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Abstract. The k -core of a graph is the largest subgraph with minimum degree at

least k . For the Erdős-Rényi random graph G(n, m) on n vertices, with m edges,

it is known that a giant 2-core grows simultaneously with a giant component, that
is when m is close to n/2 . We show that for k ≥ 3 , with high probability, a giant

k -core appears suddenly when m reaches ckn/2 ; here ck = minλ>0 λ/πk(λ) and

πk(λ) = P{Poisson(λ) ≥ k − 1} . In particular, c3 ≈ 3.35 . We also demonstrate
that, unlike the 2-core, when a k -core appears for the first time it is very likely

to be giant, of size ≈ pk(λk)n . Here λk is the minimum point of λ/πk(λ) and

pk(λk) = P{Poisson(λk) ≥ k} . For k = 3, for instance, the newborn 3-core contains
about 0.27n vertices. Our proofs are based on the probabilistic analysis of an edge

deletion algorithm that always finds a k -core if the graph has one.

1991 Mathematics Subject Classification. Primary 05C80, 05C85, 60C05; Secondary 60F10,
60G42, 60J10.

Key words and phrases. Random, graph, multigraph, core, branching process, deletion algo-

rithm, martingales, stopping times, estimates, phase transition.
* Research supported by the Australian Research Council.

Typeset by AMS-TEX

1



2 B. PITTEL, J. SPENCER, N. WORMALD

1. Introduction. The random graph process on n vertices is the probability
space of all the nested sequences of graphs

G(n, 0) ⊂ G(n, 1) ⊂ · · · ⊂ G(n, N),

N =
(
n
2

)
, with vertex set V = {1, . . . , n} , such that G(n, m) has m edges and

each sample sequence has the same probability, 1/N ! . In particular, the random
“snapshot” G(n, m) is uniformly distributed on the set of all

(
N
m

)
graphs with m

edges. An event Hn occurs in {G(n, m)} with high probability (whp) if PHn → 1
as n → ∞ . (It is understood that {Hn, n = 1, 2, . . . } is a sequence of events.)
According to a classic result by Erdös and Rényi [10] (see also Bollobás [4],  Luczak
[19], Janson et al. [14], and  Luczak et al. [22]), for large n the likely structure of
G(n, m) undergoes an abrupt change (phase transition) when m passes through
n/2. Namely, whp this is a birth time of a giant component, that is a component
of size of the order of n . More precisely, if m ≈ cn/2 and c > 1 then the giant
component whp contains about α(c)n vertices, where α(c) = 1− t(c)/c and t(c) ∈
(0, 1) is the smaller root of te−t = ce−c . Notice that α(1) = 0, so the percentage
of vertices in the giant component is low if c is close to 1 (from above).

Why is 1 the threshold value of c? A semiformal reasoning goes like this (cf.
Karp [17]). Fix a vertex v and consider a subgraph of G(n, m = cn/2) formed by
the vertices whose distance from v is at most ε log n . It can be proved that, for ε
sufficiently small and fixed, whp this subgraph can be looked at as a genealogical
tree of the first bε log nc generations in the Poisson(c) branching process. Such
a process either almost surely suffers extinction, or with positive probability (=
1 − t(c)/c) survives indefinitely, dependent upon whether c ≤ 1 or c > 1. So one
should expect that for c > 1—with probability α(c)—a generic vertex v belongs
to a giant component, and the average size of the component is about α(c)n .

For k ≥ 2, does a newborn giant component already contain a k -connected
subgraph? If not, how many additional edges later can one expect appearance of
such a subgraph? These questions are intimately related to the appearance of the
k -core, which was defined in [3] as the unique maximal subgraph with minimum
degree at least k . Even the question of the size of the first 2-core was not trivial.
This is just the length of the first cycle. Janson [14] derived the limiting distribution
of the first cycle size, thus showing that this size is bounded in probability as n
tends to infinity. Later Bollobás [6] (see also Bollobás and Rasmussen [7]) rederived
this distribution using the martingale techniques. Still later, Flajolet et al. [12]
showed the expected length of the first cycle to be asymptotic to n1/6 . (There
is no contradiction here: the tail of the limiting distribution F is such that the
corresponding expected value—

∫∞
0

xdF (x)—is infinite.)
For general k , the results have not been nearly this precise. Bollobás [3] es-

tablished whp the existence of a k -connected subgraph for m = cn/2 with 8 ≤
k + 3 ≤ c/2, c ≥ 67, indicating that no attempt was made to get the best bounds
his approach might deliver. The proof consisted of showing that (a) whp the k -
core exists, and (b) whp the k -core is k -connected. Pittel [27] proved that—for
every c > 1—the giant component contains a 2-connected subgraph of the likely
size ≈ β(c)n , with β(c) = (1 − t(c))α(c). This 2-connected subgraph cannot,
however, be expected to contain a 3-connected subgraph for each c > 1! Indeed,
 Luczak [18] proved that for c < 1.24 whp G(n, m = cn/2) does not contain a
subgraph of average degree at least 3. Define ck as the infimum of c′s such that
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G(n, m) (m ≥ cn/2) whp has a k -core. Then  Luczak’s result means that c3 ≥ 1.24.
Chvátal [8]—who introduced the notion of ck — was able to show that c3 ≥ 2.88,
and claimed that the same method yielded, for instance, c4 ≥ 4.52 and c5 ≥ 6.06.

More recently,  Luczak [20], [21] proved for every fixed k ≥ 3 that in the graph
process {G(n, m)} , whp the k -core, if present, is k -connected and contains at least
0.0002n vertices. (Being content apparently with establishing any linear bound,
 Luczak did not try to get the best bound his method could deliver.)

Using  Luczak bound, Molloy and Reed [25] were able to improve significantly
the existing bounds for c3, c4 and c5 , showing that c3 ∈ (3.35, 3.59), for instance.
The proof involved a computer-aided analysis of the recurrence equations which
described the mean–values behavior of a few thousand steps of an algorithm that
strips away vertices of degree < k .

Despite the progress, the question of exact values of ck and the likely sizes of k -
cores (k ≥ 3) for various values of c has so far remained open. In the present paper
we answer these questions, and in addition show that, unlike the 2-core, for k ≥ 3
the first k -core to appear is whp very large—with approximately pkn vertices, for
some constant pk which we determine. Our approach is based on probabilistic
analysis of a simple algorithm which, for a given graph, either finds a k -core, or
correctly diagnoses the absence of a k -core.

Here are our principal results. In the rest of the paper, k ≥ 3 is a fixed integer.

Given λ > 0, let Z(λ) denote a Poisson distributed random variable with mean
λ . Introduce pk(λ) = P{Z(λ) ≥ k} and πk(λ) = P{Z(λ) ≥ k − 1} . Define

(1.1) γk = inf{ λ

πk(λ)
: λ > 0}.

Since for k ≥ 3 the function λ/πk(λ) approaches ∞ as λ → 0 or ∞ , the infimum
in (1.1) is attained at a point λk > 0. Clearly, the equation

(1.2) c =
λ

πk(λ)

has no root for λ if c < γk . If c > γk there are two roots. Let λk(c) denote
the larger root; λk(c) is a continuous, strictly increasing function of c > γk and
λk := limc↓γk

λk(c) satisfies

(1.3) γk =
λk

π(λk)
.

Theorem 1. Suppose c ≤ γk − n−δ, δ ∈ (0, 1/2) being fixed. Let ε ∈ (0, 1) be
chosen arbitrarily small. Then the probability that G(n, m = cn/2) has a k -core
with at least εn vertices is O(exp(−nρ)), ∀ρ < (0.5− δ)∧ 1/6 . The probability that
there is a k -core of any size (≥ k + 1 , of course) is O(n−(k−2)(k+1)/2) .

Theorem 2. Suppose c ≥ γk + n−δ, δ ∈ (0, 1/2) being fixed. Fix σ ∈ (3/4, 1−
δ/2) and define ζ = min {2σ−3/2, 1/6} . Then with probability ≥ 1−O(exp(−nζ))
(∀ζ < ζ) , the random graph G(n, m = cn/2) contains a giant k -core of size
npk(λk(c)) + O(nσ) .
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Theorem 3. Denote pk = pk(λk) . Let σ ∈ (3/4, 1) be fixed. For every ε ∈
(0, pk) , the probability that a k -core of the random graph G(n, m) at any “time”
m ∈ (0, N) has size from [εn, pk(n− nσ)] is O(exp(−nζ)), ∀ζ < ζ .

