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4.3 Talagrand

Here we use Talagrand's Inequality to show that 35 holds almost surely. Fix
(p; k; �)-superquasirandom G. Fix l � 1 � t � t � 1 and distinct x1; . . . ; xt.
Set NG = NG(x1; . . . ; xt), NH = NH(x1; . . . ; xt), X = jNH j so that X is a
random variable dependent on the choices of k-cliques in F . Let A;B;C; q; �
be given by 38. Set

D =

 
t

l � 1

!
B (42)

For each x 2 NG there are (1 � ��)D k-cliques that contain x and at least
l � 1 of the points x1; . . . ; xt. Let Ix be the indicator random variable for
x 2 N(H) so that X =

P
Ix. Then

E[Ix] = (1� q)(1��
�)D = (1� ��)e�qD (43)

so that
E[X ] =

X
x2NG

E[Ix] = (1� ��)n(pe��)(
t

l�1
) (44)

We use Talagrand's Inequality to give a large deviation bound for X . Set
Y = jNGj �X , the number of vertices dropped because of cliques.
� Y is k-certi�able. Changing K 62 K to K 2 K can only e�ect whether
y 2 NH for those y 2 K.
� Y is f -certi�able where f(s) = s. If Y � s then some y1; . . . ; ys 2 NG�NH

so there are cliques K1; . . .Ks 2 K with Ki containing yi and l � 1 of the
x1; . . . ; xt. These K1; . . . ; Ks certify that Y � s.

From 16, letting �Y = E[Y ]

Pr[jY � �Y j > �0�Y ] = e�
(�Y ) (45)

for any �0 > 0. Fortunately, �X = E[X ] and �Y are both �(n), within
constant multiples of each other. Thus for any �� > 0

Pr[jX � �X j > ���X ] < Pr[jY � �Y j > �0�Y ] (46)

= e�
(�Y )

= e�
(�X )

As �X = 
(n) this is exponentially small and therefore certainly o(n�t).
Hence almost surely for all x1; . . . ; xt X � �X and so NH is (pe��; k; �)-
superquasirandom.
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we may, for any positive �0, �nd �; L; � so that g(�; L; �)> 1� �0 and so for n
su�ciently large there is a family of at least (1��0)�nl�=�kl� disjoint k-cliques.

Now we aim for Theorem xxx. We set

A =

 
n

k

!
p(

k

l
) (38)

B =

 
n� l

k � l

!
p(

k

l
)�1

C =

 
k

l

!
B

q = �=B

We consider a random family F of k-cliques ofG where for each such k-clique
K

Pr[K 2 F ] = q (39)

and the choices are mutually independent. It su�ces to show that 34,35
both hold almost surely.
Remark The random hypergraph has � A k-cliques, each edge is in � B
k-cliques, each k-clique overlaps � C other k-cliques and for each edge
e 2 E(G) the expected number of K 2 K containing e is � �.

Our superquasirandom G behaves almost like the random hypergraph.
Here and in x4.3 we let �� denote a function of � which can be made arbitrar-
ily small by making � appropriately small. Then G has (1� ��)A k-cliques,
each edges is in (1� ��)B k-cliques, each k-clique overlaps (1� ��)C other
k-cliques. For each k-clique K of G let IK be the indicator random variable
for K being an isolated k-clique of H and let X =

P
IK be the number of

such K. Then
E[IK] = q(1� q)(1��

�)C (40)

and

E[X ] = (1� ��)Aq(1� q)(1��
�)C (41)

= (1� ��)Aqe�qC

= (1� ��)

�n
l

�
�k
l

� �e�(kl)�

Further calculation gives V ar[X ] = o(E[X ]2) so that 34 holds almost surely.
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where NG(x1; . . . ; xt) denotes those y so that all l-sets consisting of y and
l � 1 of the the x's are hyperedges of G.
Remark The random hypergraph with edge probability p is, for any �xed
k; � > 0, almost surely (p; k; �)-superquasirandom.
Theorem For every 2 � l < k, 0 < p � 1, � > 0 and �0 > 0 there exists
� > 0 with the following property: Let G be any (p; k; �)-superquasirandom
l-graph on n vertices with n su�ciently large. Then there is a family F of
k-cliques of G so that

F has at least p

�n
l

�
�k
l

� h�e��(kl) � �0
i
isolated k-cliques (34)

and, setting H = G� SF ,
H is (pe��; k; �0)� superquasirandom (35)

