
Suppose p >� pk�1;s, all s. Fix an arbitrary tree T with any k�1 speci�ed
vertices v1; . . . ; vk�1 and with any speci�ed integers d1; . . . ; dk�1 with each
di at least the degree of its respective vi in T . Then a.s. there will be
contained in G(n; p) an induced copy of T with the vertex corresponding to
vi having degree precisely di. In the countable models there will be trees
having k � 1 (or less) vertices of �nite degree forming all possible �nite
subtrees.

When p >� pk�1;s, all s, and p <
� pk+1;0 the countable models of G(n; p)

are distinguished by the trees containing precisely k vertices of �nite de-
gree. Let T be a �nite tree on, say, m vertices with distinguished vertices
y1; . . . ; yk. Suppose further that the yi include all the leaves of T . Let
l1; . . . ; lk denote the degrees of y1; . . . ; yk respectively in T . Let d1; . . . ; dk �
0. Let A be the event that G(n; p) contains an induced copy of T and that
yi has degree precisely li+di. For this A we set s = m+d1+. . .+dk�k � 0
and

pA =
log n

kn
+

(k � s+ 1) log logn

kn

Then if p <� pA, :A holds a.s. while if p >� pA then A holds a.s..
Suppose pk;s�1 <� p <� pk;s. Then the countable model of G(n; p) is

determined: those tree components with precisely k points of �nite degree
exist if and only if the points and their degrees match the criteria above.
Conversely, for each such T , y1; . . . ; yk, d1; . . . ; dk meeting the criteria there
will be countably many such components.
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range p = �( lognn ) the threshold functions are \tighter" and there is still
room for p to satisfy the Zero-One Law. The crucial sentences (for which
we gratefully acknowledge the assistance of N. Pippenger) are the following,
de�ned for k � 1; s � 0
� Ak;s: There exist x1; . . . ; xk forming a path of length k, x1 only adjacent
to x2, xi only adjacent to xi�1; xi+1 for 1 < i < k, and xk adjacent only to
xk�1 and precisely s other vertices y1; . . . ; ys.
The special case k = 1 simpli�es to
� A0;s: There is a vertex of degree precisely s.
Set

p = pk;s(n) =
logn

kn
+

(k + s � 1) log log n

kn
+

c

kn

There are � nk+s=s! potential x1; . . . ; xk; y1; . . . ; ys and each satis�es the
condition with probability � pk+s�1(1 � p)kn. With this p the expected
number of such sets is then e�c=s! and

Pr[Au;s]! 1� e�e
�c=s!

For notational convenience write p(n) <� q(n) if n(q(n) � p(n)) ! 1
and p(n) >� q(n) if n(q(n)� p(n))! �1
Theorem 4. p = n�1+o(1) satis�es the Zero-One Law if and only if

p << n�1 or p >> n�1

and for all k � 1; s � 0

p <� pk;s or p >
� pk;s

The other cases having been handled in [SS] we may assume p = �( lognn ).
In [SS] it has been noticed that for everym a.s. there do not existm vertices
with m+1 (or more) edges. For every m � 3, r there a.s. do exist (at least)
r cycles of size precisely m. For every m; s a.s. every m vertices that have
m edges have each vertex of degree (at least) s. Thus countable models of
G(n; p) would consist only of trees and unicylic components. The unicyclic
components are determined: for each m � 3 there will be countably many
components with a single cycle of length m and all degrees in�nite. The
distinctions come in the tree components.

Suppose p <� pk+1;0. For allm; r a.s. there do not existm vertices joined
in a tree containing k+1 vertices of degree at most r. In the countable models
no tree can contain k + 1 (or more) vertices of �nite degree.
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By induction on i we de�ne a1; . . . ; ai and sets E0 � E1 � . . .Ei, all in�nite.
With Ei�1 having been de�ned split a 2 Ei�1 into two classes according
to whether Ai or :Ai holds a.s. with p = n�a. As all a are irrational this
gives a strict dichotomy. Let Ei be the in�nite class, or either class if both
are in�nite. (This step is nonrecursive. Even for i = 1 there is no deci-
sion procedure that determines if A holds a.s. with p = n�a for in�nitely
many a 2 E0.) For notational convenience let Bi denote either Ai or :Ai,
whichever gave the class Ei. Select ai 2 Ei, ai < ai�1, arbitrarily. Note
that as the Ei are a descending sequence we have that for all i � j that Bi

holds a.s. in G(n; n�aj). For each j we may therefore pick an nj so that for
n � nj