Theorems 1 and 2 taken together imply that ck = γk . We see also that the ran-
dom birth time, mk , of a giant k -core is sharply concentrated (for large n) around
ckn/2: with subexponentially high probability mk is in [ckn/2 − n1−δ, ckn/2 +
n1−δ], ∀δ < 1/2. Combining Theorems 1, 2 and 3, we obtain that with subexpo-
nentially high probability the size of a newborn k -core is close to pkn . So, at a
random moment m ∼ ckn/2, we observe a sudden appearance (“explosion”) of a
giant k -core that already contains a positive fraction of all vertices, asymptotic to
pk . For c safely above ck , the fraction of vertices in the k -core is a continuous
function of c .

Numerically, c3 ≈ 3.35, p3 ≈ 0.27; c4 ≈ 5.14, p4 ≈ 0.43; c5 ≈ 6.81, p5 ≈
0.55. It can be easily shown that for large k

(1.4) ck = k +
√

k log k + O(log k).

It has been known,  Luczak [20], that

ck = k + O(k1/2+ε), ∀ε > 0.

Note. A recently discovered algorithm for generating minimal perfect hash func-
tions uses random r -uniform hypergraphs, in which the threshold of the appearance
of the r -analogue of a cycle is crucial (see Havas et al. [13], where rough estimates
on the threshold are derived). The problem of determining this threshold is very
similar to that for the k -core of a random graph. A more thorough analysis is
made by Majewski et al. [24], where it is shown that a constant analogous to γk

fits the experimental data very well. No attempt was made there to give a rigorous
argument, but the methods of the present paper could possibly be extended to do
the job.

The rest of the paper is organized as follows. In Section 2 we discuss a heuristic
connection between the deletion processes for the random graph and the genealog-
ical tree of the Poisson branching process. In Section 3 we describe the deletion
process for the random graph in full detail and prove that the resulting sequence
of states {w(τ)}τ≥0 is a Markov chain. (A state w is a (k + 1)-tuple whose com-
ponents are the numbers of vertices of various degrees and the number of edges
in the current graph.) Next (Section 4) we obtain the asymptotic approximations
for the one-step transition probabilities of the Markov chain, including the states
with the arbitrarily low number of light vertices. We then use these approxima-
tions (Section 5) to derive the asymptotic equations for the conditional expectations
E[w(τ + 1)|w(τ)] . These equations make it plausible that a corresponding system
of (k +1) differential equations has a solution which is whp followed approximately
by the sequence {w(τ)} , at least as long as the components of w(τ) remain large,
of order n that is. This is of course a rather general principle, but a formal jus-
tification is not easy in many important cases. Wormald [29] rigorously proved
this approximation property for the graph-related random processes, such as ours,
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under quite general conditions, and his results can be used in our case to get a clear
idea as to when the birth of a giant k -core should be expected. (The solution of
the differential equations is a particularly sharp approximation when the parameter
c is bounded away from the critical value ck .) However, the deletion process we
study is intrinsically difficult in that we need to analyze its almost sure behavior
also at the nearterminal moments τ when some of the components of w(τ) become
small, just of order O(1). (There is a certain analogy here with epidemic processes
in a large population triggered by just a few infected individuals, cf. Pittel [26].)
Fortunately, however, the differential equations for the deletion process have a pair
of remarkable integrals that involve the principal characteristics of w(τ). Using
this property, and the asymptotics for the transition probabilities, we construct in
Section 6 some auxiliary supermartingales of the exponential type, and the desired
probabilistic bounds follow then eventually from the Optional Sampling Theorem
for supermartingales.

2. Branching Poisson Process Connection. Let a graph G(V,E) be given.
Here is a simple algorithm that either finds the k -core in G or establishes its
absence. At the first round we delete all the light vertices, that is the vertices with
degree at most k−1; none of them may belong to a k -core. At the next round, we
delete all the light vertices in the remaining graph. And so on. The process stops
when either the remaining vertices are all heavy , that is each with degree at least
k , or no vertices are left after the last round. In the first case the remaining graph
is the k -core of the graph G ; in the second case a k -core does not exist.

Consider the fate of a vertex v ∈ V . If v is heavy it is not deleted in the first
round; it will stay after the second round as well provided that it has remained
heavy in the graph left after the first round. It is clear intuitively that even if v
is very heavy initially, it may be eliminated after several rounds if—in the original
graph G—there are too many light vertices dangerously close to v .

Let G be a sample point for the random graph G(n, m). Let p(n, m) denote the
probability that a fixed vertex v will survive the deletion process. Clearly, np(n, m)
is the expected size of the k -core. It is difficult to estimate p(n, m) rigorously via
analyzing the above algorithm. (Later we will achieve this goal by studying a less
radical algorithm that deletes at each step only the edges incident to one of the light
vertices.) Here is an admittedly loose attempt of such an analysis that suggests—
some serious gaps and leaps of faith notwithstanding— an intuitive explanation of
why the k -core appears when the number of edges passes through γkn/2. In the
light of the algorithm, and by analogy with the giant component phenomenon, we
should expect p(n, m) to be close to φ(c) := limj→∞ φj(c), c := 2m/n . Here φj(c)
is the probability that the progenitor of the genealogical tree for the Poisson(c)
branching process survives a deletion process applied to the first j generations
of that tree. In the first round of the process we delete all the members of the
j -th generation (if there are any) who have less than k − 1 children, i.e. the
descendants in the (j + 1)-th generation. (The degree of every such member is at
most k−1.) Next we delete the members of the (j−1)-th generation who have less
than k − 1 children that survived the first round. And so on, until we get to the
progenitor himself, who survives if at least k of his children survived the previous
rounds. To compute φj(c), introduce also ϕj(c) which is the probability that the
progenitor has at least k− 1 surviving children. Since each of the children survives
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with probability ϕj−1(c), independently of the other siblings, the total number of
surviving children is Poisson(cϕj−1(c)) distributed. Therefore, for j ≥ 1

(2.1)
ϕj(c) = P{Z(cϕj−1(c)) ≥ k − 1},
φj(c) = P{Z(cϕj−1(c)) ≥ k},

where ϕ0(c) := 1. There exists ϕ(c) = limj→∞ ϕj(c) since (ϕj(c))j≥1 is clearly
decreasing, and

(2.2)
ϕ(c) = P{Z(cϕ(c)) ≥ k − 1},
φ(c) = P{Z(cϕ(c)) ≥ k}.

If ϕ(c) > 0, with a notation λ = cϕ(c) the second equation in (2.2) becomes (1.2),
which is solvable iff c ≥ γk . (!) Thus, we are led to believe that limn→∞ p(n, m) = 0
if c < γk , and for c > γk

lim
n→∞

p(n, m) = φ(c)

= P{Z(λ) ≥ k} = pk(λ) > 0.

So any given vertex from V belongs to a k -core with probability close to pk(λ),
whence whp the core size has to be close to npk(λ). Leaving aside the probabilistic
bounds, that is what is claimed in Theorems 1 and 2! (This heuristic derivation
is inspired by Karp–Sipser’s probabilistic analysis of a greedy matching algorithm,
[16].)

We emphasize though that while the reasoning for the subcritical case c < ck

can be made rigorous, we do not see any way to do the same for the supercritical
case c > ck . Especially daunting would be to use the connection with the branching
process for a proof of the explosion phenomenon (Theorem 3).

3. The edge deletion process and its Markovian structure. Here is a
slowed down version of the deletion process that lies in the heart of our proofs. At
each step we form a list of all nonisolated light vertices of the current graph, select
a vertex i from this list at random uniformly, and delete all the edges incident to
i , thus making it isolated. The step is repeated so long as there are edges to be
deleted and the current set, H , of heavy vertices is nonempty. At the end, either
H 6= ∅ and so H is the vertex set of the k -core in the initial graph, or H = ∅ and
so there is no k -core.