We derive the proof of Theorem xxx from Theorem xxx, following the
ideas of [4]. Indeed, the idea is sometimes called the R�odl nibble. Fix
0 < � < 1,L a positive integer and � > 0. (Think of � small and L big.) Let
G0 be the complete l-graph so that G0 is (1; k; 0)-superquasirandom. Find
0 = �0 < �1 < . . . < �L = � so that (for n su�ciently large) we may apply
Theorem xxx L times (keeping � constant) giving G0 � G1 � . . . � GL with
Gi (e

��i; k; �i)-superquasirandom and Gi �Gi+1 containing at least

e��i
�n
l

�
�k
l

� h�e��(kl) � �i
i

disjoint k-cycles. In total this gives at least g(�; L; �)
�n
l

�
=
�k
l

�
disjoint k-cliques

where

g(�; L; �) =
L�1X
i=0

e��i[�e��(
k

l
) � �] (36)

As

lim
�!0

lim
L!1

lim
�!0

g(�; L; �) = lim
�!0

lim
L!1

L�1X
i=0

e��i[�e��(
k

l
)] (37)

= lim
�!0

1X
i=0

e��i�e��(
k

l
)

= lim
�!0

e��(
k

l
) �

1� e��

= 1
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4 Asymptotic Packing

4.1 Notations

For 2 � l < k < n let m(n; k; l) denote the maximal size of a family F

of k-element subsets of f1; . . . ; ng with the property that no l points lie in
more than one A 2 F . Similarly, let M(n; k; l) denote the minimal size of a
family F of k-element subsets of f1; . . . ; ng with the property that every l

points lie in at least one A 2 F . Elementary counting arguments give

m(n; k; l)�
�n
l

�
�k
l

� �M(n; k; l)

Equality is achieved exactly when there is a family F so that every l points
are in precisely one A 2 F , what is called a tactical con�guration. (For
example, the case k = 3; l = 2 yields the well known Steiner Triple Systems.)
In 1963 Paul Erd}os and Haim Hanani [2]conjectured that these bounds were
asymptotically achievable, more precisely that for any �xed k; l

lim
n!1

m(n; k; l)

�k
l

�
�n
l

� = 1 = lim
n!1

M(n; k; l)

�k
l

�
�n
l

� (32)

This conjecture was proven in 1985 by Vojtech R�odl[4]. In this section we
outline a proof that retains R�odl's key ideas but where Talagrand's Inequal-
ity allows some simpli�cation.

It will be convenient for us to formulate the Erd}os-Hanani conjecture
in hypergraph terms. Let G be the complete l-graph on n points. Then
m(n; k; l) is the maximal number of disjoint k-cliques that may be packed
into G, and M(n; k; l) is the minimal number of k-cliques that cover G.
Already in [2] it was known that the left hand limit of 32 is one if and
only if the right hand limit is one. We'll restrict attention to the \packing
problem", showing m(n; k; l)� �nl�=�kl�
4.2 Reductions.

We �x 2 � l < k throughout this section, asymptotics are as n ! 1. Let
0 < p � 1 and � � 0.
De�nition. We call an l-graph G (p; k; �)-superquasirandom if for every
l � 1 � t � k � 1 and every set x1; . . . ; xt of distinct vertices of G

1� � <
jNG(x1; . . . ; xt)j
(n� t)p(

t

l�1
)

< 1 + � (33)
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As in x2 we have a problem with overlap. Set r�k(n) equal to the maximal
size of a family of disjoint representatives and set �� = ��k(n) = E[r�k(n)].
In [3] is is shown that

rk(n)� r�k(n) = O(1) (27)

almost surely. We also claim

��k(n) � �k(n) (28)

As in x2.2 we can de�ne r
(i)
k (n) as the number of isolated representations of

n, sandwich r
(i)
k (n) � r�k(n) � rk(n) and calculate E[r

(i)
k (n)] � E[rk(n)].

We shall show

Pr[jr�k(n)� ��k(n)j >
1

2
��k(n)] = O(n�1:1) (29)

for c, and hence c0, appropriately large. Given 29 the Borel-Cantelli Lemma
yields that almost surely jr�k(n)� ��k(n)j � 1

2�
�
k(n) for all but �nitely many

n and then 27,28 yield the Theorem.

3.3 Talagrand

Here we use Talagrand's Inequality to show 29. We consider the probability
space of choices of S \ f1; . . . ; ng as the product space of the n individual
choices and r� = r�k(n) as a random variable on that product space.
� r� is Lipschitz.

