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t ! 1. Kim shows that the solutions a(t); b(t); c(t) given above remain
asymptotically valid up to t = n , for  a small but absolute constant.
To be sure, this is considerably more di�cult then showing validity for a
�nite time interval. The �rst method is not strong enough for this, he uses
(basically) the second approach. Keeping bounds on the error terms brought
on by the randomness requires mastery of the martingale inequalities. At
t = n some cn3=2 ln1=2 n edges have been accepted to G. A random graph
with this many edges has no independent set of size k = Cn1=2 ln1=2n. To be
sure, this graph is anything but random. Still Kim shows that for any k-set
S the probability that S remains independent is basically what it would be
were G random. This yields the solution to a sixty year old problem, the
asymptotics of R(3; k).
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denote the number of triangles containing e in S, and for e = fi; jg 2 S

and designated i let N(e; i) denote the number of k with fi; kg 2 S and
fj; kg 2 G. (In this case we call fi; jg; fi; kg a cherry { if one is born the
other dies.) Suppose that for every i

degS(i) � a(t)n

and for every e = fi; jg 2 S

deg�(e) � b(t)n

N(e; i) � c(t)n1=2

Now add an in�nitesmal time dt and consider expectations. Each surviving
e is in � 2c(t)n1=2 cherries (half from each end) so with probability 2c(t)dt
one of the other edges will be born and so e dies with probability 2c(t)dt.
Of the a(t)n edges containing a given i an expected 2a(t)c(t)ndt die. Thus

a0(t) = �2a(t)c(t)

Similarly of the b(t)n triangles containing e an expected 2b(t)(2c(t)dt) will
be \destroyed" in that one of their edges will be born so

b0(t) = �4b(t)c(t)

Of the c(t)n1=2 cherries containing e at i, 2c2(t)n1=2dt will be lost by hav-
ing the other edge die but b(t)n1=2dt new cherries are created when an old
triangle containing e has the edge not through i born. Thus

c0(t) = �2c2(t) + b(t)

Further at time zero S is the complete graph so we have initial conditions
a(0) = 1 = b(0), c(0) = 0, yielding a unique solution. This has a nice
solution in terms of G(t) given by 18. Then

a(t) = e�G(t)
2

= G0(t) b(t) = a(t)2; c(t) = G(t)a(t) (19)

At time t proportion a(t) of the pairs are surviving so 1
2n

1=2a(t)dt pairs are

accepted by time t+dt so the expected total edges in Gt is 1
2n

3=2
R t
0 a(x)dx =

1
2n

3=2G(t).
All this is lead in to our exciting �nish. Jeong Han Kim [14] has found

(up to constants) the asymptotics of R(3; k). He has improved the Erd}os

lower bound to R(3; k) > c k2

lnk . Reversing parameters he shows the existance
of a trianglefree graph G on n vertices with no independent set of size
k = Cn1=2 ln1=2 n. The method (at least from this author's vantagepoint) is
to consider dynamically the random trianglefree graph as described above.
At time t it has � 1

2n
3=2G(t) edges. From 18 one sees G(t) � ln1=2 t as
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with fi; kg; fj; kg already in G { so that it would be accepted if born now.
Let S = St be the graph of surviving pairs. Let gn(c) be the probability
that any particular e (they all look alike) is surviving at time t.

We de�ne a continuous time branching process that will mirror the fate
of e above. Begin at time c with a single \Eve". Split [0; c] � [0; c] into
in�nitesmal squares [x; x + dx] � [y; y + dy]. With probability dx � dy Eve
gives birth to twins with birthtimes x; y. Equivalently, Eve gives birth to X
pairs of twins with X having Poisson distribution with mean c2 and given
the number of births all birthdates are independent (twins are not born at
the same time) and uniform in [0; c]. A child born at time x then gives birth
by the same process in [0; x]� [0; x]. A rooted tree T is thus generated and
it can be shown that with probability one T is �nite. We call vertices of T
surviving or dying as follows. All childless vertices are surviving. A vertex
is dying if and only if it has a (at least one) birth where both twins are
surviving. Working up from the leaves of the tree every vertex of T is so
designated. Let g(c) denote the probability that the root Eve survives.