The idea behind our choice of this particular deletion process is that hopefully its
work on the sample point of G(n, m) can be described by a Markov chain amenable
to asymptotic study. For this to happen, the state space of such a chain must be
sufficiently simple, far simpler than, say, the set of all graphs on V . Here is a
natural candidate for such a space: it consists of all (k + 1)-tuples of nonnegative
integers w = (v, µ), v = (v0, v1, . . . , vk−1), where vj is the number of light vertices
with degree j, (0 ≤ j ≤ k − 1), and µ is the total number of edges. Define

v := n− v0 − v where v :=
k−1∑
j=1

vj .
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The number of heavy vertices is then v . So we want to describe the deletion process
by the sequence {w(τ)} where w(τ) is the state after τ steps. Let us denote the
corresponding sequence of graphs by {G(τ)} . Now, G(0) = G(n, m), that is G(0)
is distributed uniformly on the set of all graphs with m edges. Consequently, given
the value of the whole tuple w(0), the conditional distribution of G(0) remains
uniform. For us to be able to get back to the sequence {G(τ)} , it would be decisively
important to have the same property for all τ , namely that G(τ) is uniform if
conditioned on w(τ). As we shall see shortly, the process {G(τ)} does have the
desired properties.

Note. As an alternative algorithm, at each step one can pick a nonisolated light
vertex at random uniformly and delete an edge chosen at random uniformly among
all the edges incident to the vertex. In yet another algorithm, each step consists
of deletion of an edge chosen at random uniformly among all the edges incident
to the light vertices of the current graph. Interestingly, neither of these appealing
schemes produces a sequence {w(τ)} that is Markov!

For a given graph G , introduce w(G) = (v(G), µ(G)) where v(G) = (v0(G), . . . ,
vk−1(G)), vj(G) is the total number of vertices with degree j , and µ(G) is the total
number of edges. Similarly define v(G) =

∑k−1
j=1 vj(G) (the number of non-isolated

light vertices) and v(G) = n − v0(G) − v(G). Given a (k + 1)-tuple w , define
G(w) = {G : w(G) = w} , and set h(w) = |G(w)| . Let us choose the initial graph
G from G(w) at random uniformly and start the deletion process. We obtain
a random graph sequence {G(τ)} defined for 0 ≤ τ ≤ T , where T is the total
number of the deletion steps (stopping time): either there are no heavy vertices in
G(T ), or, besides the isolated vertices, there are left only some heavy vertices. Let
{w(τ)} = {w(G(τ))} ; clearly, denoting w(T ) = w , we have either

v = 0,

or
v > 0 but v = 0.

We shall call such w terminal . For convenience we can extend both sequences,
setting G(τ) ≡ G(T ), w(τ) ≡ w(T ) for all τ > T .

The sequence {G(τ)} is obviously Markov. Given two graphs, G and G′ , and
τ such that P{G(τ) = G} > 0 and w(G) is not terminal,

(3.1) P{G(τ + 1) = G′|G(τ) = G} =
1

v(G)
,

v(G) being the total number of nonisolated light vertices of G , if G′ can be obtained
from G by deletion of the edges incident to one of the light vertices of G ; otherwise
the conditional probability is zero.

Proposition 1.(a) The sequence {w(τ)} is also Markov: for every nonterminal
w such that P{w(τ) = w} > 0

p(w′|w) := P{w(τ + 1) = w′|w(τ) = w}

=
1
v

h(w′)
h(w)

· v′0
k∏

j=0

(
v′j − δj0

uj+1

)
, (v′k := v′),(3.2)
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where u = {uj}1≤j≤k+1 is the solution of the system

(3.3)

vj =vj ′ − uj+1 + uj + δij , 0 ≤ j ≤ k − 1, (u0 := −1),

v =v′ + uk,

k+1∑
j=1

uj =i := µ− µ′,

provided that u ≥ 0 . If u � 0 then p(w′|w) = 0 . (In a transition G → G′ ,
the parameters uj (1 ≤ j ≤ k ) and uk+1 stand for the number of edges in G
connecting the chosen light vertex with the vertices of degree j , and of degree > k ,
respectively.)

(b) For every τ , conditioned on {w(ν)}0≤ν≤τ , the random graph G(τ) is dis-
tributed uniformly, that is for every {w0(ν)}0≤ν≤τ such that P{w(ν) = w0(ν);
0 ≤ ν ≤ τ} > 0,

(3.4) P{G(τ) = G|w(ν) = w0(ν); 0 ≤ ν ≤ τ} =
1

h(w0(τ))
, ∀G ∈ G(w).

Consequently, if a stopping time T adapted to {w(ν)}ν≥0 and w are such that
P{w(T ) = w} > 0, then

(3.5) P{G(T ) = G|w(T ) = w} =
1

h(w)
, ∀G ∈ G(w).

Proof of Proposition. Suppose that for some τ ≥ 0 the sequence {w(ν)}0≤ν≤τ

is Markov, with one-step transition probabilities defined by (3.2), and the relation
(3.4) holds. (This is definitely so for τ = 0: basis of induction.)

Then for every sequence of nonterminal w0(ν) = (v0(ν), µ0(ν)) (0 ≤ ν ≤ τ + 1)
such that P{w(ν) = w0(ν), 0 ≤ ν ≤ τ} > 0 and every G′ ∈ G(w0(τ + 1)) we have

P{G(τ + 1) = G′|w(ν) = w0(ν), 0 ≤ ν ≤ τ)

=
∑

G∈G(w0(τ))

P{G(τ + 1) = G′, G(τ) = G|w(ν) = w0(ν), 0 ≤ ν ≤ τ}

=
∑

G∈G(w0(τ))

(
P{G(τ + 1) = G′|G(τ) = G)

×P{G(τ) = G|w(ν) = w0(ν), 0 ≤ ν ≤ τ}
)

=
1

h(w0(τ))

∑
G∈G(w0(τ))

P{G(τ + 1) = G′|G(τ) = G}

=
1

h(w0(τ))v0(τ)
N(G′,w0(τ)),

(3.6)

where N(G′,w0(τ)) is the total number of graphs G from G(w0(τ)), with one
nonisolated vertex being marked, such that G′ is obtained from G by deleting
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all the edges incident to this light vertex in G . (In the derivation we have used
consecutively the Markov property of {G(ν)} , the induction hypothesis, and (3.1).)

It turns out that N(G′,w0(τ)) is the same for all G′ ∈ G(w0(τ + 1)). Here is
why. Set for simplicity of notations w = w0(τ), w′ = w0(τ + 1). To get from
G′ ∈ G(w′) back to G ∈ G(w) we (1) pick one of the isolated vertices of G′ , and
(2) insert some uj+1 edges between the chosen vertex and the set of the remaining
v′j − δj0 light vertices of degree 0 ≤ j ≤ k − 1 , and uk+1 edges joining the vertex
to the set of v′ heavy vertices of G′ . So uj+1 vertices now have their degrees
increased from j to j + 1, (1 ≤ j ≤ k).

∑
1≤j≤k+1 uj , the degree of the chosen

vertex in G , equals µ−µ′ , the increase of the total number of edges in the backward
transition G′ → G . For the given (k + 1)-tuple {uj} , the number of possibilities
for the second step is v′0

∏k
j=0

(
v′j−δj0
uj+1

)
, with v′k := v′ . As for the tuple {uj} ,

it must satisfy (3.3) since the resulting graph G must be such that w(G) = w ,
and the selected vertex has to be one of its nonisolated light vertices. (Consider
1 ≤ j ≤ k − 1 for instance. Insertion of the new edges results in appearance of uj

vertices with new degree j , and some uj+1 vertices with old degree j have now
degree j + 1. Also, if

∑k+1
s=1 us = i then the chosen vertex now has degree i .)

Therefore

N(G′,w0(τ)) = f(w0(τ),w0(τ + 1)),

f(w,w′) := v′0

k∏
j=0

(
v′j − δj0

uj+1

)
, (v′k := v′).

Thus the conditional probability on the left hand side of (3.6) depends only on
w0(τ) and w0(τ + 1), and consequently

P{w(τ + 1) = w′|w(ν) = w0(ν), 0 ≤ ν ≤ τ} = P{w(τ + 1) = w′|w(τ) = w}

=
1
v

h(w′)
h(w)

· f(w,w′).(3.7)

So, using the induction hypothesis, {w(ν)}0≤ν≤τ+1 is Markov, with one-step tran-
sition probabilities p(w′|w), (w nonterminal), given by (3.2). Furthermore, if
{w0(ν)}0≤ν≤τ+1 is such that P{w(ν) = w0(ν); 0 ≤ ν ≤ τ + 1} > 0 and w′ :=
w0(τ + 1) is nonterminal, then (denoting w = w0(τ)) for every G′ ∈ G(w′) ac-
cording to (3.6) we have:

P{G(τ + 1) = G′|w(ν) = w0(ν); 0 ≤ ν ≤ τ + 1}

=
P{G(τ + 1) = G′|w(ν) = w0(ν); 0 ≤ ν ≤ τ}
P{w(τ + 1) = w′|w(ν) = w0(ν); 0 ≤ ν ≤ τ}

=
h(w′)−1p(w′|w)

p(w′|w)

=
1

h(w′)
.