Consider two sets S; S� on [n] (i.e., elements of the probability space)
identical except that S� has an additional element i. A family of disjoint
representatives of n with respect to S� can have only one representative
using i and deleting it gives such a family with respect to S.
� r� is f -certi�able with f(s) = ks.

If r� � s there are s disjoint representatives which together involve ks
elements and these elements certify that r� � s.

Let m� = m�
k(n) denote the median of r�k(n). From 14

m� � �� � c0(lnn) (30)

and from 16, for any �xed � > 0 ,

Pr[jr� �m�j > �m�] < e�
(m
�) = O(n�1:1) (31)

for su�ciently large c0. This yields 29 with room to spare.
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3 Representations as x1 + . . . + xk

3.1 Notations

Fix a positive integer k � 3. For a set S of positive integers let fk(n) =
fk(n; S) denote the number of representations of n as the sum of k distinct
elements of S. Our object will be the following result of Paul Erd}os and
Prasad Tetali [3].
Theorem There is an S and positive constants c1; c2 (dependent on k) so
that

c1 lnn < fk(n) < c2 lnn (22)

for all su�ciently large n.
When k = 2 this result is one of the classic applications of the proba-

bilistic method by Paul Erd}os [1].

3.2 Reductions

The results in this section are basically from [3]. Consider a random set S of
positive integers for which the events x 2 S are mutually independent and

Pr[x 2 S] = px = c

�
ln x

xk�1

�1=k
(23)

where c is a large constant. (When this px > 1 set px = 1.) Now fk(n) is a
random variable with

E[fk(n)] =
X

x1+...+xk=n

px1 � � �pxk (24)

There are �(nk�1) terms. Most (though not all!) lie within a constant of
pkn = ck(lnn)n�(k�1). Computation gives

E[fk(n)] � Kck(lnn) (25)

where K depends only on k. Let � = �k(n) = E[fk(n)] for notational
convenience. Pick c so that

� � c0(lnn) (26)

with c0 large.
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Call an extension g of f isolated if there is no other extension g0 of f
with g(a) = g0(b) for some a; b 62 R. Conditioning on g being an extension
of f for g to not be isolated there must be R � R0 � V (H) and a g0 which
is an (R0; H)-extension of gjR0. But (R0; H) is dense ([5], page 106,F) so the
expected number of such g0 is o(1). Letting N (i) be the number of isolated
extensions g, E[N (i)] � E[N ]. As N (i) � N� � N , 19 follows.

Thus it su�ces to show that almost surely N� � E[N�] for all f . As
there are only O(nr) possible f it su�ces to show

Pr[jN�� E[N�]j > ��] = o(n�r) (20)

for a �xed f .

2.3 Talagrand

Now we employ Talagrand's Inequality. Fix f and (R;H). The probability
space G(n; p) is considered as the product space of the choices on the indi-
vidual edges. N� is now a random variable on the product space.
� N� is K0-Lipschitz for K0 = (v � r)(K � 1).

Let G;G� be two graphs on [n] (i.e., elements of the probability space
G(n; p).) identical except that G� has an additional edge w1; w2. If w1; w2 2
f(R) then N�(G) = N�(G�). Suppose w1 62 f(R). Consider a family of
extensions of f with respect to G� that have no g1; . . . ; gK with a common
value gi(a) = v. At most (v� r)(K � 1) of them can have w1 2 g(V (H)) as
otherwise some K would have the same a 2 V (H)�R with g(a) = w1. The
remaining g form such a family with respect to G.
� N� is f -certi�able with f(s) = es, where (R;H) has type (v; e).

If N� � s then there are extensions g1; . . . ; gs. The edges of these gi-
copies certify that N� � s. Each copy has s edges. While they may overlap,
together they have at most es edges.

Applying 16 to N�

Pr[jN�� ��j > ���] < e�
(�
�) (21)

As �� is at least a positive power of n this quantity is certainly o(n�r)
completing the proof.
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and let f : R! V (G) be an injection. We say an injection g : V (H)! V (G)
is a set-extension if gjR = f and is an extension if, in addition,

fx; yg 2 E(H); y 62 R) fg(x); g(y)g 2 E(G) (17)

When this occurs we call the set of such edges fg(x); g(y)g the g-copy of H .
We let N = N(f; (R;H);G) denote the number of such extensions.
Examples Let H be a triangle on fa; b; cgwith R = fag. Suppose f(a) = v.
Then N is twice the number of triangles of G containing v. Note that for
triangle v; w1; w2 we can extend by g(b) = w1; g(c) = w2 or by g(b) =
w2; g(c) = w1. With the same H let now R = fa; bg and suppose f(a) =
v1; f(b) = v2. Then N is the number of common neighbors of v1; v2 in G.
Note that the edge fa; bg is immaterial.