We give a rough argument that limn!1 gn(c) = g(c). For e = fv; wg we
look at those u for which xvu � c and xwu � c. There are n � 2 potential
u, each independently has this property with probability (cn�1=2)2, so the
number is asymptotically Poisson with mean c2. Given that, the actual
birthtimes are uniform in [0; c]. We then consider uv; uw twins of e = vw.
We continue this process building up a tree. The analogy fails if some edge
is child to two edges but this can be shown to occur with probability o(1).
Working backwards from the leaves one sees that an edge f is placed in G
exactly when, considered as a vertex of T , it survives as described.

We �nd g(c) by a di�erential equation. The di�erence g(t)� g(t+ dt) is
the probability that Eve has no twins both born before t (probability g(t))
then has a pair of twins one of which is born in [t; t+dt) (probability 2t �dt)
and then they both survive. The twin born in [t; t+dt) has probability � g(t)
to survive. The other is born uniformly in [0; t] so its expected probability
to survive is the average of g(x) over the interval. This yields the di�erential
equation

g0(t) = �2tg2(t)
1

t

Z t

0
g(x)dx (16)

or, setting G(t) =
R t
0 g(x)dx,

G00(t) = �2(G0(t))2G(t) (17)

With initial conditions G(0) = 0 and G0(0) = g(0) = 1 this has a unique
solution given implicitly by

t =
Z G(t)

0
ex

2
dx (18)

Here is a second approach to the same result. At a given time t let degS(i)
denote the number of neighbors of vertex i in S, for e = fi; jg 2 S let deg�(e)
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A's mutually independent we replace this with
P

Pr[Ai1 ] � � �Pr[Ais ]. This
sum over all i1; . . . ; is 2 f1; . . . ; mg is precisely �s and each desired term has
been counted s! times. 2.
Krivelevich's Proof: Let G � G(n; p) with p = �n�1=2 and set k =
Kn1=2 lnn with � = :1 and K = 106 for de�niteness though any moderately
small � and very large K would do. Let F be a (any) maximal family of
edge disjoint triangles of G and let G� = G�

S
F , i.e., G with all edges of

all triangles of F removed. G� is certainly trianglefree. For any k-set of ver-
tices S the number XS of edges of GjS has Binomial Distribution B(

�k
2

�
; p).

Elementary large deviation results give

Pr[XS �
1

2
p

 
k

2

!
] < (0:9)(

k

2)p

and since (estimating
�k
2

�
� 1

2k
2 and

�n
k

�
� nk)

 
n

k

!
(0:9)(

k

2)p <
h
n(0:9)pk=2

ik
� 1

almost surely all S have at least 1
4pk

2 � 1
4�K

2n1=2 ln2 n edges. Again �x S

and consider all potential triangles efg (listing the edges) with e � S. For
each let Aefg be the event that they all lie in G so that Pr[Aefg] = p3. There

are
�k
2

�
(n� k) +

�k
3

�
� 1

2k
2n such events so

� =
X
e�S

Pr[Aefg] �
1

2
k2np3 = k

�
1

2
�3K2 lnn

�

Events Aefg are mutually independent when their edge sets are disjoint.
From the Lemma above the probability that there are 3� edge-disjoint tri-
angles efg in G with e � S is less than �3�=(3�)! and as 

n

k

!
�3�

(3�)!
< nk(0:95)3� <

h
n(0:95)

3
2 �

2K2 lnn
i
� 1

almost surely for every S there are less than 3� such triangles and thereforeS
F will have less than 9� edges in S. Having picked �;K so that 9� < 1

2p
�k
2

�
the elimination of these edges makes no S independent. Thus R(3; k) > n
or, reversing variables, R(3; k) = 
(k2= ln2 k). 2

We improve this classic result by thinking dynamically.
Consider the following random dynamic process to form a trianglefree

graph G on vertices 1; . . . ; n. To each pair e = fi; jg assign a birthtime
xe 2 [0; n1=2], independently and uniformly. At time zero G is empty. When
e is born it is added to G if its addition does not create a triangle. We say
e is accepted in that case, rejected otherwise. Let Gt denote G at time t.
A pair fi; jg is surviving at time t if it has not been born and there is no k
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Certainly the above argument needs work to be made formally correct.
But suppose its correctness and now consider a vertex v. Let g(T ) be the
probability that v 2 LT . We get 14 as before so that g(T )! 0. But in each
in�nitesmal time interval [t; t+dt) the probabilities that v is in a newly born
E and that v is killed o� are in the ratio yv to 1� yv { i.e., conditioning on
v 2 Lt+dt�Lt, Pr[v 2 E 2 Pt+dt] � yv . Thus Pr[v 2 E 2 PT ] � yv(1�g(T )).
Summing over all vertices v, the expected size

E[j
[
PT j] � (1� g(T ))

X
v

yv = (Q+ 1)(1� g(T ))
X
E

xE

so that as T !1 the expected size of PT approaches
P

E xE as desired.

