Tianjin
June 2007

The Erdős-Rényi Phase Transition

Joel Spencer
TP! trivial being! I have received your letter, you should have written already a week ago.

The spirit of Cantor was with me for some length of time during the last few days, the results of our encounters are the following . . .

letter, Paul Erdős to Paul Turán
November 11, 1936
Paul Erdős and Alfred Rényi

On the Evolution of Random Graphs

volume 8, 17-61, 1960

\(\Gamma_{n,N(n)} \): \(n \) vertices, random \(N(n) \) edges

[...\] the largest component of \(\Gamma_{n,N(n)} \) is of order \(\log n \) for \(\frac{N(n)}{n} \sim c < \frac{1}{2} \), of order \(n^{2/3} \) for \(\frac{N(n)}{n} \sim \frac{1}{2} \) and of order \(n \) for \(\frac{N(n)}{n} \sim c > \frac{1}{2} \). This double “jump” when \(c \) passes the value \(\frac{1}{2} \) is one of the most striking facts concerning random graphs.
The (Traditional) “Double Jump”

\[G(n, p), \ p = \frac{c}{n} \ (\text{or } \sim \frac{c}{2}n \ \text{edges}) \]

(Average Degree \(c \), “natural” model)

- \(c < 1 \)

 Biggest Component \(O(\ln n) \)

 \(|C_1| \sim |C_2| \sim \ldots\)

 All Components simple (= tree/unicyclic)

- \(c = 1 \)

 Biggest Component \(\Theta(n^{2/3}) \)

 \(|C_1|n^{-2/3} \) nontrivial distribution

 \(|C_2|/|C_1| \) nontrivial distribution

 Complexity of \(C_1 \) nontrivial distribution

- \(c > 1 \)

 Giant Component \(|C_1| \sim yn, \ y = y(c) > 0 \)

 All other \(|C_i| = O(\ln n) \) and simple
The Five Phases

Subcritical: $p = \frac{c}{n}$ and $c < 1$

Barely subcritical: $p \sim \frac{1}{n}$ and $p = \frac{1}{n} - \lambda(n)n^{-4/3}$
with $\lambda(n) \to \infty$

The Critical Window

$$p = \frac{1}{n} + \lambda n^{-4/3}$$

λ arbitrary real, but constant.

Barely supercritical: $p \sim \frac{1}{n}$ and $p = \frac{1}{n} + \lambda(n)n^{-4/3}$
with $\lambda(n) \to \infty$

Supercritical: $p = \frac{c}{n}$ and $c > 1$
• Barely Subcritical

\[p \sim \frac{1}{n} \quad \text{and} \quad p = \frac{1}{n} - \lambda(n) n^{-4/3} \quad \text{with} \quad \lambda(n) \to \infty \]

All components simple.

Top \(k \) components about same size

\[|C_1| = o(n^{2/3}) \]

• Barely Supercritical

\[p \sim \frac{1}{n} \quad \text{and} \quad p = \frac{1}{n} + \lambda(n) n^{-4/3} \quad \text{with} \quad \lambda(n) \to \infty \]

Dominant Component

\[|C_1| \gg n^{2/3}, \text{ High Complexity} \]

All other \(|C| \ll n^{2/3}, \text{ Simple} \)

Duality: Remove Dominant Component and get Subcritical Picture.
Z^d. Bond "open" with probability p

There exists a critical probability p_c

- Subcritical, $p < p_c$.

 All C finite, $E[|C(\vec{0})|]$ finite

 $\Pr[|C(\vec{0})| \geq u]$ exponential tail

- Supercritical, $p > p_c$.

 Unique Infinite Component

 $E[|C(\vec{0})|]$ infinite

 $\Pr[|C(\vec{0})| \geq u]$ finite] exponential tail

- Critical, $p = p_c$.

 All C finite, $E[|C(\vec{0})|]$ infinite, heavy tail

Key topic: $p = p_c \pm \epsilon$ as $\epsilon \to 0$.
Random 3-SAT

n Boolean x_1, \ldots, x_n

$L = \{x_1, \overline{x_1}, \ldots, x_n, \overline{x_n}\}$ literals

Random Clauses $C_i = y_{i1} \lor y_{i2} \lor y_{i3}$, $y_{ij} \in L$

$f(m) := \Pr[C_1 \land \cdots \land C_m \text{ satisfiable}]$

Conjecture: There exists critical c_0

- Subcritical, $c < c_0$, $f(cn) \sim 1$
- Supercritical, $c > c_0$, $f(cn) \sim 0$

Friedgut: Criticality, but possibly nonuniform

Critical Window $???: m_0(n)$ with $f(m_0) = \frac{1}{2}$.