Our next de�nitions are with respect to a �xed �, 0 < � < 1.
(R;H) of type (v; e) is sparse if v � e� > 0
(R;H) of type (v; e) is dense if v � e� < 0
(R;H) is safe if (R0; H) is sparse for all R � R0 � V (H).
(R;H) is hinged if it is safe but for all R � R0 � V (H) (R0; H) is not safe.

Now let G be the random graph G(n; p) with p = n��. Our object will
be the following result.
Theorem Let (R;H) be safe. Then almost surely

N � (n� r)vp
e � nvpe � nv��e (18)

for all injections f : R! V (G).

2.2 Reductions

A weaker form of this result was given in [5] and this result was shown
by di�erent means in [6]. Observe that, for �xed f; (R;H), N is a random
variable with expectation (n�r)vpe. The arguments of [5] (Theorem 3, Page
107) allow us to assume (R;H) hinged. (Otherwise, roughly, extensions
from R to H split into two safe parts and we use induction.) From [5] (Page
106,condition F; Page 109, Lemma 4) there is a constant K so that almost
surely no f : R ! V (G) has extensions g1; . . . ; gK with a common value
gi(a) = v where a 62 R. Set N� = N�(f; (R;H); G) equal the maximal size
of a family of extensions gi of f without such g1; . . . ; gK. Then almost surely
N� = N for all f . We claim

E[N ] � E[N�] (19)
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while for y � m, � = y(y +m)�1=2 � y(2y)�1=2 and so

Pr[X �m � im] � 2ey=8K
2c = 2e�im=8K2c for i = 1; 2; . . . (12)

Combining

E[jX �mj] � 2
p
m

Z 1

�=0
�(�=4cK2)e��

2=4cK2

d� (13)

+ 2
p
m

Z 1

�=0
�(�=8cK2)e��

2=8cK2

d�

+
1X
i=0

2(i+ 1)me�im=8cK2

= O(
p
m)

so that
j� �mj � E[jX �mj] � c1

p
m (14)

for m su�ciently large where c1 depends only on c;K.
In our applications we're concerned with deviations commensurate with

the median. Again suppose h is f -certi�able with f(s) = cs and is K-
Lipschitz. Applying 6 with b = m;� = �

p
m and then with b = (1+�)m;�=

�(1 + �)�1=2
p
m gives

Pr[jX �mj > �m] < e�
(m) (15)

with the constant dependent on c;K; �. In view of 14 we have further

Pr[jX � �j > ��] < e�
(�) (16)

with the constant again dependent only on c;K; �.

2 Extension Statements

2.1 Notations

We follow the notation of [5] which we repeat for convenience. A rooted

graph is a pair (R;H) consisting of a graph H = (V (H); E(H)) and a subset
R � V (H). The vertices of R are called roots. We say (R;H) has type (v; e)
where v is the number of non-root vertices and e is the number of edges of
H , excluding edges between two roots. Let G = (V (G); E(G)) be any graph
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A small generalization will prove useful. Call h : 
 ! R K-Lipschitz if
jh(x)� h(y)j � K whenever x; y di�er in only one coordinate. Applying 3
to h=K and renormalizing we �nd

Pr[X < b� tK
q
f(b)] Pr[X � b] � e�t

2=4 (4)

In applications one often takes b to be the median so that for t large
the probability of being t

p
f(b) under the median goes sharply to zero.

But it works both ways, by parametrizing so that d = b � t
p
f(b) is the

median one usually gets b � d + t
p
f(d) and that the probability of being

t
p
f(b) above the median goes sharply to zero. Martingales, via Azuma's

Inequality, generally produce a concentration result around the mean of X
while Talagrand's Inequality yields a concentration result about the median.
Means tend to be easy to compute, medians notoriously di�cult, but our
tight concentration result will allow us to show that the mean and median
are not far away.

