. In the above definition, the
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jump [v] across each f € F), is defined as
[v] = vimg + vang,

where v; = v, 71 and Ty are the two (sub-)tetrahedra sharing f, and m; and ns
are the outward unit normal vectors on f for 7 and 7o. We note that by using norm
equivalence and a scaling argument (see also [14, Theorem 3.1]), we can show that
there exists a constant C' > 0, independent of h, such that

[vllZ2) < I0llx < Cllvllizq) Vv € Sh

We next introduce a discrete space of vector fields.
Locally H (div; 2)-conforming finite element space for the vector field.

(2.7) Vi ={V |V, € P*(7) ¥r € T; V - nis continuous across f € F,}.

In the space V},, we define two norms, the discrete L?-norm and the discrete H (div; 2)-
norm, by

(2.8) V% :/Q|V|2da:+ 3 hf/f(v.n)Q do,

feFp

7 = V) dx o -n)? do
(29) iz = [ (7 Ve S [V ao

feFy

where the integral of (V- V)? in (2.9) is defined elementwise. We also recall that, by
definition, V' € V}, has a continuous normal component across each face f € F,. In
the definition above, the jump [V - n] on any f € FC is defined as

[V-n]:V1-7’L1+V2-7’L2,

where V; = V|, and 71 and 72 are the two subtetrahedra with f as their common
face. One can prove, by an argument used in the proof of [14, Theorem 3.2], that
there exists a constant C' > 0, independent of h, such that

(2.10) IVIZe) < IVI%X <ClIVILe@) YV € Vi
We next define
bh(U,v):/U-Vvda:— Z /U~n[v] do
@ rer, 7
(2.11) - > /UU-ndcr, U eV, veS,
feF\Fe T
b;;(u,V):—/uv-de+ > /u[V-n]dU
@ fero
(2.12) + > /uV-ndcr, we Sy VeV,
f

FEFUNFY

We note that when v and v in the above formulae vanish on 952, the last term in both
bn(U,v) and b} (u, V') vanishes.
According to Lemma 2.4 of Chung and Engquist [14], we have

(2.13) bp(V,v) =bj(v,V) Y(u,V) €Sy XV
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Moreover, the following holds:
(2.14) b(V,v) < |vllz IVIx: Y(v,V) €Sk X Vp.
The staggered discontinuous Galerkin method reads as follows:

find (upn,Up) € Sp x Vi, such that
(2.15) (U, V)L%(Q) —bi(up,V)=0 VV eV,
bn(Up,v) = (f, U)Lz(g) VovesSy,.
Here
U V)pso) = /Q %ﬁ) UV da.
Let B, and M; be the matrices obtained from b,(V,v) and (U, V)rz2(q) for

functions in (V,v) € V), x S, and (U,V) € Vj, x V, respectively. Using that
br(V,v) = bi(v,V), the matrix B corresponds to the bilinear form b (v,U) for

(v,U) € S X Vi,. We can then rewrite (2.15) as an algebraic system of equations:
(2.16) MUy, — Bl uy, =0,
(2.17) BLU, = fi.

Since My, is symmetric and positive definite and block diagonal with small blocks, we
can eliminate U, from (2.16) to obtain an equation for up,

(2.18) By M, 'Bifup, = fn,
with a matrix which is symmetric and positive definite. We introduce a bilinear form
for (u,v) € S, x Sh,
a(u,v) := v B,M,; ' Bl u,
and use the notation A to denote the matrix B, M, 'BF,
(2.19) A:= B,M,; 'BI.

We will develop two two-level overlapping Schwarz algorithms for solving the algebraic
system (2.18).