The induction proof is complete.
The proof of (3.5) is straightforward, and we omit it. �
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Notes. 1. The relations (3.2), (3.4) involve h(w) = |G(w)| . In the next section,
will be able to derive an asymptotic formula of h(w) for the relevant ws that is
sufficiently sharp for our purposes.

2. Using (3.3), we can transform the formula for f(w,w′) into

(3.8)
f(w,w′) =vi

k∏
j=0

v′j !
vj !

·

k−1∏
j=1

(
vj − δij

uj

)
v!

uk!uk+1!(v − uk − uk+1)!
,

where i = µ−µ′ =
∑k+1

s=1 us and vk = v . This formula may look more complicated,
but it will work just fine in our estimates. Without the factor

∏
j v′j ! , the last

product arises naturally if one wants to compute h(w′)f(w,w′) (the number of
transitions G → G′ (G ∈ G(w), G′ ∈ G(w′)), that is) in a forward fashion, via
counting ways to delete edges in G .

4. Asymptotics for h(w) and p(w′|w) . Let d = (d1, . . . , dn) be a sequence
of nonnegative integers with even sum, and ĥ(d) be the total number of labelled
graphs with degree sequence d . Then for w = (v, µ) we have obviously

(4.1) h(w) =
n!∏k

j=0 vj !

∑
d∈D

ĥ(d),

where vk = n−
∑k−1

j=0 vj = n− v0− v , and D = D(w) is the set of all nonnegative
n -tuples d such that

(4.2)

d1 = · · · = dv0 = 0,

dv0+1 = · · · = dv0+v1 = 1,

...............................,

d∑k−2
j=0 vj+1 = · · · = d∑k−1

j=0 vj
= k − 1,

d∑k−1
j=0 vj+1, . . . , dn ≥ k,

n∑
j=1

dj = 2µ.

For D to be nonempty, it is necessary that

(4.3)

t := 2µ− s ≥ kv,

s :=
k−1∑
j=1

jvj .

(If w = w(G) then s and t are the total degree of light vertices and the total
degree of heavy vertices of G , respectively.) No tractable precise formula for ĥ(d)
is known, but it turns out to be possible to estimate the sum in (4.1) sharply for
“likely” ws using the following asymptotic formula due to McKay and Wormald
[23].
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For r > 0, define Mr =
∑

1≤j≤n[dj ]r where [x]r = x(x − 1) · · · (x − r + 1),
(in particular, M1 = 2µ =

∑
j dj ), and dmax = max1≤j≤n dj . If M1 → ∞ and

dmax = o(M1/3
1 ) as n →∞ then

ĥ(d) =
(M1 − 1)!!∏n

j=1 dj !

· exp[− M2

2M1
− M2

2

4M2
1

− M2
2 M3

2M4
1

+
M4

2

4M5
1

+
M2

3

6M3
1

+ O(
d3
max

M1
)],(4.4)

where
(M1 − 1)!! = 1 · 3 · · · (M1 − 1).

In the case of bounded degrees, dmax = O(1), the relation yields a formula

(4.5) ĥ(d) = (1 + o(1))
(M1 − 1)!!∏

j dj !
exp(− M2

2M1
− M2

2

4M2
1

)

obtained earlier by Bender and Canfield [1]. Notice that

ĥ(d) ≤ (M1 − 1)!!∏n
j=1 dj !

always. So the exponential factor in (4.4) is at most one. (In fact, Bollobás [2]
rederived (4.5) by interpreting that factor as the probability that a certain random
pairing on the set {1, . . . ,M1} is graph-induced. McKay and Wormald also used
the probabilistic approach, which they considerably strengthened by using switching
operations on those pairings.)

Let us show —using (4.4)—that for ws likely to appear in the deletion process
the ds that dominate in the sum (4.1) are such that (4.4) reduces to (4.5), with
o(1) = O(n−1+ε),∀ε ∈ (0, 1).

Given w such that h(w) > 0, introduce G(w) the random graph distributed
uniformly on G(w). For a fixed b ∈ (0, 1/3) define

(4.6) Hn = Hn(b) := {G : dmax(G) ≥ nb or
∑

{heavy j}

d4
j (G) ≥ 2nE(Z4(c))},

(c comes from m = cn/2), and consider

g(w) := P{G(w) ∈ Hn}.

Suppose w′ is such that p(w′|w) > 0. Then h(w′) > 0, too. Deletion of the edges
incident to a randomly chosen light vertex of the random graph G(w) produces
a random subgraph G′ . We know that P{w(G′) = w′} = p(w′|w) > 0, and

so, conditioned on this event, G′ D≡ G(w′). So, there is a probability space that
accomodates both G(w) and G(w′) in such a way that G(w′) ⊂ G(w). Since the
property Hn is monotone increasing, we therefore obtain:

(4.7) g(w) ≥ g(w′), if p(w′|w) > 0.
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This means that the random sequence {g(w(τ))} is (almost surely) nondecreasing.
Clearly,

1
n
P{g(w(0)) ≥ 1

n
} ≤

∑
w

g(w)P{w(0) = w}

=
∑
w

P{G(w) ∈ Hn}P{w(G(n, m)) = w}

=P{G(n, m) ∈ Hn}.

Therefore

P{g(w(0)) ≥ 1
n
} ≤ nP{G(n, m) ∈ Hn}

≤ n(P1 + P2),(4.8)

where
P1 = P{dmax(G(n, m)) ≥ nb},

P2 = P

 ∑
{heavy j}

d4
j (G(n, m)) ≥ 2nE(Z4(c))

 .

To estimate the last probabilities, we use—in sequence—two conditioning tech-
niques.

First of all, the graph process {G(n, µ)}0≤µ≤m can be viewed as the multigraph
process {MG(n, µ)}0≤µ≤m conditioned on the event An = {MG(n, m)has no
loops and no multiple edges} . (At each stage of the multigraph process, an edge

is inserted between two vertices, i and j , drawn uniformly and independently of
each other, and of the previous edges; if i = j the multigraph gets a loop at
i .) Therefore, using P{U |V } ≤ P{U}/P{V } , and denoting by P ′

i the analogous
probabilities for MG(n, m), we can write

(4.9) Pi ≤
P ′

i

P{An}
= O(P ′

i ),

since

lim
n→∞

P{An} = lim
n→∞

((n
2)
m

)
m!2m

n2m
= exp(−c/2− c2/4) > 0.

(This reasoning repeats, in essence, an argument used originally by Chvátal [8] in a
similar context. As a proof tool, the random multigraph had been used implicitly
by Bollobás [2], and explicitly by Bollobás and Frieze [5].)

Secondly, d(MG(n, m)) := (d1(MG(n, m)), . . . , dn(G(n, M))) is clearly the ran-
dom sequence of occupancy numbers in the classic allocation scheme “2m distin-
guishable balls into n boxes”. So, using the Poissonization device, we have

d(MG(n, m))
D≡ (Z1, . . . , Zn),

conditioned on Sn :=
∑n

j=1 Zj = 2m , where Z1, . . . , Zn are independent copies
of Z(c), Poisson(c) distributed random variable. Since Sn is Poisson(nc), that is
Z(2m),

P{Sn = 2m} = P{Z(2m) = 2m}

= e−2m(2m)2m/(2m)! ≥ const m1/2.
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Therefore

(4.10) P ′
i = O(n1/2P ′′

i ),

where

P ′′
1 = P{ max

1≤j≤n
Zj ≥ nb},

P ′′
2 = P{

n∑
j=1

Z4
j ≥ 2nE(Z4(c))}.

By Chernoff’s inequality,

(4.11) P ′′
2 = O(e−α(c)n), α(c) > 0,

and

P ′′
1 ≤ nP{Z(c) ≥ nb}

= n
∑
r≥nb

e−ccr/r!

= O(exp{−bnb log n/2}).(4.12)

Combining the estimates (4.8)-(4.12), we obtain then

(4.13) P{g(w(0)) ≥ 1
n
} = O(e−nb

).