2.2 Ramsey R(3; k)

The Ramsey function R(l; k) is de�ned as the minimal n so that any graph
on n vertices must contain either a clique of size l or an independent set
of size k. Existence of such n is Ramsey's Theorem itself. Asymptotics of
the Ramsey function (and its numerous generalizations) have been closely
linked with probabilistic methods from the beginning.
Theorem (Erd}os (1947)[6]: 

n

k

!
2�(k2) < 1 ) R(k; k) > n (15)

Proof. Take the random graph G � G(n; p) with p = 1
2 . Then

�n
k

�
2�(k2)

is the expected number of cliques and independent sets of size k. When
this number is less than one then with positive probability it is zero so that
R(k; k) > n. 2

Here we concentrate on l = 3 and the asymptotics as k! 1. The basic
upper bound, from the proof of Ramsey's Theorem, was R(3; k) �

�k+1
2

�
which was lowered to O(k2 ln lnkln k ) by Graver and Yackel [12] in 1968 and

then to O( k2

lnk ) by Ajtai, Koml�os and Szemer�edi [1] in 1980. A lower bound
R(3; k) > n means that there exists a trianglefree graph G on n vertices
with no independent k set. After a number of \false starts" a lower bound
R(3; k) = 
( k2

ln2 k
) was shown by Erd}os [7] in 1961. This paper displays a

remarkable combination of insight and technical skill. Over the decades, as
new techniques have emerged, a number of authors have reproven this result.
My own e�ort [20] in 1977 used the Lov�asz Local Lemma. Perhaps the most
elementary proof is due to Krivelevich[15], we repeat it here in essentially
complete form. We use an elementary and quite useful lemma from [10].
Lemma: Let A1; . . . ; Am be events with

P
Pr[Ai] = �. Then the proba-

bility that there exist s of the events, say Ai1 ; . . . ; Ais which are mutually
independent events and which all hold is at most �s=s!.
Proof. We bound

P
Pr[Ai1 ^ . . . ^ Ais ] over all such i1; . . . ; is. With the
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require all xE 2 f0; 1g this yields the packing P = fE : xE = 1g and the
solution, denoted by �, is the size of the maximal packing. Thus � � ��.
Kahn's Theorem: For all Q and all � > 0 there exists � > 0 so that if xE
is a feasible solution to the above system withX

v;w2E

xE < �

for all distinct v; w then there is a packing P with

jP j � (1� �)
X
E2H

xE

Roughly speaking, Kahn's Theorem says that under appropriate side
conditions � � ��. We shall indicate an argument for Kahn's Theorem by
creating an appropriate continuous time process. We are given the hyper-
graph H and the values xE. It will be convenient to set

yv =
X
v2E

xE

so that all yv 2 [0; 1]. Give each E independently a birthdate tE such that
given E has not been born by t its probability of being born in the next
in�nitesmal time dt is xEdt. Formally this is the exponential distribution,
Pr[tE > c] = e�cxE .

As with Pippenger's theorem we dynamically keep a set L = Lt and let
St (the surviving edges) be the restriction of H to Lt. Again if E 2 St is
born in in�nitesmal time interval [t; t+ dt) it is added to the packing P so
that Pt+dt = Pt[fEg. Now, however, we introduce the possibility of killing
a vertex v. For each v 2 Lt de�ne yv(t) =

P
v2E2St xE . We think of this as

the weighted degree of v at time t. Set f(t) = (1 + Qt)�1 as before. Now
we kill v in the time interval [t; t + dt) with probability (f(t) � yv(t))dt.
(If this is negative v is not killed.) Killing v means v is removed from L

so Lt+dt = Lt � fyg and therefore all E 2 St containing y are no longer
surviving. The claim now is that at time t most v have

yv(t) � f(t)yv

As f(0) = 1 this holds for t = 0, now assume it holds for t. Any w 2 Lt is
part of a newly born (in [t; t+ dt)) E with probability yw(t)dt and is killed
with the compensating probability (f(t)� yw(t))dt so it is removed from L

with probability f(t)dt. Given that v itself remains in L each of its edges
E has probability Qf(t)dt of having a vertex lost, which would subtract
xE from deg(v). Then the expected total loss in the weighted degree is
yv(t)(Qf(t)dt) � Qyvf