In the design of the first preconditioner, we will build coarse basis functions related
to a nonoverlapping subdomain partition of 2 similar to those of [18]. Let {£2;} be
a nonoverlapping partition of €2 and assume that each €2; is connected and a union
of tetrahedra/triangles in 7T,,. For a given partition, we introduce local finite element
spaces,

Vh,i = Vhla,, Sh,i = Shla,,

which are the restrictions of V}, and S; to the subdomain ;. Associated with
(Vh.iySh.i), we introduce local bilinear forms by, ; and by, ; by

(2.20) bh_,i(U,v):/Q‘U-Vv dr— > /fU-n[v] do,

fEF, N
(2.21) b};,i(u,V):—/ uV-Vdr+ Z /u[Vn] do
i feFone, ’/
+ Z / u'V -n; do,
f

FEFON 8%,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/31/13 to 216.165.95.76. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

TWO-LEVEL SCHWARZ ALGORITHMS FOR STAGGERED DG METHODS 53
where n; is the unit normal to 9€2; on f. It can be seen easily that
(2.22) bpi(V,v) = by, ;(v, V)
and that

(Vo) = bni(Via,vle), b0, V) = b i(v]a,, Via,).

Let B; and B; be the matrices associated to the bilinear forms by ; and b;;yi,
respectively, i.e.,

(BiVlq,,vla,) = bni(Vl]a,,vla,)
and

(Bjv

Q«MV

Q«MV

Q) = bpi(v )-
Here (-, -) denotes the [?>-inner product. Using (2.22), we have
B = B].

By introducing M;, the matrix associated to the bilinear form
(MiUla,, Va,) = (Ula:: Va2, »

and R;, the restriction from Sp, to Sp, i, we can rewrite (2.15) as

(2.23) M;U; — BIRju;, =0, i=1,...,N,

(2.24) Z RI'BU; = Z R} fi,

where U; is the restriction of U to €2; and f; is given by

<fiav

Qm> = (va)L2(Q¢)'

Since the M; are invertible, by (2.23) and (2.24), we can obtain the algebraic equation
(2.18) by assembling of local matrices:

(2.25) > RI'B;M; B Ryuy = > R f:.

Here we note that u, € Sp, where functions can be discontinuous across each face
f € Fp. We introduce the notation A; for

A; = B;M;'BT,
and we introduce a bilinear form defined on Sy, ; x Sy ; by

(226) ai(ui,vi) = <A1u1,’01>
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3. A two-level overlapping Schwarz algorithm. We consider a nonoverlap-
ping partition of €, which is denoted by {€Q;}. The nonoverlapping partition can
be obtained from the original triangulation 7, provided for €2, e.g., by using a mesh
partitioner; the subdomains in the resulting partition may then have quite irregular
boundaries. The interface I' is defined by (U;,0€; N 0€Y,) \ 0.

We then introduce an overlapping partition {Q} of {2 and for each subregion
), and we associate two finite element spaces V() and S;(;), which are the
restrictions of V;, and S, to the subregion Q; Here the superscript 0 indicates that
the functions in S} (€;) vanish on the boundary of ;.

A bilinear form is introduced for (u,v) € S)(Q;) x S)(Q;) by

ag;, (u,v) == Bh Q/M B,?Q,_u,
where By, o/ is the matrix obtained from b, (U, v) for (U,v) € Vi(€)) x S(€;) and
MQ/ is the inverse of the weighted mass matrix obtained from (U, V) L2() where
(U, V) S Vh(Q/) X Vh(Q;)

To simplify the presentation, we will use the notation Vj’ to denote S,?(Q;) and
introduce the trivial extension by zero,

RT - V] = Sh.
A projection Pj, related to the subregion Q;, is defined by
_ T p/
P, =RTP,
where P/ is obtained from
ag, (Pju,v) = a(u,R]v) YveV].

We now construct the coarse space Vj based on the nonoverlapping partition {£2;}.
Let F;; denote the common face (edge) of two subdomains Q; and ; in three (two)
dimensions. Then the union of all these Fj; forms a partition of 9€2;. For each Fj;, we

define a face- (edge-) based function 0%63 (x) as follows: 0%63 is a piecewise constant
function on 0€); with the values

(k) 1, ze€ Fija
(31) HFLJ( ) { 0’ T € Fzm vm #]

We extend these boundary values to the interior of 2; by a minimal energy extension
with respect to the seminorm a;(v;, v;)'/? defined in (2.26). Here we use the super-
script k to stress that Sy, is defined by piecewise polynomials of order k. For x € Q;,

we define 9( )( ) similarly. We then extend it by zero to the rest of Q2 as an element

of §,. We note that 0( ) is discontinuous on the boundary of Fy;.
We can now deﬁne ‘the space of coarse basis functions by

Vo = span{ﬁ( (z )VFU}
The projection Py is then defined by
a(Pou,v) = a(u,v) Yv € Vp,

and the two-level overlapping Schwarz operator is given by

N
Pas =Y _Pj.
=0
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4. Estimate of the condition number. We will now provide a bound of the
condition number of our first two-level overlapping Schwarz algorithm. See [31, Chap-
ter 3] for this algorithm and the theory for the standard conforming case.