Pr[G(n; n�aj) j= Bi] � 1� 1

j
; 1 � i � j

Replacing nj by max(n1; . . . ; nj) we can further assure n1 � n2 � . . .. Now
we de�ne p = p(n) by letting p(n) be arbitrary for n < n1 and setting

p(n) = n�aj ; nj � n < nj+1

As aj ! 1=7, p(n) = n�1=7+o(1). As all aj > 1=7, p(n) < n�1=7. For each i,
we have that for each j � i, Pr[Bi] � 1� 1

j for nj � n and so Bi holds a.s.
and therefore Ai holds with probability approaching either zero or one.

3 p = n
�1+o(1)

In this section we assume p = n�1+o(1) throughout and we characterize those
p that satisfy the Zero-One Law. In [SS] it is shown that if

p << n�1

or
n�1 << p << n�1(logn)

or
n�1(logn) << p

then p does satisfy the Zero-One Law. When p = c=n the probability that
G = G(n; p) is trianglefree approaches e�c

3=6. Hence for p to satisfy the
Zero-One Law we must have p << n�1 or p >> n�1. When p = logn

n + c
n

the probability that G = G(n; p) has no isolated points is e�e
�c
. (This is

better known as the threshold function for connectivity.) However, in the
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Proof. Say T has ternary predicates R1; R2; . . .. In the theory of graphs
make a sentence A that there exist x1; . . . ; x7 so that S = N(x1; . . . ; x7)
has size k(n) and on S we have a model of T . We do this by replacing
each second order quanti�ed ternary 9Ri

by 9v4;v5 ;v6;w1;...;w500 and replacing
Ri(v1; v2; v3) by _500i=1N(v1; v2; v3; v4; v5; v6; wi) 6= ;. Then a.s. A holds if
and only if k(n) 2 S. (Strictly speaking these ternary relations would be
symmetric and hold for three unequal arguments. The somewhat technical
modi�cation to handle quanti�cation over all ternary relations is discussed
in [SS]. Binary and unary relations are handled similarly. Of course, the
symbols used for v4; . . . ; w500 must be di�erent in each replacement.) With
p = p(n) satisfying the Zero-One Law we must have k(n) 2 S being either
true for all su�ciently large n or false for all su�ciently large n and as
k(n)!1 this implies Fact 9 .

This Fact gives a great strengthening of the results of [SS]. For example,
let � < �0 and let f� denote the �-th function in the trans�nite Ackermann
heirarchy.
Fact 10 . If �(n) > f�1� (n) for all su�ciently large n then p = p(n) does not
satisfy the Zero-One Law.
Proof. As k(n) � �(n)1=3 this would imply k(n) > f�1�+1(n). For k 2 K let

k+ denote the next element of K in ascending order. Say k = k(n). Then
k[f�+1(n)] > k and

k+ � k[f�+1(n)] � f�+1(n) � f�+1(f�+1(k)) � f�+2(k)

But with ternary predicates we may simulate arithmetic and the set S of
those k with f�1�+2(k) even is a spectrum. Since in K, k+ is so \near" k it
can't \jump over" the interval [f�+2(s); f�+2(s+1)) and so both S \K and
S \K would be in�nite.

A. Blass (Ann Arbor) has shown that there is no recursive set K that
meets the conditions of Fact 9. If p = p(n) were given by a recursive function
then the set K derived from it would be recursive and so by Blass's result
p would not satisfy the Zero-One Law. The conditions on p seem almost
contradictory. But they're not:
Theorem 3 . There exists a function p = p(n) with p < n�1=7 and p =
n�1=7+o(1) satisfying the Zero-One Law.
Proof. Order the sentences in the �rst order theory of graphs A1; A2; . . ..
Set

