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TP! trivial being! I have received your

letter, you should have written already

a week ago.

The spirit of Cantor was with me for

some length of time during the last few

days, the results of our encounters are

the following . . .

letter, Paul Erdős to Paul Turán

November 11, 1936
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Paul Erdős and Alfred Rényi

On the Evolution of Random Graphs

Magyar Tud. Akad. Mat. Kutató Int. Közl

volume 8, 17-61, 1960

Γn,N(n): n vertices, random N(n) edges

[. . .] the largest component of Γn,N(n) is of or-

der logn for N(n)
n ∼ c < 1

2, of order n2/3 for

N(n)
n ∼ 1

2 and of order n for N(n)
n ∼ c > 1

2. This

double “jump” when c passes the value 1
2 is one

of the most striking facts concerning random

graphs.
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The (Traditional) “Double Jump”

G(n, p), p = c
n (or ∼ c

2n edges)

(Average Degree c, “natural” model)

• c < 1

Biggest Component O(lnn)

|C1| ∼ |C2| ∼ . . .

All Components simple (= tree/unicyclic)

• c = 1

Biggest Component Θ(n2/3)

|C1|n−2/3 nontrivial distribution

|C2|/|C1| nontrivial distribution

Complexity of C1 nontrivial distribution

• c > 1

Giant Component |C1| ∼ yn, y = y(c) > 0

All other |Ci| = O(lnn) and simple
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The Five Phases

Subcritical: p = c
n and c < 1

Barely subcritical: p ∼ 1
n and p = 1

n−λ(n)n−4/3

with λ(n)→∞
The Critical Window

p =
1

n
+ λn−4/3

λ arbitrary real, but constant.

Barely supercritical: p ∼ 1
n and p = 1

n+λ(n)n−4/3

with λ(n)→∞
Supercritical: p = c

n and c > 1

5



• Barely Subcritical

p ∼ 1
n and p = 1

n − λ(n)n−4/3 with λ(n)→∞
All components simple.

Top k components about same size

|C1| = o(n2/3)

• Barely Supercritical

p ∼ 1
n and p = 1

n + λ(n)n−4/3 with λ(n)→∞
Dominant Component

|C1| � n2/3, High Complexity

All other |C| � n2/3, Simple

Duality: Remove Dominant Component and

get Subcritical Picture.
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Math Physics Bond Percolation

Zd. Bond “open” with probability p

There exists a critical probability pc

• Subcritical, p < pc.

All C finite, E[|C(~0)|] finite

Pr[|C(~0)| ≥ u] exponential tail

• Supercritical, p > pc.

Unique Infinite Component

E[|C(~0)|] infinite

Pr[|C(~0)| ≥ u|finite] exponential tail

• Critical, p = pc.

All C finite, E[|C(~0)|] infinite, heavy tail

Key topic: p = pc ± ε as ε→ 0.
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Random 3-SAT

n Boolean x1, . . . , xn

L = {x1, x1, . . . , xn, xn} literals

Random Clauses Ci = yi1 ∨ yi2 ∨ yi3, yij ∈ L

f(m) := Pr[C1 ∧ · · · ∧ Cmsatisfiable]

Conjecture: There exists critical c0

• Subcritical, c < c0, f(cn) ∼ 1

• Supercritical, c > c0, f(cn) ∼ 0

Friedgut: Criticality, but possibly nonuniform

Critical Window ???: m0(n) with f(m0) = 1
2.

Is there scaling m = m0 + λnα to “see” f(m)

go ∼ 1 to ∼ 0.
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Evolution of n-Cube

Ajtai, Komlos, Szemeredi

Bollobas, Luczak, Kohayakawa

Borgs, Chayes, Slade, JS, van der Hofstad

p = c/n

c < 1 subcritical

c > 1 giant Ω(2n) component

Critical p0 ∼ n−1

At p0(1− ε) all “small”

At p0(1 + ε). For ε = Ω(n−100) and more:

Giant 2εn. Second open

Critical Window (dominant emerges): open
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Poisson Birth Process

Root node “Eve”

Parameter c

Each node has Po(c) children

(Poisson: Pr[Po(c) = k] = e−cck/k!)

Zt ∼ Po(c), iid

t-th node has Zt children

Queue Size Yt. Y0 = 1 (Eve)

Yt = Yt−1 + Zt − 1 (Has children and dies)

Fictional Continuation: Yt defined though pro-

cess stops when some Ys = 0.

Size T = T
po
c is minimal t with Yt = 0.

T =∞: All Yt > 0.

T = Tc is total size
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Binomial Birth Process

Parameters m, p

Zt ∼ B[m, p], iid

T = Tbin
m,p total size.

For m large, p small, mp moderate:

Binomial is very close to Poisson c = mp.

Binomial Birth Process very close to Poisson

Birth Process
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Graph Birth Process

Parameters n, p

Generate C(v) in G(n, p). BFS

Queue: Y0 = 1, Yt = Yt−1 + Zt − 1

Points Born: Zt ∼ B[Nt−1, p]

Dead Points (popped): t

Live Points (in Queue): Yt

Neutral Points(in Reservoir): Nt

t + Yt + Nt = n

N0 = n−1, Nt = Nt−1−Zt, Nt ∼ B[n−1, (1−p)t]

T = T
gr
n,p: minimal t with Yt = 0

T = t implies Nt = n− t
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Poisson Birth Trichotomy

• c < 1

T finite

• c = 1

T finite

E[T ] infinite (heavy tail)

• c > 1

Pr[T =∞] = y = y(c) > 0
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Poisson Birth Exact

Pr[Tc = u] =
e−uc(uc)u−1

u!

