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Succint Definitions

General First Order Structure

Def: D(G) = smallest quantifier depth

of A that defines G

What is D(G) for random n-element model?

Kim/Pikhurko/Verbitsky/JS

G(n, 1
2) : Θ(lnn)

StJohn/JS:

G<(n, 1
2): Θ(ln∗ n)

BitString U(n, 1
2): Θ(ln lnn)
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G(n, 1
2)

Lower Bound

k-extension: All witnesses on all ≤ k vertices

Let k = (1− ε) log2 n

Pr[k − extension] → 1

k-extension determines ≡k+1

Therefore most D(G) > k + 1

Upper Bound

Let k = (2 + ε) log2 n

Random k vertices X

All other vertices have distinct profiles

Pr[FAIL] ≤
(n

2

)
2−k → 0

Therefore most D(G) ≤ k + 2
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Tightening Upper Bound

Let k = (1 + ε) log2 n

Random k vertices X

Y := those y with unique profile

Pr[y 6∈ Y ] ≤ n2−k → 0

|Y | ∼ n

All z have distinct profile to Y

Therefore D(G) ≤ k + 5
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Tenacity

Tε(n) := maximal k so that n1, n2 ≥ n, G1, G2

random n1, n2 models

Pr[Duplicator wins EHR[G1, G2; k]] ≥ 1− ε

ε fixed, n →∞
Zero-One Law implies Tε(n) →∞
If random G has D(G) ≤ k then Tε ≤ k

G ∼ G(n, 1
2), Tε(n) ∼ log2 n

What about G ∼ G(n, n−α)

with α ∈ (0,1), irrational?

Should depend on approximations

of α by rationals
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Random Bit String U(n, p), p = 1
2

Lower Bound

1m ≡k 1m+1 for k = Ω(lnm)

p1ms ≡k p1m+1s for k = Ω(lnm)

Random τ = p1ms for m = Ω(lnn)

Therefore D(τ) = Ω(ln lnn)
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Random Bit String U(n, p), p = 1
2

Upper Bound

Every m-string τ has D(τ) = O(lnm)

m = 10 lnn All m
2 strings unique

• Describe all m-strings

• Describe first and last m-string

Now n-string determined

D(U) = O(lnm) = O(ln lnn)
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Random Ordered G<(n, p), p = 1
2

No Convergence via Dance Marathon

n points flip fair coins. Drop out if tails

f(n) := Pr[unique winner]

f(n) =
∑

k

n2−k−1(1− 2−k)n−1

n = 2uθ, θ ∈ (0,1), k = u + s

f(n) ∼ g(θ) :=
+∞∑

s=−∞
2−s−1θe−θ2−s

g(θ) not constant. limn f(n) does not exist

A : ∃k∃!x(x > k) ∧ ((y ≤ k) → (x ∼ y))

limn Pr[A] does not exist
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NonSeparability

Interval I = [a, b] given by a, b

BINARY ADJ[x, y] on [a, b] given by c, d

x 6= y and there exists c ≤ y ≤ d adjacent to

precisely x, y in I

If |I| ≤ ln0.4 n get all ADJ

Replace A on graphs with

A∗ : ∃a,b,c,dA
∗∗

Traktenbrot-Vought: No Decision Procedure

for existence of finite graph models

⇒ Nonseparability of Pr[A]→ 1 and Pr[A] = 0
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Big and Small Functions

TOWER(1) = 2

TOWER(k + 1) := 2TOWER(k)

log∗(n) := least k, TOWER(k) ≥ n

Very Robust

Any First Order System bound ≡k-classes

xi,k := number (x1, . . . , xi) “types”

(x1, . . . , xk) types exp[kO(1)]

xi−1,k determined by set of reachable

(x1, . . . , xi) types xi−1,k ≤ 2xi,k

Number of ≡k-classes

= x0,k ≤ TOWER(k + O(1))
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D(U) for Random BitString

General Lower Bound

The number of U with D(U) ≤ k is

at most number of ≡k-classes

which is ≤ TOWER(k + O(1)) � n

for k = Ω(ln∗ n)

Therefore most U have D(U) = Ω(ln∗ n)
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D(U) for Random BitString

Upper Bound

ln∗ n = x1 < x2 < . . . < xs = n

xi+1 least so that all y ∈ (xi, xi+1] have unique

profie to [1, xi]

D(U) ≤ x1 + O(s)

Usually xi+1 > 2xi/2

Robustness: s = O(ln∗ n)

D(U) = O(ln∗(n))
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A Limit in Theory

Following equivalent for x ∈ Ek:

• ∀y∃zx + y + z = x

• ∀y∃zz + y + x = x

• ∃p∃s∀yp + y + s = x

• x persistent in Markov Chain

x called k-persistent.

There exist (many) persistent x

Persistency not dependent on edge effects

x persistent implies p + x + s persistent

limn Pr[k − persistent] = 1

But how long must persistent x be?

Very long!
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Counting Ehrenfeucht Classes

f(s, k) := number ≡k-classes

over s-element alphabet Σ

f(s + 1, k + 2) ≥ 2f(s,k)

Σ+ = Σ ∪ {α}
Set of ≡k-classes between consecutive α

f(k, k) ≥ TOWER(Ω(k))
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Encode Σ = {1, . . . , m} to Σ = {0,1,2}
352701 → 01121012010211120002001

f(3, k) ≥ TOWER(Ω(k))

k + 2-persistent over Σ = {0,1,2, β}
Need every ≡k-class between consecutive β

Length ≥ f(3, k) ≥ TOWER(Ω(k))

Technical: Reduce to Σ = {0,1}
Ak: σ is k-persistent

Pr[Ak] → 1 but equals zero for n < TOWER(Ω(k))
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