2(t)dt. Since f(t) satis�es 12 the expected new value
of the weighted degree is � yvf

2(t + dt) as desired.
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Now let g(t) be the probability that v 2 Lt. Given v 2 Lt it has probability �
f(t)dt of being in an edge now placed in P so that g(t+dt) � g(t)(1�f(t)dt).
Letting h(t) = ln g(t) we have h(t+dt) � h(t)� f(t)dt and h(0) = 0 so that

g(c) = eh(c) = e�
R c
0
f(t)dt = (1 + Qc)�1=Q (14)

matching the previous results.
This approach has advantages and disadvantages. The main disadvan-

tage is the di�culty of proving its validity. As the random process continues
there will be more and more variance from expected behavior. It must be
shown that the accumulated errors do not overwhelm the actual values. In
essense we are dealing here with a stochastic di�erential equation. Indeed,
proofs that the solution to this equation accurately portrays the situation
look much like the original R�odl nibble. To examine the situation at t = c

we split the time interval into c��1 intervals of some very small length �.
(Each time interval � is a nibble.) With � very small the solution to the
corresponding di�erence equation is close to the solution of the di�erential
equation. Suppose in time � the expected change of a degree is some �D

with �; � comparable. Roughly speaking the variance in that change will go
like (�D)1=2. We need D� � 1 so that the variance is small compared to
the expected change.

A big advantage of this approach is that it can be extended past any �nite
time. Consider the Erd}os-Hanani as a (Q+ 1)-uniform hypergraph on v =
�(nk) vertices , regular of degree D = �(nk�l) with all codegrees O(D=n).
At �nite time T the proportion of uncovered vertices (l-sets in the original
formulation) is O(T�1=Q) for T large. Now suppose the di�erential equation
can be shown to remain valid up to time n for some positive constant .
Then we get an improvement on R�odl's Theorem. The dynamic algorithm
then gives a packing so that the proportion of uncovered l-sets is O(n

0

) for
a calculatable positive constant 0. It isn't so easy { extending the range of
validity of the di�erential equation to T a function of n requires great care
with the errors introduced from all sources. However, this approach has
been used with success by N. Wormald [21] and, independently, D. Grable
[11].

A generalization of Pippenger's Theorem has been given by J. Kahn in
unpublished work. Let H be a (Q + 1)-uniform hypergraph. Consider the
following linear programming problem on real variables xE , E ranging over
the edges of H .

maximize
P

E2H xE
given

P
v2E xE � 1 for all v 2 V (H)
and all 0 � xE � 1

A feasible solution to the above system is called a fractional packing. We
let �� denote the solution to this linear programming problem. If we also

9



Together with the initial condition g(0) = 1 this has the unique solution

g(c) = (1 + Qc)�1=Q (11)

As limc!1 g(c) = 0 this gives a proof of R�odl's Theorem.
One can put these results into a more general (and perhaps more natural)

context. Let H be a Q+ 1-uniform hypergraph on v vertices. Suppose H is
nearly regular in the sense that deg(e) � D for every vertex e where D!1.
De�ne the codegree of e; f to be the number of edges containing them both
and assume that all codegrees are o(D). (Formally, we may consider an
in�nite sequence of such hypergraphs, Q �xed, with asymptotics de�ned as
the structures become bigger.) N. Pippenger (as given in [17]) has shown
that under these circumstances there exists a packing P of � v=(Q + 1)
disjoint edges. To translate the Erd}os-Hanani situation into this context
create a hypergraph Hn whose vertices are the l-element subsets of 
 =
f1; . . . ; ng and whose edges are fe � E : jej = lg for each k-set E � 
.
Then Q + 1 =

�k
l

�
, H is regular with D =

�n�l
k�l

�
and the codegrees are all

O(nk�l�1) = o(D). The proof of Pippenger's generalization via continuous
time branching processes is essentially as before. Now we give each edge
E a birthdate unifromly distributed in [0; D]. Again given a vertex e and
time c we generate a tree T to determine if e is covered. Again the analogy
may fail and the condition on the codegrees turns out to be precisely what
is neded to show that this occurs with probabiity o(1).