Is there scaling $m = m_0 + \lambda n^\alpha$ to “see” $f(m)$ go ~ 1 to ~ 0.
Evolution of n-Cube

Ajtai, Komlos, Szemeredi
Bollobas, Luczak, Kohayakawa
Borgs, Chayes, Slade, JS, van der Hofstad

\[p = \frac{c}{n} \]

$c < 1$ subcritical

$c > 1$ giant $\Omega(2^n)$ component

Critical $p_0 \sim n^{-1}$

At $p_0(1 - \epsilon)$ all “small”

At $p_0(1 + \epsilon)$. For $\epsilon = \Omega(n^{-100})$ and more:

Giant $2\epsilon n$. Second open

Critical Window (dominant emerges): open
Poisson Birth Process

Root node “Eve”

Parameter c

Each node has $Po(c)$ children

(Poisson: $\Pr[Po(c) = k] = e^{-c}c^k/k!$)

$Z_t \sim Po(c)$, iid

t-th node has Z_t children

Queue Size Y_t. $Y_0 = 1$ (Eve)

$Y_t = Y_{t-1} + Z_t - 1$ (Has children and dies)

Fictional Continuation: Y_t defined though process stops when some $Y_s = 0$.

Size $T = T_{cp}^{po}$ is minimal t with $Y_t = 0$.

$T = \infty$: All $Y_t > 0$.

$T = T_c$ is total size
Binomial Birth Process

Parameters m, p

$Z_t \sim B[m, p], \text{iid}$

$T = T_{bin}^{m,p}$ total size.

For m large, p small, mp moderate:

Binomial is very close to Poisson $c = mp$.

Binomial Birth Process very close to Poisson Birth Process
Graph Birth Process

Parameters n, p

Generate $C(v)$ in $G(n, p)$. BFS

Queue: $Y_0 = 1$, $Y_t = Y_{t-1} + Z_t - 1$

Points Born: $Z_t \sim B[N_{t-1}, p]$

Dead Points (popped): t

Live Points (in Queue): Y_t

Neutral Points (in Reservoir): N_t

$t + Y_t + N_t = n$

$N_0 = n-1$, $N_t = N_{t-1} - Z_t$, $N_t \sim B[n-1, (1-p)^t]$

$T = T^{gr}_{n, p}$: minimal t with $Y_t = 0$

$T = t$ implies $N_t = n - t$
Poisson Birth Trichotomy

• $c < 1$

 T finite

• $c = 1$

 T finite

 $E[T]$ infinite (heavy tail)

• $c > 1$

 $\Pr[T = \infty] = y = y(c) > 0$
Poisson Birth Exact

\[\Pr[T_c = u] = \frac{e^{-uc}(uc)^{u-1}}{u!} \]

\[\Pr[T_1 = u] = \frac{e^{-u}u^{u-1}}{u!} = \Theta(u^{-3/2}) \]

For \(c > 1 \), \(\Pr[T = \infty] = y = y(c) > 0 \) where

\[1 - y = e^{-cy} \]

For \(c < 1 \), \(\alpha := ce^{1-c} < 1 \)

\(\Pr[T_c > u] = O(\alpha^u) \) Exponential Tail
Poisson Birth Near Criticality

\[c = 1 + \epsilon, \ T = T_{c}^{po} \]

\[\Pr[T = \infty] \sim 2\epsilon \]

\[\Pr[T = u] \sim (2\pi)^{-1/2}u^{-3/2}(ce^{1-c})^k \]

\[\ln[ce^{1-c}] \sim -\epsilon^2/2 \]

• \(u \) small: \(u = o(\epsilon^{-2}) \)

\[\Pr[T_c = u] \sim \Pr[T_1 = u] = \Theta(u^{-3/2}) \]

Scaling: \(u = A\epsilon^{-2} \)

\[\Pr[\infty > T_{1+\epsilon} > A\epsilon^{-2}] = \epsilon e^{-(1+o(1))A/2} \]

\[\Pr[T_{1-\epsilon} > A\epsilon^{-2}] = \epsilon e^{-(1+o(1))A/2} \]
Poisson Birth \sim Graph Birth

$Z_1 \sim B[n - 1, p]$ roughly $Po(c)$, $c = pn$.

Ecological Limitation: $Z_t \sim B[N_{t-1}, p]$.

Process succeeds, N_{t-1} gets smaller

Fewer new vertices

Death is inevitable

Upper: $\Pr[T_{n,p}^{gr} \geq u] \leq \Pr[T_{n-1,p}^{bin} \geq u]$

Proof: Replenish reservoir

Lower: $\Pr[T_{n,p}^{gr} \geq u] \geq \Pr[T_{n-u,p}^{bin} \geq u]$

Proof: Hold reservoir to $n - u$.
Why \(n^{-4/3} \) for Critical Window

\[
p = (1 + \epsilon)/n, \quad \epsilon > 0, \quad \epsilon = o(1).
\]

\[
\Pr[T_{1+\epsilon}^{po} = \infty] \sim 2\epsilon.
\]

The \(\sim 2\epsilon n \) points “going to infinity” merge to form dominant component.