For the upper bound, by the standard coloring argument and by using that the
P; are projections (see [31, Lemmas 2.6 and 2.10]), we obtain

a(Pasu,u) < (14 Noa(u,u),

where N, is the number of colors required to color the overlapping subregions in {Q;}
so that no two intersecting subregions have the same color.
For the lower bound, we will prove that for some decomposition of u € Sy,

N
T
U= ug + E R; uj,
=1

with ug € Vo and u; € V}, the following inequality holds:

N

a(ug, up) + Z agy (uj,u;) < Cia(u,u).
j=1

The condition number of P, is then bounded by
f(Pas) < (14 N)C3.

In our theory, we need an assumption on the nonoverlapping subdomain partition
{Q;}. A domain Q; is starlike if there exits a xg € £2; and a constant ¢ > 0 such that

(4.1) (x —x¢)-n>cHg, Vxe€d,

where n is the unit normal to 0€; at x and Hg, is the diameter of €2;.

Assumption 4.1. Each subdomain ; satisfies the Poincaré inequalities as in [8]
and the starlike property, and the number of tetrahedra along each edge of ; is
proportional to (Hg, /h;)%~2, where Hg, is the diameter of €2; and h; is the mesh size
of the fine grid of Q;. The p(x) is a positive constant p; for each subdomain ;.

With the above assumption on each subdomain in the nonoverlapping subdomain
partition, we will prove that

H — c
Cg <C<1+§) (1+H2 dHFl,iXWF'u'%{l(Q)) ’
where 6%, is a linear conforming face function with the boundary values

1, xze€Fh
c _ ) i

and which minimizes the H'-seminorm on the space V. Here V} is the space of
linear conforming finite element functions on the given triangulation 7T, FZ} is the set

of nodes belong to Fj;, and I'" is the set of nodes belong to the boundaries of at least
two substructures. We note that 9%@_ is needed only for the theory.
We recall the following properties for b, (V',v) and b} (v, V') (see [13, 14]):

(4.3) 167, (0, V)| < IV - [lv]lx
(4.4) br(V, 0) < [V x[lvllz,
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and
. by (v, V)
(4.5) inf sup —T—t— > f,
VEVL vesS), HU“X”VHz’
b (V
(4.6) inf sup A0

veshvev, [Vilxlvllz

where (3 is a positive constant independent of A and H.
We note that using (4.4) and (4.6), we obtain for u € Sy,

c(p)B2lullZ < alu,u) < Cp)llullZ,

where ¢(p) and C(p) are positive constants depending on p(x). Similarly, we obtain
for u; € Sp;

(4.7) B2 pilluillZ, < ailui,ui) < Cpilluil%,,

where

lluslZ, ::/Q |V |2 da + Z h;l/[ui]gds

FeF N9 f

and ¢ and C are positive constants, which do not depend on p(x). We recall that we
assume that p(x) = p; for all x € Q;, where p; is a positive constant.
We list some auxiliary results which will be useful in our analysis.
e Poincaré-Friedrichs inequalities (Brenner [8]):

2
48) ol < € | 3 bl + 07" [ wPast ([ vas) ).