Thus, see (4.6), (4.7), with probability ≥ 1−O(e−nb

), the ws encountered in the
deletion process are such that

(4.14) g(w) ≤ 1
n

.

In other words,

h(w) = (1 + O(
1
n

))h1(w),

h1(w) : = |{G ∈ G(w) : d(G) ∈ D1}|.
Here the set D1 ⊂ D is specified by the additional restrictions

(4.15)
dmax ≤ nb,∑

{heavy j}

d4
j ≤ dn, d := 2E(Z4(c)).

Hence we may concentrate on the asymptotic behavior of h1(w). Now, from the
McKay-Wormald formula (4.4) and (4.15) it follows that

(4.16)

h1(w) = (1 + O(n−1+3b))
n!∏k

j=0 vj !

∑
d∈D1

ĥ1(d),

ĥ1(d) :=
(M1 − 1)!!∏n

j=1 dj !
exp(−λ/2− λ2/4),

λ :=
M2

M1
,
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if—in addition to requiring g(w) ≤ n−1 —we restrict ourselves to ws such that

M1(= 2µ(w)) ≥ an.

Here a > 0 is fixed, and arbitrarily small. We can afford this restriction since in our
subsequent proofs we will not be concerned about the moments t when µ(t) = o(n).
In fact, we go even further and concentrate on ws such that

(4.17)
v ≥ an,

t ≥ (k + a)v.

(compare with (4.3)). The double-conditioning technique quickly reveals that the
starting graph G(n, m) meets the conditions (4.17) with exponentially high prob-
ability, if

(4.18)
a < P{Z(c) ≥ k},∑
j≥k

jP{Z(c) = j} ≥ (k + a)P{Z(c) ≥ k}.

To obtain a sharp estimate of the sum in (4.16), we use a version of a close deriva-
tion done by Pittel and Woyczynski [28]. A key idea is that—just as G(n, m)—the
degrees of heavy vertices of the random graph G(w) must jointly behave like in-
dependent Poissons subject to the total sum condition, each bounded below by k ,
(c.f. Karp and Sipser [16]).

Introduce a family of v(:= n−v0−
∑

1≤j≤k−1 vj) independent random variables
Y1, . . . Yv , each being distributed as Poisson(Z(z)), conditioned on {Z(z) ≥ k} .
Explicitly,

(4.19)
P{Yj = r} =

P{Z(z) = r}
pk(z)

, r ≥ k,

pk(z) := P{Z(z) ≥ k}.

The parameter z > 0 is chosen such that

(4.20) vE(Y ) = t.

Such z = z(w) exists and bounded away from both 0 and ∞ , uniformly for all ws
satisfying (4.17). (z(w) is unique since E(Y1) = ze′k(z)/ek(z) is strictly increasing;
see (5.10).) Using Y1, . . . , Yv , we can write (see (4.16)):

∑
d∈D1

ĥ1(d) =
(M1 − 1)!!∏k−1

j=1 (j!)vj

(ek(z))v

zt
(4.21)

· E[exp(−λ/2− λ2/4);
∑

`

Y` = t,Y ∈ Υ],

ek(z) :=
∑
r≥k

zr/r!,



EMERGENCE OF A CORE. 15

where

λ =

∑k−1
j=1 j(j − 1)vj +

∑v
`=1 Y`(Y` − 1)∑k−1

j=1 jvj +
∑v

`=1 Y`

,

Υ := {y = (y1, . . . , yv) : max
`

y` ≤ nb,
∑

`

y4
` ≤ dn},

and we use the notation E[U ; A] = E[U1A] . It suffices to estimate sharply E[exp(−λ/2−
λ2/4);

∑
` Y` = t] , since (cf. (4.11),

(4.12))

(4.22) P{Y /∈ Υ} = O(e−nb

).

Furthermore, the distribution of λ is sharply concentrated around

(4.23) λ :=

∑k−1
j=1 j(j − 1)vj + vE(Y1(Y1 − 1))∑k−1

j=1 jvj + vE(Y1)
.

Indeed, using a large deviation theorem for the sums of i.i.d. random variables,
due to Cramér (see Feller [11], Ch. XVI, for instance), we have: uniformly for w
satisfying (4.17),

P{|
v∑

`=1

Y` − vE(Y1)| ≥ log n
√

n} = O[exp(−γ log2 n)],

P{|
v∑

`=1

Y`(Y` − 1)− vE(Y1(Y1 − 1))| ≥ log n
√

n} = O[exp(−γ log2 n)],

for some γ = γ(a) > 0. Thus

λ− λ = O(
log n√

n
)

with probability ≥ 1− exp(−γ log2 n). Consequently (see also (4.23)) the expecta-
tion in (4.21) equals

[1 + O(
log n√

n
)] exp(−λ/2− λ

2
/4)

·P{
v∑

`=1

Y` = t}+ O[exp(−γ log2 n)].(4.24)

Here, by (4.20) and a local limit theorem for the sum of lattice-type i.i.d. random
variables ([11], Ch. XVI)

(4.25) P{
v∑

`=1

Y` = t} =
1√

v · 2πVar(Y1)
[1 + O(

1
v

)],

uniformly for ws subject to (4.17). (To be sure, the quoted limit theorem is proved
under the only condition that Var(Y1) < ∞ , with the remainder term being simply
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o(1). However, an easy refinement of the argument establishes (4.25) under a
stronger condition E(Y 4

1 ) < ∞ . This condition obviously holds in our case, and
moreover—under (4.17)— E(Y 4

1 ) ≤ γ2(a) < ∞, 0 < γ3(a) ≤ Var(Y1) ≤ γ4(a) < ∞ ,
which leads to the uniformity of (4.25) for those ws.)

Putting together the relations (4.16), (4.21), (4.24) and (4.25) we obtain the
following result.

Proposition 2. Uniformly for w such that h(w) > 0 and the conditions
(4.14),(4.17) are met,

h(w) = [1 + O(n−1+3b + n−1/2 log n)] · n!(M1 − 1)!!

v!
∏k−1

j=1 (j!)vj vj !

· (ek(z))v

zt
exp(−λ/2− λ

2
/4)

· 1√
v2πVar(Y1)

;(4.26)

here Y1, z, pk(z), and λ are defined by (4.19),(4.20) and (4.23).

Corollary 1. Suppose that w is nonterminal, and h(w) > 0 . If w satisfies the
conditions (4.14), (4.17) and w′ is such that u = u(w,w′) ≥ 0 then

(4.27)
p(w′|w) =[1 + O(n−1+3b + n−1/2 log n)] ·

1 + O

k−1∑
j=1

(uj − 1)+

vj + 1


· q(w′|w),

where

(4.28) q(w′|w) :=

{ vi

v
P{Multin (i; p) = u}, if vi > 0,

0, if vi = 0.

Here u = {uj}1≤j≤k+1 is the solution of (3.3). Multin (i; p) stands for the multi-
nomially distributed random vector X = {X1, . . . , Xk+1} , with parameter (number
of trials) equal i = µ − µ′ , and the probability vector p = p(w) = {p1, . . . , pk+1}
of k + 1 possible outcomes in each trial given by

(4.29)

pj =
j(vj − δij)

2µ− i
, 1 ≤ j ≤ k − 1,

pk =
zkv

(2µ− i)(k − 1)!ek(z)
,

pk+1 =
zv

2µ− i
;

z is the root of the equation(4.20).
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Note. According to (4.19), (4.20),

vzk

(k − 1)!ek(z)
+ vz =vz

 zk−1

(k−1)! + ek(z)

ek(z)


=v

ze′k(z)
ek(z)

= vE(Y1) = t,

and
k−1∑
i=1

ivi + t = s + t = 2µ. (!)

Therefore
k+1∑
j=1

pj =
1

2µ− i
(s− i + t) = 1.

Also, for vi > 0, we have pj ≥ 0 (1 ≤ j ≤ k + 1); so {pj} is indeed a probability
distribution.

Proof of Corollary 1. Let Y ′
1 , z′, λ

′
be for w′ what Y, z, λ are for w . Since

‖w −w′‖ = O(1) as n → ∞ , uniformly for all w,w′ related via (3.3), it follows
from (4.17) that

|z′ − z| = O(
1
n

),

hence
Var(Y ′

1) = [1 + O(
1
n

)]Var(Y1),

λ
′

= [1 + O(
1
n

)]λ.

