Suppose p >* pr_1,all s. Fix an arbitrary tree T’ with any k—1 specified
vertices vy, ...,vp_1 and with any specified integers dy, ..., dy_1 with each
d; at least the degree of its respective »; in T . Then a.s. there will be
contained in G(n,p) an induced copy of T' with the vertex corresponding to
v; having degree precisely d;. In the countable models there will be trees
having & — 1 (or less) vertices of finite degree forming all possible finite
subtrees.

When p >* pi_15, all s, and p <* pyy1 0 the countable models of G/(n, p)
are distinguished by the trees containing precisely k vertices of finite de-
gree. Let T be a finite tree on, say, m vertices with distinguished vertices
Y1y, Yp. OSuppose further that the y; include all the leaves of T'. Let
l1,...,1; denote the degrees of 41, ..., yp respectively in T. Let dy,...,dy >
0. Let A be the event that G/(n, p) contains an induced copy of 7" and that
y; has degree precisely l;+d;. For this A weset s = m+dy+...+dp—k >0
and

. 1(;gn n (k—s41)loglogn
n kn
Then if p <* py, = A holds a.s. while if p >* p4 then A holds a.s..
Suppose prs—1 <* p <* prs. Then the countable model of G(n,p) is
determined: those tree components with precisely &k points of finite degree

exist if and only if the points and their degrees match the criteria above.
Conversely, for each such T, y1, ..., 9k, dq, ..., d; meeting the criteria there
will be countably many such components.



range p = O(X5%) the threshold functions are “tighter” and there is still

room for p to satisfy the Zero-One Law. The crucial sentences (for which
we gratefully acknowledge the assistance of N. Pippenger) are the following,

defined for k> 1,s> 0

o Ay s: There exist xq,..., 2, forming a path of length £, 27 only adjacent
to x9, x; only adjacent to z;_1, 2,41 for 1 < ¢ < k, and 2} adjacent only to
xi_1 and precisely s other vertices y1,...,ys.

The special case k£ = 1 simplifies to
o Ag,: There is a vertex of degree precisely s.

Set
logn (k4 s—1)loglogn ¢
There are ~ n*+*/s! potential z1,..., 25, y1,...,ys and each satisfies the

condition with probability ~ pF+5=1(1 — p)*». With this p the expected
number of such sets is then e~¢/s! and

Pr[A, ] — 1 — e

For notational convenience write p(n) <* ¢(n) if n(¢(n) — p(n)) — oo
and p(n) >= g(n) if n(g(n) — p(n)) — —oo
Theorem 4. p = n~'T°(1) gatisfies the Zero-One Law if and only if

1 1

p<<n orp>>n_

and forall k> 1,s>0
P <" Prs O p>" prs

The other cases having been handled in [SS] we may assume p = @(k’%).
In [SS] it has been noticed that for every m a.s. there do not exist m vertices
with m+1 (or more) edges. For every m > 3, r there a.s. do exist (at least)
r cycles of size precisely m. For every m, s a.s. every m vertices that have
m edges have each vertex of degree (at least) s. Thus countable models of
G/(n, p) would consist only of trees and unicylic components. The unicyclic
components are determined: for each m > 3 there will be countably many
components with a single cycle of length m and all degrees infinite. The
distinctions come in the tree components.

Suppose p <* pry1,0. For all m,r a.s. there do not exist m vertices joined
in a tree containing k+1 vertices of degree at most r. In the countable models
no tree can contain k + 1 (or more) vertices of finite degree.