�i =
1

7
+

p
2

i

or any sequence of irrational numbers decreasing to 1=7. SetE0 = f�1; �2; . . .g.
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� For every set S of size at most 10l and every 6-graph H on S with at most
l=10 hyperedges there is a w 62 S so that for all v1; . . . ; v6 2 S

fv1; . . . ; v6g 2 H  ! N(v1; . . . ; v6; w) 6= ;
Extending and limiting this: for every 2-graph H on S with at most 50l
edges there exist v3; v4; v5; v6; w1; . . . ; w500 so that for all v1; v2 2 S

fv1; v2g 2 H  ! _500i=1N(v1; . . . ; v6; wi) 6= ;
We now say that a set S is bigger than a set S0 if for some v3; v4; v5; v6; w1; . . . ; w500

the H thus de�ned on S[S0 gives an injection which is not a bijection from
S0 � S to S � S0. When jS [ S0j < 5l this has the meaning of bigger. We
can now say MAX(x1; . . . ; x7), that N(x1; . . . ; x7) has maximal size (as all
possible sets N have size less than 2l). We may say S has size i(mod10),
that there is a graph H on S which is the union of 10-cliques plus i more
points. For 0 � i < 10 let Ai be the sentence that there exist x1; . . . ; x7
for which N(x1; . . . ; x7) has maximal size and its size is i(mod10). Then
A0 _ . . . _ A9 holds a.s. so if p satis�es the Zero-One Law precisely one Ai

holds a.s. This implies there must be a k0(n) with l � 4 � k0(n) � l + 4 so
that

max jN(x1; . . . ; x7)j = k0(n)

a.s. Now set
k(n) = b(k0(n))1=3c

We may say that a set S = N(x1; . . . ; x7) has size k(n): it has maximal
size so that there exist S1; S2 of the same size, all disjoint, and an injection
from S � S1 � S2 into a set T of size k0(n). Now k(n)3 � k0(n) � l +
4 � 50l. Any 3-graph H on S has less than 50l hyperedges so there exist
v4; v5; v6; w1; . . . ; w500 so that for all v1; v2; v3 2 S

fv1; v2; v3g 2 H $ _500i=1N(v1; v2; v3; v4; v5; v6; wi) 6= ;
Now let K denote the set of values k(n). A function p = p(n) satisfying

the Zero-One Law will determine the set K, up to the �nite segment. Now
let T be any second order sentence with quanti�cation over unary, binary
and ternary predicates as well as normal �rst order quanti�cation. Set
S = Spec(T ), i.e., the set of m for which there is a model of T containing
exactly m elements.
Fact 9 . If p = p(n) satis�es the Zero-One Law then for any such S either
K \ S or K \ S must be �nite.
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Some calculation (s = r being the main term) gives that if

p = [7(logn+ ! log logn)=n]1=7

and ! = !(n) ! 1 then Pr[:Ar] ! 0 for all r. We prove in x2 that
these Ar give the \�nal threshold functions" with p = n�1=7+o(1). That is,
if p is this large but still p = n�1=7+o(1) then p satis�es the Zero-One Law.
Actually we state our result for any rational � = a=b 2 (0; 1). There remains
a small gap in this aspect of our characterization of those p = n�1=7+o(1),
p > n�1=7 for which the Zero-One Law holds. The result in [SS] gives, for
example, that if p < n�1=7(logn)1=7�� then the Zero-One Law does not hold.
If p > c(logn)1=7n�1=7, c > 71=7, then the Zero-One Law holds. The precise
characterization of those p in this gap for which the Zero-One Law holds we
do not here explore.

In x5 we extend the results of [SS] for p < n�1=7 and show that p must
satisfy a very severe restriction in order to satisfy the Zero-One Law. In
particular, we show that there does not exist a recursive function p = p(n)
of this form. Nonetheless, we prove that there do exist p = n�1=7+o(1) with
p < n�1=7 that do satisfy the Zero-One Law.

2 Approaching n
�1=7

Here we ask: what p = p(n) with p = n�1=7+o(1) and p < n�1=7 satisfy
the Zero-One Law. We shall show that the restrictions on such p are very
severe. We shall also show that there are p with that property. While we
consider only the exponent �1=7 the results may be extended to any rational
exponent � 2 (0; 1). We write

p(n) = n
�

1
7�

1
�(n)

and assume �(n) ! 1. We make heavy use of the results of [SS, x3]. In
particular, we may assume