Next, introduce
fvt(y) = v log ek(y)− t log y, y > 0,

so that
(ek(y))v

yt
= exp[fvt(y)].

By (4.19) and (4.20),

d

dy
fvt(y)

∣∣∣∣
y=z

= v
e′k(z)
ek(z)

− t

z

=
1
z

[
v
ze′k(z)
ek(z)

− t

]
=

1
z

[vE(Y1)− t] = 0,

so that z is a stationary point of fvt(y). (It can be easily proved that fvt(z) =
min{fvt(y) : y > 0} .) Consequently,

fvt(z′)− fvt(z) =
1
2
fvt(z̃)(z′ − z)2

(z̃ is between z′ and z)

= O(n
1
n2

) = O(
1
n

).
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Therefore

fv′t′(z′)− fvt(z) = fvt(z′)− fvt(z)

+ (v′ − v) log ek(z)− (t− t′) log z

+ O

[∣∣∣∣log
ek(z′)
ek(z)

∣∣∣∣+
∣∣∣∣log

z′

z

∣∣∣∣]
= (v′ − v) log ek(z)− (t− t′) log z + O(

1
n

).

Here (see (3.3))
v − v′ = uk, t− t′ = kuk + uk+1.

(About t−t′ : in the transition w → w′ , the total degree of heavy vertices decreases
by kuk due to uk vertices of degree k becoming light, of degree k−1; an additional
decrease by uk+1 is due to some uk+1 vertices of degree > k that remain heavy,
but each now of degree smaller by one than before.) Thus

(4.30)

(ek(z′))v′

(z′)t′
÷ (ek(z))v

zt

= [1 + O(
1
n

)] ·
(

zk

ek(z)

)uk

zuk+1 .

Further, again using (3.2)

(4.31)

v!
∏k−1

j=0 (j!)vj vj !

v′!
∏k−1

j=0 (j!)v′j v′j !
=

 k∏
j=0

vj !
v′j !

 ·

k−1∏
j=0

(j!)−uj+1+uj+δij


(vk := v, v′k := v′)

= i!

 k∏
j=0

vj !
v′j !

 ·

k−1∏
j=1

juj

 ·
[

1
(k − 1)!

]uk

;

(u0 = −1, as we recall). Finally (see (4.17)),

(4.32)
(2µ′ − 1)!!
(2µ− 1)!!

= [1 + O(n−1)](2µ)−i = [1 + O(n−1)](2µ− i)−i.

Combining Propositions 1,2, the relations (3.8) and (4.30)-(4.32), and using (4.17),
we arrive at

(4.33)

p(w′|w) =
h(w′)f(w,w′)

vh(w)

=[1 + O(n−1+3b + n−1/2 log n)] · p̃(w′|w),

p̃(w′|w) :=
vii!

v(2µ)i

k−1∏
j=1

(
vj − δij

uj

)

· 1
uk!

[
zkv

(k − 1)!ek(z)

]uk

· 1
uk+1!

(zv)uk+1 .
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Here, since uj ≤ k − 1,(
vj − δij

uj

)
=

(vj − δij)uj

uj !

[
1 + O

(
(uj − 1)+

vj + 1

)]
.

Therefore (see the notations (4.29)) the relations (4.27), (4.28) follow. �

Thus q(w′|w) can be viewed as an one-step transition probability of a Markov
chain that evolves on the set of ws defined in (4.14),(4.17), till the moment the
process exits this set.

5. Approximate dynamics of {E[w(τ)]} . Let us look carefully at this
limiting Markov chain. According to (3.3) and (4.26), (4.27), for the transition
probabilities q(w′|w) and 0 ≤ j ≤ k − 1 we have:

(5.1)

Eq[vj(τ + 1)|w(τ) = w] =
∑
w′

v′jq(w′|w)

=
∑

1≤i≤k−1

vi

v
E(vj + Xj+1 −Xj − δij),

(X0 := −1). Since E(Xj) = ipj , 1 ≤ j ≤ k + 1, we obtain then

(5.2) Eq[vj(τ + 1)|w(τ) = w] = vj + fj(w(τ)), 0 ≤ j ≤ k − 1,

where

(5.3) fj(w) =



1 +
v1s

2µv
, if j = 0,

(j + 1)vj+1s

2µv
− jvjs

2µv
− vj

v
, if 1 ≤ j ≤ k − 2,

zkvs

2µv(k − 1)!ek(z)
− (k − 1)vk−1s

2µv
− vk−1

v
, if j = k − 1.

(Recall that s :=
∑

1≤i≤k−1 ivi .)Analogously,

(5.4)

Eq[µ(τ + 1)|w(τ) = w] =
∑
w′

µ′q(w′|w)

= µ−
∑

1≤i≤k−1

i
vi

v
= − s

v
.

As long as w(τ) meets the condition (4.17), the random variables fj(w(τ)),
−s(τ)/v(τ) are all only of order O(1). This makes us expect—though does not
actually prove– that with high probability the sample sequence {w(τ)} must be
close to the solution w̃(τ) = (ṽ(τ), µ̃(τ)) of

(5.5)

dvj(τ)
dτ

= fj(w(τ)),

dµ(τ)
dτ

= − s(τ)
v(τ)

,
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subject to the (random) initial conditions

(5.6) ṽj(0) = vj(0), (0 ≤ j ≤ k − 1), µ̃(0) = µ(0).

At any rate, it is clear that the more we know about this system of ordinary
differential equations, the better are our chances (no pun intended) for probabilistic
analysis of the random sequence {w(τ)} itself.

As it turns out, that system has two remarkably simple integrals; namely

z2

µ
≡ const,(5.7)

v

pk(z)
≡ const.(5.8)

(We recall that ze′kz/ek(z) = t/v, t = 2µ − s, pk(z) = e−zek(z) = P{Z(z) ≥ k} .)
Especially surprising is (5.7) since it connects µ(τ) the current number of edges and
z(τ) the “hidden”parameter chosen so the Poisson(Z(z)) conditioned on {Z(z) ≥
k} has the expected value equal t(τ)/v(τ) the average degree of a heavy vertex
in the current graph. Notice that (5.7) has the same form for all k . We should
emphasize though that these are merely the integrals of the approximate equations
for means E[w(τ)] .

Let us prove (5.7). We observe first that (see (4.18)) for every x

E(xY1) =
ek(xz)
ek(z)

,

so that differentiating both sides of this identity twice at x = 1 we get

(5.9) E[Y1(Y1 − 1)] =
z2e′′k(z)
ek(z)

,

in addition to E(Y1) = ze′k(z)/ek(z). Therefore

(5.10)
d

dz

ze′k(z)
ek(z)

=
1
z

[E(Y1(Y1 − 1)) + E(Y1)− E2(Y1)] =
1
z

Var(Y1) > 0.
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On the other hand, using the equations (5.5) and v = n− v0 − v , we compute

d

dτ

ze′k(z)
ek(z)

= (
t

v
)′τ = (

2µ− s

v
)′τ

=
1
v

(2µ′ − s′)− v′

v2 (2µ− s)

=
1
v

[
−2s

v
−

k−2∑
j=1

j

(
(j + 1)vj+1s

2µv
− jvjs

2µv
− vj

v

)

− (k − 1)
(

zkvs

2µv(k − 1)!ek(z)
− (k − 1)vk−1s

2µv
− vk−1

v

)]
− 2µ− s

v2

[
− zkvs

2µv(k − 1)!ek(z)

]
=

1
v

[
−2s

v
+

k−1∑
j=1

(
jvjs

2µv
+

jvj

v

)
− (k − 1)zkvs

2µv(k − 1)!ek(z)
]

+
s

2µvv
(2µ− s)

zk

(k − 1)!ek(z)

=
1
v

[
− s

v
+

s

v
· s

2µ
− (k − 1)zkvs

2µv(k − 1)!ek(z)

]
+

s

2µvv
(2µ− s)

zk

(k − 1)!ek(z)

(using
2µ− s

v
=

ze′k(z)
ek(z)

)

=
s

2µv

[
−ze′k(z)

ek(z)
− z2(zk−2/(k − 2)!)

ek(z)
+

z2e′k(z)(zk−1/(k − 1)!)
e2
k(z)

]
=

s

2µv

[
−ze′k(z)

ek(z)
− z2e′′k

ek(z)
+
(

ze′k(z)
ek(z)

)2
]

.