Now, sticking with the hypergraph format, we describe another means
toward the same end. Again we have a Q + 1-uniform hypergraph with all
deg(v) � D and all codegrees o(D), to each edge E we assign a uniformly
distributed birthdate xE 2 [0; D] and let P = Pt be the packing at time t.
Let L = Lt be the complement of

S
P . Let S = St (for surviving) be the

restriction of H to Lt. Let degt(v) denote the degree of v in St, de�ned for
v 2 Lt. The idea now is to �nd a function f(t) so that almost surely most
degt(v) � f(t)D.

Suppose there is such a function f(t). Consider the evolution of S from t

to t+dt with respect to a vertex v 2 Lt. Most w 2 Lt lie in � f(t)D edges of
St and each edge is born with probability dt=D (and if born it is added to P )
so with probability � f(t)dt w is removed from L. Consider an edge E 2 St
containing v. Conditioning on v itself remaining in L there is probability
� Qf(t)dt that E 62 St+dt as any of the other vertices could be removed.
Thus the degree of v will drop by an expected amount (f(t)D)(Qf(t)dt),
giving degt+dt(v) � D(f(t)�Qf2(t)dt). This yields the di�erential equation

f 0(t) = �Qf2(t) (12)

for f which, given the initial condition f(0) = 1, has the unique solution

f(t) = (1 + Qt)�1 (13)
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birth are called wombmates. (Littermates is the biologist's term for animals
but English lacks a word for humans except when Q = 2. Note \siblings"
is quite di�erent.) The children are born mature and have births by the
same random process as do their children and so forth. A rooted tree T is
thus generated and it can be shown that with probability one T is �nite.
We call vertices of T surviving or dying as follows. All childless vertex are
surviving. A vertex is dying if and only if it has a (at least one) birth all
of whose wombmates are surviving. Working up from the leaves of the tree
every vertex of T is so designated. Let g(c) denote the probability that the
root Eve survives.

We claim that the limit (as n!1) of the probability e is not covered is
g(c). To see (informally) the mirror �x an l-set e and start at time c, time
going backwards. Identify e with Eve. When a k-set A � e is born consider
this a birth of the Q l-sets f � A, f 6= e. There are

�n�l
k�l

�
potential births so

in in�nitesmal time dt there is probability dt of having such a birth. (The
total number of births is given by a Binomial distribution and a central
aspect of the asymptotics is estimation of the Binomial by the Poisson.)
Once f has been born the birth of a k-set B � f is considered as a birth
of the Q l-sets g � B, g 6= f . A tree T is thus generated. (Actually, it
may happen that a k-set A is born which contains two (or more) l-sets f
in which case our analogy fails. This, however, can be shown to occur with
probability o(1).) T determines if e is covered. If T consists only of root e
then no A � e were born so e is not covered. We show by induction on the
size of T that e is not covered if and only if it survives in T as de�ned above.
If e survives then for every A � e there is an f � A, f 6= e that does not
survive. The rooted subtree at f is the tree generated starting at f at time
xA. By induction f did not survive so there was a B � f with xB < xA that
was added to P . Then at time xA A was not added to P . This holds for all
A so e is not covered at time c. Inversely if e does not survive then there is
an A � e so that all f � A, f 6= e, do survive. By induction at time xA no
such f has been covered. Either e is already covered or A is now placed in
P , so e is covered by or at time xA, either way e is covered by time c.

Now we can focus attention on g(c), a totally continuous problem for
which the pesky n has disappeared. We consider this a function of c and
compare g(c) with g(c + dc) for in�nitesmal dc. The di�erence in Eve's
survival chances are if she had no births up to time c for which all children
survived but then has a birth in the time interval [c; c+ dc) for which all
children survive. Thus g(c)� g(c+ dc) is roughly g(c)(dc)g(c)Q, reecting
the three factors. This can be made precise (we've skipped the necessary
�rst step, showing that g(c) is continuous) and g can be shown to satisfy
the di�erential equation

g0(c) = �g(c)Q+1 (10)
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2 Dynamic Algorithms

2.1 Asymptotic Packing

For 2 � l < k < n let m(l; k; n) be the maximal size of a family of P of
k-element subsets of an n-set 
 such that every l points lie in at most one
A 2 P . Such P are naturally called packings. Our concern will be for l; k
�xed, n!1. Elementary counting gives

m(l; k; n)�

�n
l

�
�k
l

� (8)

with equality if and only if there is a design with every l points lying in
a unique A 2 P . For l = 2; k = 3 these are the famous Steiner Triple
Systems and for l = 2 and any �xed k now classic results of R. Wilson
give asymptotic necesary and su�cient conditions for the existence of such
designs. The situation for l > 2 is much less well understood. In 1961 Paul
Erd}os and Haim Hanani [8] asked whether 8 holds asymptotically { i.e.:

lim
n!1

m(l; k; n)

�k
l

�
�n
l

� = 1 (9)

This conjecture was proven by V. R�odl [18] in 1985 by a technique often
called the R�odl nibble.

