Random Graphs Assignment 9
Due Tuesday, April 5, 2012

The voyage of discovery lies not in seeking new horizons, but in seeking with new eyes. – Proust

1. For \(\lambda \) an arbitrary real and \(c \) an arbitrary positive real define find an asymptotic (in \(n \)) formula for

\[\Pr[T^{PO}_{1+\lambda n^{-1/3}} > cn^{2/3}] \]

in the form \(h(\lambda, c)n^{-1/3} \) where \(h(\lambda, c) \) is an explicit function given by a definite integral which you should leave unevaluated. (The sum of \(\Pr[T^{PO} = k] \) becomes an integral under parametrization \(k = xn^{2/3} \). There will be two cases, \(\lambda \leq 0 \) and \(\lambda > 0 \). When \(\lambda > 0 \) you must then add \(\Pr[T^{PO} = \infty] \).

2. Let \(A_1, \ldots, A_n \subseteq \{1, \ldots, m\} \) with \(\sum_{i=1}^{n} 2^{-|A_i|} < 1 \). Paul and Carole alternately select distinct vertices from \(\{1, \ldots, m\} \), Paul having the first move, until all vertices have been selected. Carole wins if she has selected all the vertices of some \(A_i \), Paul wins if Carole does not win. Give a winning strategy for Paul.

3. Let \(p = \frac{1}{n} + \lambda n^{-4/3} \) where \(\lambda \) is a fixed negative real. Let \(k = cn^{2/3} \) with \(c \) an arbitrary positive constant. Let \(X_k \) be the number of \(v \) for which \(|C(v)| \geq k \) and let \(Y_k \) be the number of components with at least \(k \) vertices. Use the general bound

\[\Pr[|C(v)| \geq k] \leq \Pr[T^{BIN}_{n-1,p} \geq k] \sim \Pr[T^{PO}_{np} \geq k] \]

(don’t worry about the justification for the last part) to give an upper bound on \(E[X_k] \) via the problem 1. Use \(Y_k \leq X_k/k \) to give an asymptotic upper bound on \(E[Y_k] \) as a function \(f(\lambda, c) \). Show that for fixed \(\lambda < 0 \), \(\lim_{c \to -\infty} f(\lambda, c) = 0 \) and that for fixed \(c > 0 \), \(\lim_{\lambda \to -\infty} f(\lambda, c) = 0 \). Find the asymptotics for \(f(\lambda, c) \) for \(\lambda \) fixed and \(c \to 0^+ \). Remark: The actual asymptotic value of \(E[Y_k] \) is smaller.

I doubt sometimes whether a quiet and unagitated life would have suited me – yet I sometimes long for it.

– Byron