So, invoking (5.9) and (5.10),

d

dτ

ze′k(z)
ek(z)

= − sz

2µv

d

dz

ze′k(z)
ek(z)

,

that is

dz

dτ
= − sz

2µv

=
z

2µ

dµ

dτ
,(5.11)

(see (5.5)). Therefore
dz

dµ
=

z

2µ
,

and (5.7) follows.
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Next,
dv

dτ
= −

k−1∑
j=0

dvj(τ)
dτ

= − zkvs

2µv(k − 1)!ek(z)
,

and using (5.11), we have

dv

dz
= v

zk−1/(k − 1)!
ek(z)

= v
dpk(z)/dz

pk(z)
, (pk(z) = e−zek(z)).

This yields (5.8).
Let us also compute Eq[s(τ + 1)|w(τ) = w] . First observe that

[s(τ + 1)− s(τ)] + [t(τ + 1)− t(τ)] = 2µ(τ + 1)− 2µ(τ) = −2i,

the last equality holding with (conditional) probability vi/v , and

t(τ + 1)− t(τ) = −kXk −Xk+1.

So (see (4.28)),

Eq[s(τ + 1)|w(τ) = w] =s− 2
k−1∑
i=1

ivi

v

+ k

(
k−1∑
i=1

ivi

v

zkv

(2µ− i)(k − 1)!ek(z)

)
+

(
k−1∑
i=1

ivi

v

zv

2µ− i

)

=s− 2s

v
+ [1 + O(n−1)]

svz

2µv

[
k(zk−1/(k − 1)!)

ek(z)

]
+ [1 + O(n−1)]

svz

2µv
.

Here

k(zk−1/(k − 1)!)
ek(z)

+ 1 =
k(zk−1/(k − 1)!)

ek(z)
+

e′k(z)
ek(z)

− zk−1/(k − 1)!
ek(z)

=
zk−1/(k − 2)!

ek(z)
+

e′k(z)
ek(z)

(
ze′k(z)
ek(z)

=
2µ− s

v
)

=
1

e−zek(z)

[
e−zzk−1

(k − 2)!
− e−ze′k(z)

]
+ 2

2µ− s

zv

=− π2
k(z)

pk(z)

(
z

πk(z)

)′
+ 2

2µ− s

zv
.
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(Recall that pk(z) := P{Z(z) ≥ k} = e−zek(z), πk(z) := P{Z(z) ≥ k − 1} =
e−ze′k(z).) Combining the two relations, and using zπk(z)/pk(z) = ze′k(z)/ek(z) =
t/v , we write

(5.12) Eq[s(τ + 1)|w(τ) = w] = s− s2

µv
− stπk(z)

2µv

(
z

πk(z)

)′
+ O(n−1),

uniformly for w in question. Like (5.2)-(5.4), the relation (5.12) motivates us to
consider a differential equation

(5.13)
ds

dτ
= − s2

µv
− stπk(z)

2µv

(
z

πk(z)

)′
.

The equations (5.5), (5.13) will play a critical role in the next (last) section. It is
easy to determine s (equivalently, t) as a function of z , without having to integrate
the equation (5.13). Indeed,

t

2µ

z

πk(z)
=

z2

2µ

t

pk(z)
pk(z)
zπk(z)

=
z2

2µ

t

pk(z)
v

t

=
z2

2µ

v

pk(z)
≡ const,

see (5.7), (5.8). Below we will be using the notations

(5.14) J1(w) =
nz2

µ
, J2(w) =

v

npk(z)
, J3(w) =

t

2µ

z

πk(z)
.

6. Proofs of the main results.

Given a > 0, define the set W = W(a) by

(6.1) W(a) :=
{
w : h(w) > 0, g(w) ≤ 1

n
, v ≥ an, t ≥ (k + a)v

}
,

and the stopping (exit) time T = T (a) by

(6.2) T (a) =
{ min{τ < T : w(τ) /∈ W(a)}, if such τ exist,

T, otherwise.

(T is the total number of deletion steps.)

Lemma 1. Conditioned on {w(0) ∈ W(a)} ∩ {µ(w(0)) = cn/2} , for 0 < α <
min{1/2, 1− 3b},

(6.3) P
{

max
τ≤T

∣∣∣∣Ji(w(τ))
Ji(w(0))

− 1
∣∣∣∣ > x

}
= O[e−xnα

], i = 1, 2, 3,
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uniformly for x > 0 .

Proof of Lemma 1. Consider i = 1, for instance. Introduce the function

Q(w) := exp{nα[J1(w)− J1(w(0))]}.

Let us evaluate

Σ :=
∑
w′

Q(w′)p(w′|w), w ∈ W = W(a).

By the definition of W(a), and using (4.7), we see that—for n large enough—
w′ ∈ W(a/2) whenever w ∈ W(a) and p(w′|w) > 0. For every point from the
line segment connecting w and w′ , the components of grad J1 are of order n−1 ,
while the second order derivatives are of order n−2 . Therefore

J1(w′) = J1(w) + (w′ −w)∗grad J1(w) + O(n−2).

(∗ stands for transposition operation.) So, expanding the exponential function,

Q(w′) = Q(w)
[
1 + nα(w′ −w)∗ grad J1(w) + O(n2(α−1))

]
,

and consequently

(6.4) Σ = Q(w)
{

1 + nαE[w′ −w|w]∗grad J1(w) + O(n2(α−1))
}

.

Recall now that J1(w̃(τ)) remains constant along the trajectory w̃(τ) of the dif-
ferential equations system (5.5). Geometrically, this means that

Eq[w′ −w |w] ⊥ grad J1(w),

so that

E[w′ −w |w]∗grad J1(w) =
∑
w′

(w′ −w)∗grad J1(w)

· [p(w′|w)− q(w′|w)] .(6.5)

By Corollary 1,

(6.6)

|p(w′|w)− q(w′|w)| =O(n−1+3b + n−1/2 log n)

+ O

q(w′|w)
k−1∑
j=1

(uj − 1)+

vj + 1

 .

Now (see (4.28), (4.29)), for 1 ≤ j ≤ k − 1,

∑
w′

q(w′|w)
(uj − 1)+

vj + 1
=

k−1∑
i=1

vi

v
E

[
(Xj − 1)+

vj + 1

]
=O

(
vj

µ2

)
= O(n−1).
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So the estimate (6.6) becomes

|p(w′|w)− q(w′|w)| = O(n−1+3b + n−1/2 log n).

Since ‖grad J1(w)‖ = O(n−1), we obtain then from (6.5)

(6.7) E[w′ −w|w]∗grad J1(w) = O(n−2+3b + n−3/2 log n).

Thus (see (6.4))

(6.8)
Σ =Q(w)[1 + O(n−ω log n)],

ω := min {2− 3b− α, 3/2− α, 2(1− α)} > 1,

since α < min(1/2, 1− 3b).
Probabilistically, the relation (6.8) means the following. Introduce the random

sequence
{R(τ)} := {Q(w(τ))}.

Then, for w(τ) ∈ W ,

(6.9) E[R(τ + 1)|w(τ)] = [1 + O(n−ω)]R(τ),

that is {R(τ)} is almost a martingale sequence, as long as w(τ − 1) ∈ W .
Since the total number of steps is at most n , it follows then from (6.9), that the

sequence

(6.10) {R̃(τ)} := {(1 + n−ω log2 n)−τR(τ)}

is a supermartingale, as long as w(τ−1) ∈ W . Fix x > 0 and introduce a stopping
time

T ′ =
{ min {τ ≤ T : J1(w(τ))− J1(w(0)) > x}, if such τ exist,
T + 1, otherwise.

Now, applying the Optional Sampling Theorem (Durrett [9]) to the supermartingale
{R̃(τ)} and the stopping time T ∧ T ′ , and going back to {R(τ)} , we get

E[Q(w(T ∧ T ′))] ≤(1 + n−ω log2 n)n · E[Q(w(0))]

=(1 + n−ω log2 n)n = O(1), as n →∞.

Since obviously
E[Q(w(T ∧ T ′))] ≥ exnα

· P {T ′ ≤ T },

we have then

(6.11)
P {max

τ≤T
[J1(w(τ))− J1(w(0))] > x} =P{T ′ ≤ T }

=O(e−xnα

),

uniformly for x > 0. Analogously,

(6.12) P {min
τ≤T

[J1(w(τ))− J1(w(0))] < −x} = O(e−xnα

).