Recent years have seen a reevaluation of R�odl's Theorem from the view-
point of random dynamic algorithms. Take all

�n
k

�
k-sets and order them

randomly. Now create a packing P dynamically, beginning with P = ;. We
consider the k-sets E in order. We add E to P if possible. More precisely,
E is added to P if and only if there is no F already in P overlapping E in
at least l points. This certainly will create a packing P but the real result
is that P will have expected size as desired.

We turn this into a continuous time dynamic process as follows. To each
of the

�n
k

�
k-sets E we assign a birthtime xE . The xE are chosen indepen-

dently, each a uniformly chosen real number in [0;
�n�l
k�l

�
]. (This choice of

interval length will make calculations convenient shortly.) Time starts at
zero with P = ;. When E is born it is added to P if possible, as before. Of
course, the E are considered in random order so that the �nal value of P
has the same distribution as before. We consider Pc, the value of P at time
c, where c is a �xed real. We say an l-set e is covered at time c if e � E for
some E 2 Pc. We now want the probability e is so covered.

We de�ne a continuous time branching process that mirrors the fate of
e above. Begin at time c with a single \Eve". Time goes continuously
backwards to zero. Eve gives birth with a unit density Poisson process {
in in�nitesmal time dt she has probability dt of giving birth. All births
are to precisely Q children where Q =

�k
l

�
� 1, the children in the same
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of H . Then the distribution �(Hp) satis�es the concentration 4. Somewhat
more generally suppose for each 1 � i < j � n there is a pij 2 [0; 1] and
consider the random graph G with i; j adjacent with probability pij , the
adjacencies mutually independent events. Again, for any choice of pij and
any vertex Lipschitz X the random variable X(G) satis�es the concentration
4.

We call graph function X edge Lipschitz if changing any single edge
(from in to out or out to in) can change X(G) by at most one. Set m =

�n
2

�
.

We can decompose G � G(n; p) as the product of m Binary choices so that
Azuma's Inequality gives

Pr[jX(G)� �j � �m1=2] < 2e��
2=2 (5)

where � = E[X ]. Bollob�as [4] used this to give a remarkable bound on the
clique number !(G). Fix p = 1

2 for de�niteness. Set Yk equal the number of
k-cliques and

f(k) = E[Yk] =

 
n

k

!
2�(k2)

Elementary analysis shows that f(k0) > 1 > f(k0 + 1) for k0 � 2 log2 n
and, for k � k0, f(k+ 1)=f(k) = n�1+o(1). As Pr[!(G) � k] � E[Yk] almost
surely !(G) < k0+2. Now set k� = k0�3 so that f(k�) > n3�o(1). Bollob�as
showed

Pr[!(G) < k�] < 2cn
2 ln�8 n (6)

This is \near" best possible in that with probability 2�cn
2

the graph has no
edges whatsoever. To prove this set X equal to the maximal size of a family
of edge-disjoint cliques of size k�. Note X = 0 if and only if !(G) < k� and
that X is edge Lipschitz. From less modern (though nontrivial) probabilistic
methods one can show � = E[X ] > cn2 ln�4 n. Now 6 follows from 5 by
setting � = �m�1=2. Its interesting to note that the same result (with a
di�erent power of ln n in the exponent) can be derived directly from the
Extended Janson Inequality. From this Bollob�as showed that the chromatic
number �(G) was almost surely � 2 log2 n.

We conclude with a variant of Azuma's Inequality used in the work
J.H. Kim discussed in x2.2. Let Ii, 1 � i � m, be mutually independent
identically distributed indicator random variables with E[Ii] = p. (E.g., Ii
is the indicator for the i-th edge in G(n; p).) Let X be a function of the
Ii (e.g., a graph function) such that changing Ii can change X by at most
ci. Set � = [p

P
c2i ]

1=2. (If X =
P
ciIi then V ar[X ] < �2 and � is like a

standard deviation.) Then

�max(ci) � 2�2 ln 2 ) Pr[jX � E[X ]j � �] < 2e��
2=4�2 (7)

For p = o(1) this is much tighter that the basic Azuma bound and the use of
the ci allows a clear sense of the weighting of inuences of di�erent potential
edges.
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1.2 Martingale Inequalities