Te€T feF

2
(49) Wl 0y < € | X bl + X hy* [ 1ol e+ ([ o)

Te€T feF

e A trace inequality (Feng and Karakashian [24, Lemma 3.6]):
(4.10)

0] Z2(90) < C H§1||UH%2(Q) + Ho Z [0lFr () + Z s /[U]Q ds
reT feF f

Let €25 be the thin layer of {2 which consists of x € Q such that dist(x, 0€2) < 4.
e A generalized Poincaré inequality (Feng and Karakashian [24, Lemma 3.7]):
(4.11)

0]l L2y) < OO | Hy ' [vllZ20) + Ha Z ol3n ) + Z hyt /[U]2d5
TET ferF

We note that these results hold for any piecewise polynomial function u given
in terms of a partition 7 of F, the set of all interior faces (edges) in 7. In our
case, F is the union of F, and F2. T"is a measurable subset of 9 with a positive
(d — 1)-dimensional measure. Hq and hy denote the diameter of the domain  and
f, respectively.
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The inequalities in (4.8) and (4.9) hold for any Q which satisfies the standard
Poincaré-Friedrichs inequalities. The inequalities in (4.10) and (4.11) hold for any
bounded polyhedral domain which is starlike. The constant C' in (4.10) depends on
the constant ¢ appearing in (4.1), the definition of the starlike property. We note that
2 need not be convex. The result in (4.11) is a general version of Lemma 3.10 in [31].
In our theory, these results will be applied to each subdomain €2;.

For a given function u € Sy, we consider

k
(4.12) ZuF” 0 ()

where Up,; is the average of u over Fyj, i.e.,

Jp, ule(s)) ds

quj

We note that 9}{63 (x) is discontinuous on the boundary of F;;, while the coarse basis
function 6%, (z) of the standard conforming finite elements is continuous and vanishes
on the boundary of the face. In addition we note that 6" P ) satisfies

Z 9}?3(3}) =1Vz e Q.

F;;COQ;

Let I" be an interpolant of v € [ier, H'(R(f)), which is the space of piecewise
H!-functions in 7 such that [v]; = 0 for all f in F0 into Sy, which satisfies

/f(Ihv—v)qu:OquPk(f) Vf e Fu,
(4.14)
/(Ihv—v)qu:()VqEPk_l(T) VreT.

From the above conditions, we can see that I"v satisfies by, (V, I"v — v) = 0 for all
V € V), (see [14]). Consequently, by the continuity condition (4.4) and the inf-sup
condition (4.6), we have

1 I 1 1
”Ih,U”Z < = sup bh(Vv U) — sup bh(Vvv) -

< [v]| z-
Bvev, IVIx — Bvev, IVIx — 5

Hence, we have proved the following lemma, which will be used in our analysis.
LEMMA 4.2. Forv € [[;cx, HYR(f)), we have

||Ihv|\z < Clvllz.
Next, we recall the definition of 9 " in (3.1) and obtain the following estimate.

LEMMA 4.3. With the assumptwn that the number of tetrahedra along each edge
of Q; is proportional to (H/h)*~2, the coarse basis function satisfies

k — c
163113 < CHY2 + 105, 3 (@)

for all k > 0, where G%ij (x) is the standard linear conforming face function.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/31/13 to 216.165.95.76. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

58 ERIC T. CHUNG, HYEA HYUN KIM, AND OLOF B. WIDLUND

4
<

F1G. 2. The face Fy; (in gray) for two dimensions (left) and three dimensions (right), the set
Vij with triangles/tetrahedra (in figure) which intersect OF;; and intersect Fi; on an edge/a face f
in FZ]

Proof. We first consider the case of k = 1 and later extend the result to the other
cases where £ = 0 and k& > 2. Let Vj; be the set of all triangles/tetrahedra in the
triangulation 7 that have a nonempty intersection with 0F;; and intersect Fj; along
an edge/a face f in F;;; see Figure 2.

For v € Sy, we denote by H(v) the discrete harmonic extension into S, which
minimizes the discrete H'-norm, ||H (v)||z for a given value v on I'j,. By the definition

of 9%2, we see that

H(0}:)) = 0.

J

In addition, for v € Sy, let E(v) the zero extension into Sy, for a given value v on I'y,.
We then obtain that

165112 = | H (8 FU)HZ

< |HO%) = 05)llz + 1 H 0%,z
(4.15) < |E®% ” —0%,)
since the operator H is linear and H (v) minimizes the norm || - || 7 for the given value

v on I'y.
Using that 0 < E(G%i (z) — HCFiJ_ (z)) < 1, we obtain
1 C —
|E(9;—.3 - aFij)lfv‘Il(T) < Chd 2
and

RO — 05, 132 < CRT2.