By induction on ¢ we define a4, ...,a; and sets Fg D F1 D ... FE;, all infinite.
With F;_; having been defined split ¢ € F;_; into two classes according
to whether A; or = A; holds a.s. with p = n™%. As all a are irrational this
gives a strict dichotomy. Let F; be the infinite class, or either class if both
are infinite. (This step is nonrecursive. Even for ¢ = 1 there is no deci-
sion procedure that determines if A holds a.s. with p = n~% for infinitely
many a € Fy.) For notational convenience let B; denote either A; or = A;,
whichever gave the class F;. Select a; € F;, a; < a;_q1, arbitrarily. Note
that as the F; are a descending sequence we have that for all ¢+ < 7 that B;
holds a.s. in G/(n,n~%). For each j we may therefore pick an n; so that for
n 2> n;

1
Pr[G(n,n ") EB)]>1—-=,1<i<j
J

Replacing n; by max(ny,...,n;) we can further assure nqy < ny <.... Now
we define p = p(n) by letting p(n) be arbitrary for n < ny and setting

p(n)=n""n; <n<njp

As aj — 1/7, p(n) = n=Y/7M) As all a; > 1/7, p(n) < n='/7. For each i,
we have that for each j > i, Pr[B;] > 1 — % for n; < n and so B; holds a.s.
and therefore A; holds with probability approaching either zero or one.

3 p — n_1+0(1)

In this section we assume p = n~ ') throughout and we characterize those
p that satisfy the Zero-One Law. In [SS] it is shown that if

p << n~!
or
nt << p<<n(logn)

or
n~t(logn) << p

then p does satisfy the Zero-One Law. When p = ¢/n the probability that
G = G(n,p) is trianglefree approaches e=<"/6. Hence for p to satisfy the
Zero-One Law we must have p << n=! or p >> n~!. When p = k’% + =
the probability that G = G(n, p) has no isolated points is e . (This is
better known as the threshold function for connectivity.) However, in the



Proof. Say 7 has ternary predicates Ry, Ry,.... In the theory of graphs
make a sentence A that there exist xq,...,27 so that S = N(zq,...,27)
has size k(n) and on S we have a model of 7. We do this by replacing
each second order quantified ternary dg, by 3o, vs vg,uw1,... 050, a0d replacing
Ri(v1,v9,v3) by VIO N (v, v2, 03,04, 05,06, w;) # @. Then a.s. A holds if
and only if k(n) € S. (Strictly speaking these ternary relations would be
symmetric and hold for three unequal arguments. The somewhat technical
modification to handle quantification over all ternary relations is discussed
in [SS]. Binary and unary relations are handled similarly. Of course, the
symbols used for vy, ..., w500 must be different in each replacement.) With
p = p(n) satisfying the Zero-One Law we must have k(n) € 5 being either
true for all sufficiently large n or false for all sufficiently large n and as
k(n) — oo this implies Fact 9 .

This Fact gives a great strengthening of the results of [SS]. For example,
let 3 < €y and let f3 denote the 3-th function in the transfinite Ackermann
heirarchy.

Fact 10 . If k(n) > fﬁ_l(n) for all sufficiently large n then p = p(n) does not
satisfy the Zero-One Law.

Proof. As k(n) ~ r(n)'/? this would imply k(n) > fﬁ__&l(n) For k € K let
kt denote the next element of K in ascending order. Say k = k(n). Then
E[fa41(n)] > k and

KY < E[fop1(m)] £ foar(n) < fopr(foa(k)) < fora(k)

But with ternary predicates we may simulate arithmetic and the set S of
those k£ with fﬁ__b(k) even is a spectrum. Since in K, kT is so “near” k it
can’t “jump over” the interval [fg42(s), fe+2(s+1)) and so both SN A and
5 N K would be infinite.

A. Blass (Ann Arbor) has shown that there is no recursive set K that
meets the conditions of Fact 9. If p = p(n) were given by a recursive function
then the set K derived from it would be recursive and so by Blass’s result
p would not satisfy the Zero-One Law. The conditions on p seem almost
contradictory. But they’re not:

Theorem 3 . There exists a function p = p(n) with p < n~ Y7 and p =
n~1 /7o) satisfying the Zero-One Law.
Proof. Order the sentences in the first order theory of graphs Ay, Ao, .. ..
Set

1, V2

Q= - T ——

7 2

or any sequence of irrational numbers decreasing to 1/7. Set Fo = {ay, as,...}.



e or every set 5 of size at most 10/ and every 6-graph ‘H on 5 with at most
[/10 hyperedges there is a w ¢ S so that for all vy,...,v6 € 5

{v1,...,06} EH — N(vy,...,06,w) # ()