\(T^{po} \) finite is \(O(\epsilon^{-2}) \), corresponds to component sizes \(O(\epsilon^{-2}) \).

Finite/Infinite Poisson Dichotomy becomes Small/Dominant Graph Dichotomy

\(if \ \epsilon^{-2} \ll 2n\epsilon, \ or \ \epsilon \gg n^{-1/3}. \)
The Barely Subcritical Region

\[p = \frac{(1 - \epsilon)}{n}, \quad \epsilon = \lambda n^{-1/3}, \]

\[Pr[|C(v)| \geq u] \leq Pr[T_{1-\epsilon} \geq u] \]

\[u = K \epsilon^{-2} \ln n \Rightarrow Pr = o(n^{-1}) \]

No Such component.

More delicately:

Parametrize \(u = K \epsilon^{-2} \ln \lambda = Kn^{2/3} \lambda^{-2} \ln \lambda \)

\(K \) big: \(Pr[|C(v)| \geq u] = O(\epsilon \lambda^{-10}) \)

Expected \(n \epsilon \lambda^{-10} = n^{2/3} \lambda^{-9} \) vertices in components of size \(\geq Kn^{2/3} \lambda^{-2} \ln \lambda \)

No such component!
Barely Supercritical

\[p = \frac{(1 + \epsilon)}{n}, \quad \epsilon = \lambda n^{-1/3}, \quad \lambda \to +\infty \]

Trichotomy on Component Size

Small: \(|C| < K \epsilon^{-2} \ln n \) [can be improved!]

Large: \((1 - \delta)2\epsilon n < |C| < (1 + \delta)2\epsilon n \)

Awkward: All else

No Middle Ground

No Awkward Components

Suffices: \(\Pr[C(v) \text{ awkward}] = o(n^{-1}) \)
No Middle Ground

\[Y_t = n - t - N_t = B[n - 1, 1 - (1 - p)^t] - (t - 1) \]

At start \(E[Y_t] \sim \epsilon t \) [Negligible EcoLim]

When \(t \gg \epsilon^{-2} \ln n \), \(E[Y_t] \gg \text{Var}[Y_t]^{1/2} \sim t^{1/2} \),
\[
\Pr[Y_t = 0] = o(n^{-10})
\]

Later \(E[Y_t] = (n-1)[1-(1-p)^t]-(t-1) \sim \epsilon t - \frac{t^2}{2n} \)

For \(t \sim 2\epsilon n \), \(E[Y_t] \sim 0 \), dominant component.

\(|C(v)| = t \) implies \(Y_t = 0 \).

For \(t \sim y\epsilon n \), \(y \neq 2 \):

\[
\Pr[|C(v)| = t] \leq \Pr[Y_t = 0] = o(n^{-10})
\]
Escape Probability

\[S := K \epsilon^{-2} \ln n, \quad \alpha := \Pr[|C(v)| \geq S] \]
\[\Pr[|C(v)| \geq S] \leq \Pr[T_{n-1,p}^{bin} \geq S] \]
\[np = 1 + \epsilon, \quad S \gg \epsilon^{-2} \text{ so } \sim 2\epsilon \]
\[\Pr[T_{n-S,p}^{bin} \geq S] \leq \Pr[|C(v)| \geq S] \]
(Here \(\epsilon \gg n^{-1/3} \ln^{1/3} n \) but with care . . .)

- As \(Sp = o(\epsilon) \) EcoLim negligible!

\[p(n - S) = 1 + \epsilon + o(\epsilon) \text{ so } \Pr \sim 2\epsilon \]

Sandwich: Escape Prob \(\sim 2\epsilon \)
Almost Done

Not Small implies Large $\sim 2\epsilon n$

Expected $2\epsilon n$ in Large components

BUT

Can we have two

of size $2\epsilon n$

half the time?
Sprinkling

Add sprinkle of $n^{-4/3}$, $p \leftarrow p^+$

If $G(n, p)$ had two Large they would merge

That would give $\geq 4\epsilon n$ in $G(n, p^+)$

But $p^+ = (1 + \epsilon + o(\epsilon))/n$ has nothing $\geq 4\epsilon n$

Conclusion:

• $G(n, p)$ has precisely one Large component

• It has size $\sim 2\epsilon n$

• As no middle ground:

All other component sizes $\leq K\epsilon^{-2} \ln n$.

So Large Component is Dominant Component
Computer Experiment (Try It!)

\(n = 500000 \) vertices. Start: Empty

Add random edges

Parametrize \(\frac{e}{\binom{n}{2}} = \frac{1 + \lambda n^{-1/3}}{n} \)

Merge-Find for Component Size/Complexity

\(-4 \leq \lambda \leq +4, \ |C_i| = c_i n^{2/3} \)

See biggest merge into dominant
It is six in the morning.
The house is asleep.
Nice music is playing.
I prove and conjecture.
– Paul Erdős, in letter to Vera Sós