By the definition of E(v), it sufﬁces to consider only the tetrahedra 7 with nonzero
value of v and we note that E(G — 07%,,) has nonzero values only in the tetrahedra

in Vj;. Since the number of tetrahedra/ trlangles along each edge of §; is proportional
to (H/h)4=2, the number of tetrahedra/triangles in V;; is proportional to H/h and to
a constant for d = 3 and d = 2, respectively. We then obtain

1 1 c
B0 —05.)1% < > [B6F) — 05.)130
TEV,

+ > hBOR) = 05

FEF, NT,TEV;;

d—2
(4.16) < Ch%2 <%) < CH¥2.
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We therefore obtain that
1 - c
(4.17) 10813 < © (H=2 + 165, 20 -

where we have used (4.15), (4.16), and that [|0%, ||z = [0F,,

For k = 0 or k > 2, we consider Ih6‘F , Where IM is the 1nterpolant into Sy, for

the given k, as defined in (4.14). Using that I hﬂ(l) has the same boundary data as

9}{63 (z) on I'y, and by the stability of the 1nterpolant given in Lemma 4.2, we obtain

k
6113 < 1105 1% < Cllow) 112

This inequality combined with the result for & = 1 shows that the result also holds
for the general case of k=0 and k& > 2. O

LEMMA 4.4. With the assumption that the subdomains €); satisfy the Poincaré
inequality and the starlike property, the ug of (4.12) satisfies

a(uo, ug) < Ca(u,u) (1 + H** max 105, 5 ))-
ij

Here C depends on the Poincaré and the starlike parameters of the subdomains.
Proof. We consider

a(u — ug, u — Zal i(u—uo), Ri(u — up)),
where R; is the restriction to §2;. Each term above is bounded by
a; (Rl (u — UO), Rl (u — UO)) S 2ai(Riu, RZU) + 2ai(Riu0, RﬂJJQ)

<C ai(Riu, Rzu) + Z ﬂ%ij aZ(Rlagiz,Rlagiz)
F;j COQ;

(4.18) <O | a(Bou, Riw)+ > @3, pill 0913
F;j COQ;
Here we use the inequalities in (4.7).

For the term, ﬂ%ij, we obtain by applying (4.10) to €;

_ 1
Fij feQNF,

Using the fact that u — wg is invariant to a shift by a constant and applying the
Poincaré inequality (4.8) to the bound above, we obtain

(4.20) U, < CH*™ |ulFr o) + Z hf1||[u]||2L2(f)
feQiNFp

Combining (4.18) with (4.20), we get

ai(Ri(u—uo), Ri(u—uo)) < C | as(Row, Rw) + " pil| R[5, >~ mac 652713 |
FijCBQi B
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and by the bound p;||R;ul|3, < Cai(Riu, Riu) (see (4.7)) and Lemma 4.3 we finally
obtain the following theorem.

(4.21) a(ug,ug) < C (1 + H*> max |0%1.j|%11(9)) au,u). O
i

We now turn to the bounds for the local components. Let {#;} be a partition
of unity provided for {Q}} and where 0; € Rf‘/j’ with |[V0;| < C/6 and let u; =
I"(0j(u — up)) € R;‘-FVJ»’, where I" interpolates into Sj, as defined in (4.14).

We obtain the following theorem.

THEOREM 4.5. For u € Sy, and with subdomains €); which satisfy Assump-
tion 4.1, there is a partition u = Z;V:o u;, which satisfies

N
H — c
a(uo, ug) + ZCLQ;. (uj,uj) < C (1 + 7) (1 + H? dn}iﬂ@mj@p(m) a(u, u),

j=1

where C' depends on the Poincaré and starlike parameters of the subdomains and the
number of colors N, and where 9%”_ (z) is the standard linear conforming coarse basis
function defined in (4.2).