Pr[T1 = u] =
e−uuu−1

u!
= Θ(u−3/2)

For c > 1, Pr[T =∞] = y = y(c) > 0 where

1− y = e−cy

For c < 1, α := ce1−c < 1

Pr[Tc > u] = O(αu) Exponential Tail
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Poisson Birth Near Criticality

c = 1 + ε, T = T
po
c

Pr[T =∞] ∼ 2ε

Pr[T = u] ∼ (2π)−1/2u−3/2(ce1−c)k

ln[ce1−c] ∼ −ε2/2

• u small: u = o(ε−2)

Pr[Tc = u] ∼ Pr[T1 = u] = Θ(u−3/2)

Scaling: u = Aε−2

Pr[∞ > T1+ε > Aε−2] = εe−(1+o(1))A/2

Pr[T1−ε > Aε−2] = εe−(1+o(1))A/2
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Poisson Birth ∼ Graph Birth

Z1 ∼ B[n− 1, p] roughly Po(c), c = pn.

Ecological Limitation: Zt ∼ B[Nt−1, p].

Process succeeds, Nt−1 gets smaller

Fewer new vertices

Death is inevitable

Upper: Pr[Tgr
n,p ≥ u] ≤ Pr[Tbin

n−1,p ≥ u]

Proof: Replenish reservoir

Lower: Pr[Tgr
n,p ≥ u] ≥ Pr[Tbin

n−u,p ≥ u]

Proof: Hold reservoir to n− u.
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Why n−4/3 for Critical Window

p = (1 + ε)/n, ε > 0, ε = o(1).

Pr[Tpo
1+ε =∞] ∼ 2ε.

The ∼ 2εn points “going to infinity” merge to

form dominant component.

Tpo finite is O(ε−2), corresponds to component

sizes O(ε−2).

Finite/Infinite Poisson Dichotomy becomes

Small/Dominant Graph Dichotomy

if ε−2 � 2nε, or ε� n−1/3.
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The Barely Subcritical Region

p = (1− ε)/n, ε = λn−1/3,

Pr[|C(v)| ≥ u] ≤ Pr[T1−ε ≥ u]

u = Kε−2 lnn⇒ Pr = o(n−1)

No Such component.

More delicately:

Parametrize u = Kε−2 lnλ = Kn2/3λ−2 lnλ

K big: Pr[|C(v)| ≥ u] = O(ελ−10)

Expected nελ−10 = n2/3λ−9 vertices in com-

ponents of size ≥ Kn2/3λ−2 lnλ

No such component!
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Barely Supercritical

p = (1 + ε)/n, ε = λn−1/3, λ→ +∞
Trichotomy on Component Size

Small: |C| < Kε−2 lnn [can be impoved!]

Large: (1− δ)2εn < |C| < (1 + δ)2εn

Awkward: All else

No Middle Ground

No Awkward Components

Suffices: Pr[C(v) awkward] = o(n−1)
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No Middle Ground

Yt = n− t−Nt = B[n− 1,1− (1− p)t]− (t− 1)

At start E[Yt] ∼ εt [Negligible EcoLim]

When t � ε−2 lnn, E[Yt] � Var[Yt]1/2 ∼ t1/2,

Pr[Yt = 0] = o(n−10)

Later E[Yt] = (n−1)[1−(1−p)t]−(t−1) ∼ εt− t2

2n

For t ∼ 2εn, E[Yt] ∼ 0, dominant component.

|C(v)| = t implies Yt = 0.

For t ∼ yεn, y 6= 2:

Pr[|C(v)| = t] ≤ Pr[Yt = 0] = o(n−10).
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Escape Probability

S := Kε−2 lnn, α := Pr[|C(v)| ≥ S]

Pr[|C(v)| ≥ S] ≤ Pr[Tbin
n−1,p ≥ S]

np = 1 + ε, S � ε−2 so ∼ 2ε

Pr[Tbin
n−S,p ≥ S] ≤ Pr[|C(v)| ≥ S]

(Here ε� n−1/3 ln1/3 n but with care . . . )

• As Sp = o(ε) EcoLim negligible!

p(n− S) = 1 + ε + o(ε) so Pr ∼ 2ε

Sandwich: Escape Prob ∼ 2ε
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Almost Done

Not Small implies Large ∼ 2εn

Expected 2εn in Large components

BUT

Can we have two

of size 2εn

half the time?
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Sprinkling

Add sprinkle of n−4/3, p← p+

If G(n, p) had two Large they would merge

That would give ≥ 4εn in G(n, p+)

But p+ = (1 + ε + o(ε))/n has nothing ≥ 4εn

Conclusion:

• G(n, p) has precisely one Large component

• It has size ∼ 2εn

• As no middle ground:

All other component sizes ≤ Kε−2 lnn.

So Large Component is Dominant Component
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Computer Experiment (Try It!)

n = 500000 vertices. Start: Empty

Add random edges

Parametrize e/
(
n
2

)
= (1 + λn−1/3)/n

Merge-Find for Component Size/Complexity

−4 ≤ λ ≤ +4, |Ci| = cin
2/3

See biggest merge into dominant
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It is six in the morning.

The house is asleep.

Nice music is playing.

I prove and conjecture.

– Paul Erdős, in letter to Vera Sós
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