�(n) < log log log log log(n)

as otherwise we know p does not satisfy the Zero-One Law. LetN(x1; . . . ; x7)
denote the set of neighbors of x1; . . . ; x7. Let l = l(n) = b�(n)c. The
following hold a.s. in G(n; p).
� For every 0 � i � l � 4 there exist x1; . . . ; x7 with precisely i neighbors.
� l � 4 � max jN(x1; . . . ; x7)j � l+ 4
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For such p to satisfy the Zero-One Law we must have

p = n��+o(1)

for some �. For otherwise we would have p = n��+o(1) on one subsequence
and p = n�
+o(1) on another with 1 � � > 
 � 0. There would be a rational
� strictly between � and 
 and then the sentence G(n; p) � H� would
have probabilities approaching zero and one on the respective subsequences.
When � is irrational we showed in [SS] that any p = n��+o(1) does satisfy
the Zero-One Law. The situation with � = 1 will be treated in x6. When
� = 0 the classic results of [F], [GKLT] give that if p > n�� for all positive �
and 1� p > n�� for all positive � then the Zero-One Law is satis�ed. For p
so close to 1 that the second condition is not satis�ed we reduce to p = o(1)
by noting, interchanging adjacency with nonadjacency, that p satis�es the
Zero-One Law if and only if 1� p does.

This leaves us with the central object of this paper: p = n��+o(1) where
� is a rational number between zero and one. As p = n�� is itself a threshold
function, we split the possible p into two categories:

p >> n�� and p = n��+o(1)

and
p << n�� and p = n��+o(1)

In [SS] it is shown how to represent fragments of arithmetic in G(n; p) for p
near n�1=7. In particular, the following result holds.
Theorem 1. There is a �rst order B such that for any p = (q=n)1=7 with

n�1= log log log log logn < q(n) <
logn

log log log log log n

Pr[G(n; p) j= B] does not approach a limit in n.
The constant 1=7 in this theorem can be replaced by any rational � 2

(0; 1). The statement of this theorem reveals a surprising asymmetry when p
is near n�1=7. It seems that the Zero-One Law breaks down in the wide range
before p achieves n�1=7 but is reestablished not very far after it. Let Ar be
the �rst order sentence that every seven vertices have at least r neighbors.
If :Ar then there exist x1; . . . ; x7 and y1; . . . ; ys with s � r with all yj
adjacent to all xi and no other z adjacent to all xi. We bound Pr[:Ar] by
the expected number of such con�gurations.

Pr[:Ar] �
rX

s=0

 
n

7

! 
n

s

!
p7s(1� p7)n�7�s
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When Does the Zero-One Law Hold?

Tomasz  Luczak Joel Spencer

February 28, 1995

1 Introduction

Let G(n; p) be a random graph with vertices [n] = f1; . . . ; ng, each pair
of which appears as an edge of G(n; p) independently with probability p.
We shall say that a function p = p(n) satis�es the Zero-One Law if for all
statements A of the �rst order theory of graphs (whose precise de�nition we
postpone until the beginning of the next section)

lim
n!1

Pr[G(n; p) j= A] = 0 or 1

The proof that any constant p satis�es the Zero-One Law was given by Fa-
gin[F] and Glebskii et. al. [GKLT]. Shelah and Spencer [SS] �rst considered
p = p(n) which varies as a function of n. Our results in this work are a nat-
ural continuation of [SS]. In particular, we are motivated by the following
question: Which functions p = p(n) satisfy the Zero-One Law?

Let � be 2; 1 + 1
k for k = 1; 2; . . .; 1; or any positive rational number

between 0 and 1. Then p = n�� does not satisfy the Zero-One Law. Indeed,
there is a �nite graph H = H� so that p = n�� is the threshold function
for containment of a subgraph H . If p(n) << n�� (i.e. n�p(n) ! 0) then
G(n; p) a.s. does not contain H while if p(n) >> n�� (i.e. n�p(n) ! 1)
then G(n; p) a.s. does contain H . Moreover, if p(n) � cn�� for any �xed
c > 0 then Pr[G(n; p) � H ] approaches a limit between zero and one. (For
example, when p = cn�2=3, the probability thatG � K4 approaches e

�c6=24.)
For p = p(n) to satisfy the Zero-One Law we must have p(n) << n�� or
p(n) >> n�� for all such �. In [SS] we showed that this condition was

also su�cient in the \very sparse" case: If p << n�2 or n�1�
1
k << p <<

n�1�
1

k+1 for some k = 1; 2; . . . then p = p(n) does satisfy the Zero-One Law.
Henceforth we restrict ourselves to p > n�1+o(1).
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