Proof. We let w = u — up and then let

u; = Ih(ﬂjw) € .
We consider

a(uj,uj) < C Y pillu]

27 <CY_pillbul,
%

L)Y D DR T NS D DI /f [w]? ds

i TET NN feF, NN
(4.22) <CY pi oo V8wt D, wlinm
i reTNQ, N TET MR N

. hfl/f[w]zds

FEF NN

We consider the first term in (4.22):

Z V00|77
reTN N

1 1
< 05—2 Z wl|Z2(ry = 05—2||w|\%2(§z;yémni)
TN, N
(4.23)

1
<C=6 | Hy

52 1||w|\%2(93.mm)

’
J

+ Hoy Z |wlF () + Z hflff[w]zds

TEQ, M Q FEFP N N
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Here €2} ; is the union of the elements 7 € 7 where V0, does not vanish, and the
bound (4.11) is applied to €2 ;€.
For the term ||w|\iz(m A a.): We use the Poincaré-Friedrichs inequality (4.9)
J k2

2
lolBoy < €O [ 3 lultm + 30 h;1|[w]||%2<f>+(/r wds)

TEQ,; feQi,ﬂ]-'p

By choosing I' = Fj;, we have [wds =0 (see (4.12) and (4.13)), and from a scaling
argument, we obtain

lwlFe) < CH* | > wlinm+ Y. B3,
TEQ; feQNFp

Summing (4.23) over i, combining with the above bound, and assuming that HQ_;_
is comparable to the diameter H of the €2;, which intersects Q;-, we obtain

Zpi Z Vw7,

i TET NN

H _

0,9, Q) #0 TET N feEFp M

(4.24)

Here we note that the sum on the right-hand side runs over only the subdomains €;
which intersect the subregion Q. Summing (4.22) over j and combining with (4.24),
we finally obtain

@) Natwa)<c(1+5) S Ry, <€ (1+%) atww)

J

where w = u — ug. The bound in Lemma 4.4 then completes the proof. d

Remark 4.6. The above result holds for quite general subdomains €2;, which sat-
isfy the standard Poincaré—Friedrichs inequalities and the starlike property, and each
has a number of tetrahedra across each of its subdomain edges which is proportional
to (H/h)?=2. The resulting bound depends on the energy of the linear conforming
coarse basis function, 6%, (). In the standard case, when €; is tetrahedral (d = 3)
and rectangular or triangular (d = 2), we have

H
0%, 711 (o) < CH'? (1 + log %) ,

where C' is a positive constant independent of any mesh parameters. We also note
that for John domains ; in two dimensions the above bound was proved in [27]; we
refer to [7, 25, 10] for the definition of John domains. John domains satisfy Poincaré
inequalities but they do not in general have the starlike property. Instead of the trace
inequality in (4.10), we can apply the finite element Sobolev inequality

H
w, < maxlu(@)? < © (14 1og ) IRl
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to get the bound

H\? H
a(ug, ug) + ;aQ;_ (uj,u;) < <1 + log ﬁ) (1 + f)

for the two-dimensional case when (2; are John domains; see [18]. Here one additional
logarithmic factor comes from the finite element Sobolev inequality. We refer to some
recent works [32, 19, 20] for theory of domain decomposition methods for quite general
subdomains.

In three dimensions, with an assumption that 2; are Lipschitz, we obtain the
following result.

LEMMA 4.7. For a Lipschitz C; in three dimensions, there exists a function
0% € Vi () with the bound

H
65 @ < CH (141087 ).

where Vi, (§2;) is the space of linear conforming finite element space on the given tri-
angulation T (S2;), which consists of the elements T in T which belong to ;.

Proof. Let V = {x € Q; : dist(z, F) < sinadist(xz,dF)}. Since §; is a Lipschitz
domain, we may select a so that Fy := 9V \ F' does not touch 9€2;.

For = € V, we define

_ d(®)
o dy(x) +da(z)’

where dy (z) = dist(z, F') and da(z) = dist(z, F>) and where we extend d(z) by zero
for z € Q; \ V. We note that the construction of such a function d(x) was first given
by Dohrmann and Widlund in [19]. Let dpr(x) = dist(x, OF). We will show that for
x € V, there exists ¢ > 0 such that

d(x)

dq(z) + da(z) > cdop(x).