Martingales have a long history in probability theory but their usefulness in
our context is quite new. We refer to Colin McDiarmid's excellent survey
[16] at this meeting for a more detailed examination. For our purposes we
consider a martingale to be a sequence X0; . . . ; Xm of random variables (on
a common space) so that for any 0 � i < m and value a E[Xi+1jXi = a] = a.
We further assume X0 = �, a constant. Then � = E[Xi] for all i.
Azuma's Inequality: Let � = X0; X1; . . . ; Xm = X be a martingale in
which jXi+1 �Xij � 1. Then

Pr[X > �+ a] < exp(�a2=2m) (3)

In application we use an isoperimetric version. Let 
 =
Qm
i=1 
i be a

product probability space and X a random variable on it. Call X Lipschitz
if whenever !; !0 2 
 di�er on only one coordinate jX(!)�X(!0)j � 1. Set
� = E[X ].
Azuma's Perimetric Inequality: Pr[X � �+ a] < e�a

2=2m.
The connection is via the Doob Martingale, Xi(!) being the conditional

expectation of X given the �rst i coordinates of !. The same inequality
holds for Pr[X � �� a].

E. Shamir and this author [19] applied this result to the chromatic num-
ber �(G) of the random graph G � G(n; p). (Again [2] gives a general
discussion.) Let 
 be the probability space, whose vertices, i.e., graphs,
may be thought of as Boolean arrays of length

�n
2

�
. Let X : 
 ! Z be

chromatic number. For 2 � i � n let 
i be the restriction of the graph to
the pairs fj; ig; 1 � j < i. We may think of 
i as i � 1 values of the full
Boolean array or as the \information" about vertex i looking to the \left".
Now X is Lipschitz since we can make any change to the edges involving
vertex i and it can only increase X by at most one since we can always give
i a new color. This yields a strong concentration result:

Pr[j�(G)� �j � �(n� 1)1=2] < 2e��
2=2 (4)

so that, roughly, the chromatic number is concentrated within n1=2 of its
expectation. An oddity of this method is that it does not by itself give the
value of the expectation, it only deduces that the random variable is tightly
concentrated around its expectation.

We can generalize 4 considerably. We call a graph function X vertex
Lipschitz if changing the edges at one vertex can only change X(G) by
at most one. Then 4 holds with � replaced by any vertex Lipschitz X .
Further we can alter the probability measure (holding to the set of graphs
on f1; . . . ; ng as our objects) as long as the component parts 
i are mutually
independent. For example, let H be a �xed (not necessarily random) graph
on f1; . . . ; ng and let Hp denote the random subgraph given by selecting
edges from H with independent probability p and selecting no edges outside

4



with � =
�n
3

�
p3 � c3=6. We bound � by noting that we only need consider

terms of the form Aijk ^ Aijl as otherwise the edge sets do not overlap.
There are O(n4) choices of such i; j; k; l. For each the event Aijk ^ Aijl is
that a certain �ve edges (ij; ik; jk; il; jl) belong to G(n; p), which occurs
with probability p5. Hence

� =
X

Pr[Aijk ^Aijl] = O(n4p5)

With p = c=n we have � = O(n�3) = o(1) and � = o(1) so that the Janson
Inequality gives an asyptotic formula

Pr[TF ] �M � e�
c3

6

This much could already be done in the original work of Erd}os and R�enyi
by calculation of moments. But the Janson Inequalities allow us to proceed
beyond p = �(1=n). The calculation � = o(1) had plenty of room. For
any p = o(n�4=5) we have � = o(1) and therefore an asymptotic formula

Pr[TF ] � M . For example, if p = �
�
(lnn)1=3=n

�
this yields that G(n; p)

has polynomially small probability of being trianglefree. Once p reaches
n�4=5 the value � becomes large and we no longer have an asymptotic
formula. But as long as p = o(n�1=2) we have � = O(n4p5) = o(n3p3) =
o(�) and so we get the logarithmically asymptotic formula

Pr[TF ] = e��(1+o(1)) = e�
n3p3

6 (1+o(1))

Once p reaches n�1=2 we lose this formula. But now the Extended Janson
Inequality comes into play. We have � = �(n3p3) and � = �(n4p5) so for
p� n�1=2

Pr[TF ] < e�
(�
2=�) = e�
(n

2p)

