WoLLIC 2005

Short Descriptions

of

Random Structures

Joel Spencer

Courant Institute

Succint Definitions

General First Order Structure Def: D(G) = smallest *quantifier depth* of A that defines GWhat is D(G) for random n-element model? Kim/Pikhurko/Verbitsky/JS $G(n, \frac{1}{2})$: $\Theta(\ln n)$ StJohn/JS: $G_{<}(n, \frac{1}{2})$: $\Theta(\ln^{*} n)$ BitString $U(n, \frac{1}{2})$: $\Theta(\ln \ln n)$

$$G(n,\frac{1}{2})$$

Lower Bound

k-extension: All witnesses on all $\leq k$ vertices

Let $k = (1 - \epsilon) \log_2 n$

 $\Pr[k - extension] \rightarrow 1$

k-extension determines \equiv_{k+1}

Therefore most D(G) > k + 1

Upper Bound

Let $k = (2 + \epsilon) \log_2 n$

Random k vertices X

All other vertices have distinct profiles

$$\Pr[\mathsf{FAIL}] \leq {n \choose 2} 2^{-k} \to 0$$

Therefore most $D(G) \leq k+2$

Tightening Upper Bound

Let $k = (1 + \epsilon) \log_2 n$ Random k vertices X Y := those y with unique profile

 $\Pr[y \not\in Y] \le n2^{-k} \to 0$

 $|Y| \sim n$

All z have distinct profile to \boldsymbol{Y}

Therefore $D(G) \leq k+5$

Tenacity

 $T_{\epsilon}(n) :=$ maximal k so that $n_1, n_2 \ge n$, G_1, G_2 random n_1, n_2 models

Pr[Duplicator wins $EHR[G_1, G_2; k]] \ge 1 - \epsilon$ ϵ fixed, $n \to \infty$ Zero-One Law implies $T_{\epsilon}(n) \to \infty$ If random G has $D(G) \le k$ then $T_{\epsilon} \le k$ $G \sim G(n, \frac{1}{2}), T_{\epsilon}(n) \sim \log_2 n$ What about $G \sim G(n, n^{-\alpha})$ with $\alpha \in (0, 1)$, irrational? Should depend on approximations

of α by rationals

Random Bit String U(n,p), $p = \frac{1}{2}$

Lower Bound

$$1^m \equiv_k 1^{m+1}$$
 for $k = \Omega(\ln m)$
 $p1^m s \equiv_k p1^{m+1} s$ for $k = \Omega(\ln m)$
Random $\tau = p1^m s$ for $m = \Omega(\ln n)$
Therefore $D(\tau) = \Omega(\ln \ln n)$

Random Bit String U(n,p), $p = \frac{1}{2}$

Upper Bound

Every *m*-string τ has $D(\tau) = O(\ln m)$

 $m=10\ln n$ All $\frac{m}{2}$ strings unique

- Describe all *m*-strings
- Describe first and last *m*-string

Now *n*-string determined

 $D(U) = O(\ln m) = O(\ln \ln n)$

Random Ordered
$$G_{\leq}(n,p)$$
, $p = \frac{1}{2}$

No Convergence via Dance Marathon n points flip fair coins. Drop out if tails $f(n) := \Pr[\text{unique winner}]$

$$f(n) = \sum_{k} n2^{-k-1} (1 - 2^{-k})^{n-1}$$

$$n = 2^{u}\theta, \ \theta \in (0, 1), \ k = u + s$$
$$f(n) \sim g(\theta) := \sum_{s = -\infty}^{+\infty} 2^{-s-1}\theta e^{-\theta 2^{-s}}$$

 $g(\theta)$ not constant. $\lim_{n \to \infty} f(n)$ does not exist

$$A: \exists_k \exists !_x (x > k) \land ((y \le k) \to (x \sim y))$$

 $\lim_{n} \Pr[A]$ does not exist

NonSeparability

Interval I = [a, b] given by a, bBINARY ADJ[x, y] on [a, b] given by c, d $x \neq y$ and there exists $c \leq y \leq d$ adjacent to precisely x, y in IIf $|I| \leq \ln^{0.4} n$ get all ADJ Replace A on graphs with

$$A^*$$
: $\exists_{a,b,c,d}A^{**}$

Traktenbrot-Vought: No Decision Procedure for existence of finite graph models \Rightarrow Nonseparability of $Pr[A] \rightarrow 1$ and Pr[A] = 0

Big and Small Functions

TOWER(1) = 2 $TOWER(k+1) := 2^{TOWER(k)}$ $\log^*(n) := \text{least } k, \text{ TOWER}(k) \ge n$ Very Robust Any First Order System bound \equiv_k -classes $x_{i,k} :=$ number (x_1, \ldots, x_i) "types" (x_1,\ldots,x_k) types $\exp[k^{O(1)}]$ $x_{i-1,k}$ determined by set of reachable (x_1, \ldots, x_i) types $x_{i-1,k} \leq 2^{x_{i,k}}$ Number of \equiv_k -classes $= x_{0,k} \leq \text{TOWER}(k + O(1))$

D(U) for Random BitString

General Lower Bound The number of U with $D(U) \le k$ is at most number of \equiv_k -classes which is $\le \text{TOWER}(k + O(1)) \ll n$ for $k = \Omega(\ln^* n)$

Therefore most U have $D(U) = \Omega(\ln^* n)$

D(U) for Random BitString

Upper Bound $ln^* n = x_1 < x_2 < \ldots < x_s = n$ $x_{i+1} \text{ least so that all } y \in (x_i, x_{i+1}] \text{ have unique}$ profie to $[1, x_i]$ $D(U) \le x_1 + O(s)$ Usually $x_{i+1} > 2^{x_i/2}$ Robustness: $s = O(\ln^* n)$ $D(U) = O(\ln^*(n))$

A Limit in Theory

Following equivalent for $x \in E_k$:

- $\forall_y \exists_z x + y + z = x$
- $\forall_y \exists_z z + y + x = x$
- $\exists_p \exists_s \forall_y p + y + s = x$
- x persistent in Markov Chain
- x called k-persistent.

There exist (many) persistent x

Persistency not dependent on edge effects

x persistent implies p + x + s persistent

 $\lim_{n} \Pr[k - \text{persistent}] = 1$

But how long must persistent x be?

Very long!

Counting Ehrenfeucht Classes

$$f(s,k) :=$$
 number \equiv_k -classes

over s-element alphabet Σ

$$f(s+1, k+2) \ge 2^{f(s,k)}$$

$$\Sigma^+ = \Sigma \cup \{\alpha\}$$

Set of \equiv_k -classes between consecutive α

 $f(k,k) \geq \mathsf{TOWER}(\Omega(k))$

Encode $\Sigma = \{1, ..., m\}$ to $\Sigma = \{0, 1, 2\}$ $352701 \rightarrow 011\underline{2}101\underline{2}010\underline{2}111\underline{2}000\underline{2}001$ $f(3, k) \geq \mathsf{TOWER}(\Omega(k))$ k + 2-persistent over $\Sigma = \{0, 1, 2, \beta\}$ Need *every* \equiv_k -class between consecutive β Length $\geq f(3, k) \geq \mathsf{TOWER}(\Omega(k))$ Technical: Reduce to $\Sigma = \{0, 1\}$ A_k : σ is k-persistent

 $\Pr[A_k] \rightarrow 1$ but equals zero for $n < \mathsf{TOWER}(\Omega(k))$