Extending and limiting this: for every 2-graph H on S with at most 50!
edges there exist vs, v4, v5, Vg, W1, . . ., Wsgp 80 that for all vy, v € 9

{v1,v9} € H «— V22O N(vy,...,v6,w;) # 0

We now say that a set S is bigger than a set " if for some vs, v4, v5, vg, W1, . . ., W50
the H thus defined on SU S’ gives an injection which is not a bijection from
S — S5 to S — 95" When |SUS’| <5l this has the meaning of bigger. We
can now say M AX (z1,...,27), that N(z1,...,27) has maximal size (as all
possible sets N have size less than 21). We may say S has size i{(mod10),
that there is a graph H on S which is the union of 10-cliques plus 7 more
points. For 0 < ¢ < 10 let A; be the sentence that there exist zy,..., 27
for which N(zq,...,27) has maximal size and its size is ¢(mod10). Then
Ag V ...V Ag holds a.s. so if p satisfies the Zero-One Law precisely one A;
holds a.s. This implies there must be a k'(n) with [ — 4 < k'(n) <144 so
that
max |N(z1,...,27)] = k' (n)

a.s. Now set

k(n) = [(K'(n))""]
We may say that a set S = N(aq,...,27) has size k(n): it has maximal
size so that there exist 57, 5% of the same size, all disjoint, and an injection
from S x 51 X Sy into a set T of size k'(n). Now k(n)®> < K'(n) < [+
4 < 50l. Any 3-graph H on S has less than 50/ hyperedges so there exist
V4, Vs, Vg, W1, . . ., w500 so that for all vy, v9,v3 € 9

{?}1,?]2,?]3} S H V?g?N(Ul,U27U3,U4,U5,U6,wi) 75 @

Now let K denote the set of values k(n). A function p = p(n) satisfying
the Zero-One Law will determine the set K, up to the finite segment. Now
let 7 be any second order sentence with quantification over unary, binary
and ternary predicates as well as normal first order quantification. Set
S = Spec(T), i.e., the set of m for which there is a model of 7 containing
exactly m elements.

Fact 9 . If p = p(n) satisfies the Zero-One Law then for any such S either
KNS or KNS must be finite.



Some calculation (s = r being the main term) gives that if

p = [7(logn + wloglogn)/n]'/"

and w = w(n) — oo then Pr[-A4,] — 0 for all ». We prove in §2 that
these A, give the “final threshold functions” with p = n=1/7+°(1) That is,
if p is this large but still p = n~/7+o(1) then p satisfies the Zero-One Law.
Actually we state our result for any rational & = a/b € (0, 1). There remains
a small gap in this aspect of our characterization of those p = p~1/7+e(1),
p > n~ Y7 for which the Zero-One Law holds. The result in [SS] gives, for
example, that if p < n_1/7(10g 71)1/7_E then the Zero-One Law does not hold.
If p > e(logn)/"n=1/7 ¢ > 7'/7 then the Zero-One Law holds. The precise
characterization of those p in this gap for which the Zero-One Law holds we
do not here explore.

In §5 we extend the results of [SS] for p < n~'/7 and show that p must
satisfy a very severe restriction in order to satisfy the Zero-One Law. In
particular, we show that there does not exist a recursive function p = p(n)
of this form. Nonetheless, we prove that there do exist p = n=1/7t°(1) with
p < n~ /7 that do satisfy the Zero-One Law.

2 Approaching n=/7

Here we ask: what p = p(n) with p = n~ V7o) and p < 0~V satisty
the Zero-One Law. We shall show that the restrictions on such p are very
severe. We shall also show that there are p with that property. While we
consider only the exponent —1/7 the results may be extended to any rational
exponent a € (0,1). We write

~=
|

p(n) =n s(n)
and assume k(n) — oco. We make heavy use of the results of [SS, §3]. In
particular, we may assume

k(n) < logloglogloglog(n)

as otherwise we know p does not satisfy the Zero-One Law. Let N(zq,...,27)
denote the set of neighbors of zq,...,27. Let [ = l(n) = |k(n)]. The
following hold a.s. in G(n,p).