For z € V, let 21 and x5 be points on F and Fs such that dy(z) = |x — 21| and
da2(x) = |x — x2]. Let ag, be points on OF such that dop(x2) = |x2 — agz,|. We then
have

(4.26) dop(x) < |z — ag,| < |z — z2| + |22 — Qs |-

Since xo € F5, we have

1
|2 — az,| = dor(v2) = Tn di(r2),
by using d; (z2) < |xa — x1], we obtain

1
|z2 — az,| < —— (|lz2 — 2| + |21 — 2),

and from the bound in (4.26) combined with the above, we prove that

(4.27) %M@§O+ ymm+@m>

sin o
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We interpolate d(z) into the finite element space V;,(€;) and obtain 6% (z). We
note that 6%(z) vanishes on the boundary of F. The function 6% (z) satisfies the
required boundary condition, i.e., it has value one in the interior of F' and zero at the
rest of the boundary of ;. We will prove that

1057 @,y < CH(1 +log(H/h)).

This then provides a bound for |9%|§11(Q¢) as required.
By the construction, it suffices to consider all tetrahedra covering V. For each
tetrahedron 7 touching the boundary of F', we have

|9~%|%11(7) < Ch,
and using that the number of such tetrahedra is O(H/h), we obtain
(4.28) > 105l < CH.
TN OF#D
For those tetrahedra not touching the boundary of F', by using (4.27) combined with

1

|VO%(z)| < Cma

we obtain
1
dap($)7

and by integrating the above over all tetrahedra, which are away from JF by more
than a mesh width, we obtain

V05 (x)] < ©

(4.29) > 10503 < CHlog(H/h).
TN OF=0

We complete the proof by using (4.28) and (4.29). O

5. Coarse problem from an additional coarse triangulation. By introduc-
ing an additional coarse triangulation and an alternative coarse space, we can obtain
an alternative, often better, bound,

a(up, up) < C(p)a(u,u),

which results in

N
aug, ug) + Za% (uj,uj) < Clp) (1 + ?) a(u,u).

j=1

However, C(p) may depend on p(x).

Let Ty be the additional coarse triangulation. Here the subdomains need not be a
union of tetrahedra/triangles in 7y but we need the assumption that any subdomain
diameter is comparable to the diameters of the tetrahedra/triangles which intersect
it. The union of all the coarse tetrahedra/triangles in 7 need not be 2. We note that
[12] contains pioneering results on such methods. In that paper, Neumann boundary
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conditions were also considered and it was shown that that union should contain
the part of 992 where Neumann boundary conditions are enforced and that it always
must occupy a significant part of 2. In addition, no coarse triangle should be located
entirely outside (2.
Let Vi be the linear conforming finite element space on 7z and let ,{I u be the
interpolant into Vi defined by
1

I (z) = ——— udz,
(h )( l) |KlﬂQ7,| Klin

where K is the union of coarse tetrahedra/triangles with x; one of their vertices
and €; the subdomain containing the node x;; see [31, section 3.5] and references
therein. Here we note that when x; is on the subdomain interface, we may choose
any subdomain with z; on its boundary. We then introduce

up = Jh(Ifu) € S,
where j}} is the nodal interpolant from Vy into Sy, i.e.,
(THo) (@) = v(a).

Since ug € Hg (), we have
aluo, ug) < CZMHRz'UoHZa = CZPHRiUO@ﬂ(m)
— Z‘p”RiJI}—}I{L{Uﬁ{l(Qi) < CZMI;{{UGP(QJ
(5.1) < Clp) Y pill Raull,

< C(p) Y ai(Riu, Riu) = C(p)a(u, u),

K2

where R; is the restriction to the subdomain Q; and the inequality (5.1) can be
proved in a way similar to [26, Lemma 9] and by using the Poincaré—Friedrichs in-
equality (4.9). Here the parameter C(p) is determined by

maxqo. 1
Clp) < max ——uNKid Pi
T ENH MINQG, N K,#£0 Pi

where N is the set of all nodes in the coarse triangulation 7z and K is the union
of the coarse tetrahedra/triangles with z; as one of their vertices.
We note that the preconditioner is of the form

ThAGZ (T + Y RIAT'R;,

J

where
Ap = (T)TATf,  Aj = RTAR;,

where R; is the restriction to 2 and A is the matrix in (2.19). When the subdomains
are unions of tetrahedra/triangles in Tz, the preconditioner is the same as the one
in [6].
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TABLE 1
Performance of the algorithms with the two types of coarse problems (methodl and method2)
and an increasing number of subdomains N with a fized local problem size (H/h = 4) and with
§ = h: the number of iterations is Iter, the condition number k.