The Extended Janson Inequality gives, in general, only an upper bound.
In this case, however, we note that Pr[TF ] is at least the probability that
G(n; p) has no edges whatsoever and so, for n�1=2 � p� 1

Pr[TF ] > (1� p)(
n

2) = e�
(n
2p)

With a bit more care, in fact, one can estimate Pr[TF ] up to a constant in
the logarithm for all p. These methods do not work just for trianglefreeness.
In a remarkable paper Andrzej Rucinski, Tomasz  Luczak and Svante Janson
[13] have examined the probability that G(n; p) does not contain a copy of
H , where H is any particular �xed graph, and they estimate this probability,
up to a constant in the logarithm, for the entire range of p. Their paper
was the �rst and still one of the most exciting applications of the Janson
Inequality.
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We make the following correlation assumptions:
� for all i; S with i 62 S

Pr[Aij ^j2S Aj ] � Pr[Ai]

� for all i; k; S with i; k 62 S

Pr[Ai ^ Akj ^j2S Aj ] � Pr[Ai ^Ak]

Finally, let � be such that Pr[Ai] � � for all i.
The Janson Inequality: Under the above assumptions

M � Pr[^Ai] �Me
(1��)�

2 (1)

We set
� =

X
Pr[Ai];

the expected number of Ai that occur. As 1� x � e�x for all x � 0 we may
bound M � e�� and then rewrite the upper bound in the somewhat weaker
but quite convenient form

Pr[^Ai] � e��+
(1��)�

2

In most applications � = o(1) and the pesky factor of 1�� is no real trouble.
Indeed just assuming all Pr[Ai] �

1
2 is plenty for all cases we know of.

In many cases we also have � = o(1). Then the Janson Inequality gives
an asymptotic formula for Pr[^Ai]. When � � �, as also occurs in some
important cases, the above gives an upper bound for Pr[^Ai] which is bigger
than one. In those cases we sometimes can use the following:
The Extended Janson Inequality: Under the assumptions of the Janson
Inequality and the additional assumption that �(1� �) � �

Pr[^Ai] � e�
�2(1��)

2� (2)

In our application the underlying probability space will be the random
graph G(n; p). The events A� will all be of the form that G(n; p) contains a
particular set of edges E�. The correlation assumptions are then an example
of far more general result called the FKG inequalities. We have a natural
dependency graph by making A�; A� adjacent exactly when E� \ E� 6= ;.

Let us parametrize p = c=n and consider the property , call it TF , that
G is triangle free. Let Aijk be the event that fi; j; kg is a triangle in G.
Then

TF = ^Aijk ;

the conjunction over all triples fi; j; kg. We calculate

M =
�
1� p3

�(n3) � e��

2



Modern Probabilistic Methods in Combinatorics
Joel Spencer

The probabilistic method is a means to prove the existence of con�gurations
by showing that an appropriately de�ned random con�guration has a posi-
tive probability of having the desired property. The method is approaching
its golden anniversary, its beginning generally considered a three-page paper
by Paul Erd}os [6] in 1947. Closely aligned is the study of random graphs,
more generally random con�gurations, in which problems about probabilities
concerning random graphs are considered for their own sake. This topic be-
gan in 1961 with the monumental study of Paul Erd}os and Alfred R�enyi [9],
\On the evolution of random graphs". For many years the uses of probabil-
ity in these twin topics was surprisingly elementary, linearity of expectation,
variance and the Cherno� bounds could take a edgling researcher a long
long way. Recent years have seen more sophisticated uses of probability and
our emphasis here will be on the newer probabilistic methodologies and how
they are applied to these topics. We give our recent book [2] and the book
of Bollob�as [3] on Random Graphs as a general references.

1 Exponential Haystacks

1.1 Janson Inequalities

Let A1; . . . ; Am be events in a probability space. Set

M =
mY
i=1

Pr[Ai]

The Janson Inequality allows us, sometimes, to estimate Pr[^Ai] by M ,
the probability if the Ai were mutually independent. The original proof by
Svante Janson is in [13]. See [5] for a more \elementary" proof and [2] for
general discussion. We let G be a dependency graph for the events { i.e.,
the vertices are the indices i 2 [m] and each Ai is mutually independent of
all Aj with j not adjacent to i in G. (This notion was �rst used with the
Lov�asz Local Lemma. While the dependency graph is not uniquely de�ned
there is usually a clear candidate.) We write i � j when i; j are adjacent in
G. We set

� =
X
i�j

Pr[Ai ^ Aj ]

1