o For every 0 < i <[ —4 there exist zy,...,27 with precisely ¢ neighbors.
o/ —4<max|N(zq,...,27)| <I1+4



For such p to satisfy the Zero-One Law we must have

p= n—oz—l—o(l)
for some a. For otherwise we would have p = n=7+°(1) on one subsequence
and p = n= 7% on another with 1 > 3 > ~v > 0. There would be a rational
a strictly between § and v and then the sentence G(n,p) O H, would
have probabilities approaching zero and one on the respective subsequences.
When « is irrational we showed in [SS] that any p = n=oto() does satisfy
the Zero-One Law. The situation with @ = 1 will be treated in §6. When
a = 0 the classic results of [F], [GKLT] give that if p > n™° for all positive ¢
and 1 — p > n~° for all positive € then the Zero-One Law is satisfied. For p
so close to 1 that the second condition is not satisfied we reduce to p = o(1)
by noting, interchanging adjacency with nonadjacency, that p satisfies the
Zero-One Law if and only if 1 — p does.

This leaves us with the central object of this paper: p = n=2+°(1) where
« is a rational number between zero and one. As p = n~% is itself a threshold
function, we split the possible p into two categories:

p>>n"%and p = n ot

and

p<<n~®and p=n-to®

In [SS] it is shown how to represent fragments of arithmetic in G(n,p) for p
near n~ /7. In particular, the following result holds.
Theorem 1. There is a first order B such that for any p = (¢/n)"/7 with

log n

—1/logloglogloglogn
n <aln) < log log logloglog n
Pr[G(n,p) |= B] does not approach a limit in n.

The constant 1/7 in this theorem can be replaced by any rational a €
(0,1). The statement of this theorem reveals a surprising asymmetry when p
is near n~ /7. It seems that the Zero-One Law breaks down in the wide range
before p achieves n=1/7 but is reestablished not very far after it. Let A, be
the first order sentence that every seven vertices have at least r neighbors.
If —A, then there exist zy,...,z7 and yi,...,y, with s < r with all y;
adjacent to all z; and no other z adjacent to all ;. We bound Pr[-A,] by
the expected number of such configurations.

Pr[4,] < Z (7;) (Z)p“(l -

s=0
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1 Introduction

Let G(n,p) be a random graph with vertices [n] = {1,...,n}, each pair
of which appears as an edge of G/(n,p) independently with probability p.
We shall say that a function p = p(n) satisfies the Zero-One Law if for all
statements A of the first order theory of graphs (whose precise definition we
postpone until the beginning of the next section)
Jim Pr[G(n,p) = Al=0or1

The proof that any constant p satisfies the Zero-One Law was given by Fa-
gin[F'] and Glebskii et. al. [GKLT]. Shelah and Spencer [SS] first considered
p = p(n) which varies as a function of n. Our results in this work are a nat-
ural continuation of [SS]. In particular, we are motivated by the following
question: Which functions p = p(n) satisfy the Zero-One Law?

Let a be 2; 1 + % for K = 1,2,...; 1; or any positive rational number
between 0 and 1. Then p = n~% does not satisfy the Zero-One Law. Indeed,
there is a finite graph H = H, so that p = n™% is the threshold function
for containment of a subgraph H. If p(n) << n~® (i.e. n®p(n) — 0) then
G(n,p) a.s. does not contain H while if p(n) >> n™ (i.e. n%p(n) — o0)
then G/(n,p) a.s. does contain H. Moreover, if p(n) ~ cn™® for any fixed
¢ > 0 then Pr[G(n,p) D H] approaches a limit between zero and one. (For
example, when p = en~2/3, the probability that G D K4 approaches 6_06/24.)
For p = p(n) to satisfy the Zero-One Law we must have p(n) << n~% or
p(n) >> n~% for all such a. In [SS] we showed that this condition was
also sufficient in the “very sparse” case: If p << n™=2 =% << p <<
n~1"FH for some k = 1,2,...then p = p(n) does satisfy the Zero-One Law.
Henceforth we restrict ourselves to p > n~1+o(1),

or n-