Let us suppose h is f -certi�able for f(s) = cs and K-Lipschitz. Then
the random variable X = h(�) satis�es

Pr[X � b� �K
p
c
p
b] Pr[X � b] � e��

2=4 (5)

or, changing parameters,

Pr[X � b� �
p
b] Pr[X � b] � e��

2=4K2c (6)

for all b; �. Let � = E[X ], the mean of X , and let m denote the median of
X . Then

j��mj = jE[X �mj] � E(jX �mj) (7)

Setting b = m

Pr[X �m � ��pm] � 2e��
2=4K2c (8)

On the other side let y = y(�) denote the solution to

y +m� �
p
y +m = m (9)

so that
Pr[X �m � y] � 2e��

2=4K2c (10)

For y � m, � = y(y +m)�1=2 � y(2m)�1=2 so

Pr[X �m � �
p
m] � 2e��

2=8K2c for 0 � � � p
m (11)
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The notation takes some getting used to. Suppose 
i = f0; 1g with the
uniform distribution so that 
 is the Hamming w-cube with uniform dis-
tribution. If y 2 At then, taking all �i = 1, y must be within Hamming
distance t

p
w of A. In this sense the inequality is remniscent of isoperimetric

inequalities. However there are certainly further conditions on membership
in At that make this inequality far stronger.

In [8] Talagrand developes numerous applications of this Inequality. There
he chooses to make all derivations directly from the Inequality. Here we take
the opposite tact, designing a convenient framework into which all our ap-
plications can be placed. We should emphasize that this format is implicit
in [8] and that the speci�c notations were the joint e�ort of several math-
ematicians visiting IMA in Fall 1993, including Svante Janson, Eli Shamir
and Michael Steele. Let h : 
! R. We call h Lipschitz if jh(x)� h(y)j � 1
for all x; y 2 
 which di�er in only one coordinate. For f : N ! N (e.g.,
f(b) = b) we call h f -certi�able if whenver h(x) � s there exists an index
set I � f1; . . .wg with jI j � f(s) so that all y 2 
 that agree with x on the
coordinates I have h(y) � s. (I.e., there will be a set of coordinate values of
size f(s) that will certify that h � s.) Let h satisfy the above and consider
the random variable X = h(�).
Corollary. Under the above assumptions and for all b; t

Pr[X � b� t
q
f(b)] Pr[X � b] � e�t

2=4 (3)

Proof. Set A = fx : h(x) < b� t
p
f(b)g. Now suppose h(y) � b. We claim

y 62 At. Let I be a set of indices of size at most f(b) that certi�es h(y) � b
as given above. De�ne �i = 0 when i 62 I , �i = 1 when i 2 I . If y 2 At

there exists a z 2 A that di�ers from y in at most t
p
f(b) coordinates of I

though at arbitrary coordinates outside of I . Let y0 agree with y on I and
agree with z outside of I . By the certi�cation h(y0) � b. Now y0; z di�er in
at most t

p
f(b) coordinates and so, by Lipschitz,

h(z) > h(y0)� t
q
f(b) � b� t

q
f(b)

but then z 62 A, a contradiction. So Pr[X > b] � 1� Pr[At] so from 2.

Pr[X < b� t
q
f(b)] Pr[X � b] � e�t

2=4

As the right hand side is continuous in t we may replace < by � giving the
Corollary. 2
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Applications of Talagrand's Inequality

Joel Spencer

March 1, 1995

Probability Theorems with application to probabilistic methods are rare
gems. One thinks of the Lov�asz Local Lemma, the Janson Inequalities,
Azuma's martingale inequality. In all those cases the results themselves
can be stated purely in the language of (mostly) elementary probability
theory. There strength is in their applicability. They are convenient tools {
one needn't go back to the original proofs of these results. They �t many
naturally occuring problems and their application requires only relatively
straightforward calculations. A new inequality due to Michel Talagrand
([7], esp. equation (1.3)) seems also in that mode. In [8] Talagrand himself
gives numerous applications of his inequality, mostly to random structures
per se. Here we discuss applications involving probabilistic methods.

In x1 we state, without proof, Talagrand's Inequality. We then give a
consequence of it in a form that seems particularly useful. We also give
some technical results that will allow for easier applicability. In x2,3,4 we
give three separate applications. In all cases these are known results with
new and, we believe, simpler proofs.

1 Talagrand.

Let 
 =
Qw
i=1 
i be a product probability space, we write xi for the ith

coordinate of an x 2 
. For A � 
 and t an arbitrary positive real we
de�ne At by saying y 2 At if and only if for all �1; . . . ; �w there exists an
x 2 A with

X
xi 6=yi

�i < t

0
@ X
1�i�w

�2i

1
A
1=2

(1)

Talagrand's Inequality:

Pr[A](1� Pr[At]) � e�t
2=4 (2)
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