method1 method2
N Iter K Iter K

42 18 | 7.12 | 17 | 6.09
82 21 | 890 | 18 | 6.15
162 23 | 9.66 | 17 | 5.94
322 24 | 985 | 17 | 5.91

TABLE 2
Performance of the algorithms with the first type of coarse problem (methodl) and the second
type of coarse problem (method2) with an increasing overlapping width 6 with a fived subdomain
partition (N = 42) and local problem size (H/h = 16): the number of iterations is Iter, the condition
number kK.

method1 method2

H/S§ || Tter K Tter K
16 29 18.59 24 12.52

8 23 12.44 20 7.54
4 19 8.57 18 6.05
2 18 5.52 17 5.29

6. Numerical results. In this section, we present numerical tests of our two-
level Schwarz algorithms for the model elliptic problem (2.1) with Q the unit square
in two dimensions.

We partition 2 into uniform triangles of mesh size h and then divide each tri-
angle into three subtriangles. The domain 2 is then divided into nonoverlapping
subdomains so that each subdomain is a union of triangles before the subdivision.
By construction, the test functions in S are continuous across each edge on the sub-
domain boundary. In our experiments, we take & = 0 in the definition of Sj,. The
overlapping subregion partition for the local solver is obtained by extending each sub-
domain with an overlapping width é. For the second type of the coarse problem, we
consider both structured and unstructured coarse triangulations. For a structured
coarse triangulation, 42 means that the square domain € is partitioned into 4 x 4 uni-
form rectangles and each rectangle is divided into two triangles. For an unstructured
coarse triangulation, 4% means that the size of each triangle is comparable to Hg /4,
where Hg is the diameter of 2. The triangles in an unstructured coarse triangulation
may not be unions of triangles in 7, while those in a structured coarse triangulation
are. In the CG iteration, we stop when the relative residual norm has dropped by a
factor 1076.

In Table 1, we present results for the algorithms with the two cases of coarse
problems with an increasing number of subdomains, a fixed local problem size, and
a fixed overlapping width. We observe stable behavior of the condition number and
iteration count for both cases.

In Table 2, we present the performance of our methods with varying overlapping
width ¢ with a fixed local problem size and a fixed number of subdomains. We observe
a linear increase in the condition number of the preconditioned systems with respect
to H/é for both types of coarse problems. The results agree well with our theoretical
bounds.
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TABLE 3
Performance of the algorithms with the first type of coarse problem (methodl) and the second
type of coarse problem (method2) with respect to jumps in the coefficient p(x). The overlapping
width § = h, subdomain partition N = 82, and local problem size H/h = 4: the number of iterations
is Iter, the condition number k.

method1 method2 method2
(structured Tx) | (unstructured Tx)

pi Iter K Iter K Iter K
107% || 21 | 930 | 20 11.55 19 11.01
103 21 9.29 | 20 11.45 19 10.91
1 20 | 9.51 16 6.18 15 5.52
103 20 | 8.55 33 65.64 38 76.81
106 21 8.68 | 38 78.75 45 99.60

In Table 3, we present tests of the effects on our methods of jumps in the coefficient
p(z). In our tests, p(x) = p; in the subdomains located on the diagonal in an 8 x 8
uniform partition and p(z) = 1 for the other subdomains. From the results, we
see that the condition number of the preconditioned system arising from the first
method, with the coarse problem defined by the face basis functions, is insensitive to
the jumps in p(x), while the condition number of the method with the second type of
coarse problem increases very slowly with increasing jumps in p(x). It is likely that
the growth of the iteration counts would be faster for the second method for problems
in three dimensions. In addition, we test the second method regarding the choice
of coarse triangulations. In the structured case, each coarse triangle is a union of
triangles in 7 and the coefficient p(z) is constant in each coarse triangle. In contrast,
for the unstructured one, the coarse triangles may not resolve jumps in the coefficient
p(z) and they may not be unions of triangles in 7. We observe relatively good
performance in the unstructured coarse triangulation but observe that the results are
a little more sensitive to jumps in the coefficient p(z).
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