26 B. PITTEL, J. SPENCER, N. WORMALD

The estimate (6.3) follows immediately from (6.11) and (6.12), since 0 < c1(a) ≤
J1(w) ≤ c2(a) < ∞, ∀w ∈ W = W (a). �

Corollary 2. For 0 < β < α < min {1/2, 1− 3b} ,

(6.13) P {A|w(0) ∈ W(a), µ(0) = cn/2} = O(e−nα−β

),

where

(6.14) A :=

max
1≤i≤3
τ≤T

∣∣∣∣Ji(w(τ))
Ji(w(0))

− 1
∣∣∣∣ > n−β

 .

Proof of Theorem 1. Given ε > 0, let Pn denote the probability that the
deletion algorithm applied to the random graph G(n, m = cn/2) delivers a k -core
of size ≥ εn . We have to show that Pn is subexponentially small if

(6.15) c ≤ γk − n−δ, δ ∈ (0, 1/2).

Using the double-conditioning device, we proved (see (4.13)) that

(6.16) P{B} ≥ 1−O(e−nb

), B := {g(w(G(n, m))) ≤ 1/n} .

(Recall that g(w) := P{G(w) ∈ Hn} , and Hn = Hn(b) is a subset of graphs
G such that, in particular, dmax(G) ≥ nb ; here b ∈ (0, 1/3) is fixed.) The same
method plus Cramér’s large deviation theorem for the sums of i.i.d. random vari-
ables can be used to show that, for every b1 < 1/2,

(6.17) P{C} ≥ 1−O(e−nb1 ),

where

(6.18)

C := C1 ∩ C2,

C1 :=
{
|v(G(n, m))− npk(c)| ≤ n

1+b1
2

}
,

C2 :=
{
|t(G(n, m))− ncπk(c)| ≤ n

1+b1
2

}
.

Notice right now that on the event C

(6.19) z(0) = z(G(n, m)) = c + O(n−(1−b1)/2)

(see (4.20)). Clearly, w(G(n, m)) ∈ W(a) on the event B ∩ C, if

a < min
[
pk(c),

cπk(c)
pk(c)

− k

]
.

Choose a even smaller, so that a < ε .
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Suppose G(n, m) has a k -core of size ≥ εn . If the event A ∩B ∩C takes place
as well, then T = T , provided that a is chosen sufficiently small. To demonstrate
this, suppose w(τ) /∈ W for some τ < T . Since h(w(τ)) > 0, g(w(τ)) ≤ 1/n , and
v(τ) ≥ v(T ) ≥ εn > an , this can happen only if t(τ) < (k + a)v(τ). But then

z(τ)e′k(z(τ))
ek(z(τ))

=
t(τ)
v(τ)

< k + a,

and consequently
z(τ) ≤ χa;

here (and below) χ > 0 (with or without various attributes) stands for an absolute
positive constant. Then, using the definition of A in (6.14), and J2(·) in (5.14),
we conclude

v(τ) ≤2v(0)
pk(z(τ))
pk(z(0))

=
[
2n + O(n(1+b′)/2)

] e−z(τ)zk(τ)
k!

[1 + O(z(τ))]

≤χ1nak,

(see (6.19)). If a < ε is chosen sufficiently small (which we may assume) then the
last inequality is incompatible with v(τ) ≥ εn . So indeed, T = T .

Consequently, w(T −1) ∈ W(a), so that v(T −1), t(T −1) are of order n , while
2µ(T ) = t(T ). Since s(T ) = 0, we have

2µ(T − 1) = 2µ(T ) + O(1) = t(T ) + O(1) = t(T − 1) + O(1).

So, by the definition of J3(·) in (5.14), we obtain

J3(w(T − 1)) =[1 + O(n−1)]
z(T − 1)

πk(z(T − 1))
≥γk · [1 + O(n−1)].(6.20)

(Recall that γk := min z/πk(z).) By the definition of the events C1 and C2 in
(6.15), and (6.16), we also have

(6.21) J3(w(0)) = c ·
[
1 + O(n−(1−b1)/2)

]
.

Putting (6.20) and (6.21) together, and using the definition of the event A , (or
rather its complement A), we arrive at

γk ≤ c + O(n−β + n−(1−b1)/2).

However, in view of (6.15), this is impossible if we choose β and b1 such that

(6.22) δ < β and δ <
1− b1

2
.
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Therefore, for this choice of the parameters β and b1 the events A ∩ B ∩ C
and {G(n, m) has a core of size ≥ εn} are disjoint! Hence (see (6.13), (6.16) and
(6.17))

(6.23)

Pn ≤ P{A ∩B ∩ C} ≤P{B ∩ C}+ P{A ∩ (B ∩ C)}
≤P{B}+ P{C}+ P{A|B ∩ C}

=O(e−nρ

),

ρ := min{α− β, b1, b}.

Besides the restrictions (6.22), the parameters here are also subject to the con-
straints

(6.24)
β < α < min{1/2, 1− 3b},
b < 1/3, b1 < 1/2.

By taking b, b1, α sufficiently close from below to 1/6, min{1/2, 1 − 2δ} , and
min {1/2, 1−3b} respectively, and β from above to δ , we can make the parameter
ρ in (6.23) arbitrarily close (from below) to min{1/2− δ, 1/6} .

To obtain the bound O(n−(k−2)(k+1)/2) for the probability that G(n, m) has
a k -core of any size, it is enough now to handle the sizes ≤ εn , where ε can be
selected arbitrarily small. The corresponding probability is bounded above by the
expected number of k -cores of those small sizes, which turns out to be of the above
order, if ε is appropriately small. (The dominant contribution to the expectation
comes from possible k -cores of the minimum size, k + 1 that is.) We omit the
details. �

Proof of Theorem 2. Now we have to consider the case

(6.25) c ≥ γk + n−δ, δ ∈ (0, 1/2).

Let the parameters α, β, b and b1 satisfy the conditions (6.22) and (6.24). Then,
by (6.25), on the event C (see (6.18).(6.19))

z(0) ≥ γk + n−δ + O(n−(1−b1)/2)

≥ γk +
1
2
n−δ

≥ λk +
1
2
n−δ,(6.26)

because γk = λk/πk(λk) > λk . Since c > γk , the minimum value of λ/πk(λ), the
equation

λ

πk(λ)
= c

has two roots. Let λk(c) denote the larger root. How far is λk(c) from λk ? Since

(6.27)
(

z

πk(z)

)′∣∣∣∣∣
z=λk

= 0,

(
z

πk(z)

)′′∣∣∣∣∣
z=λk

> 0,
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using (6.25) we obtain

(6.28) λk(c)− λk ≥ χn−δ/2.

We want to show that, with high probability, t(T ) = 2µ(T ) and z(T ) is close to
λk(c), so that v(T ) (the size of the k - core) is about npk(λk(c)). To this end, fix
ν > 0 and introduce ẑ by

(6.29)
ẑ =λk(c) + νn−θ,

θ := min {β/2, (1− b1)/4}.

Notice right now that

(6.30)

ẑ

πk(ẑ)
=c +

(
λ

πk(λ)

)′∣∣∣∣∣
λ=λk(c)

νn−θ + O(n−2θ)

=c + O(n−η), (η := δ/2 + θ),

ẑ

πk(ẑ)
≥c +

[(
λ

πk(λ)

)′∣∣∣∣∣
λ=λk

+ χ1n
−δ/2

]
νn−θ + O(n−2θ)

≥c + χ2νn−η,

since δ/2 < θ (see (6.22)).
Next, set in (6.1), (6.2)

(6.31) a = min
{

1
1 + νn−η

pk(ẑ),
1

1 + n−1/2

ẑπk(ẑ)
pk(ẑ)

− k

}
.

We claim that if n is large enough, then—with high probability —there exists
τ̂ < T (a) such that

(6.32) z(τ̂ − 1) > ẑ, z(τ̂) ≤ ẑ.

To prove this, let us suppose the event B ∩ C happens. Then , since c > ẑ ,
see (6.29)), w(G(n, m)) ∈ W(a), and (Corollary 2) the event A takes place with
conditional probability ≥ 1−O(e−nα−β

). Assuming simultaneous occurrence of all
three events, A, B and C , consider two possible alternatives.

1. T (a) = T . In this case, v(T ) ≥ an , so that the algorithm delivers a giant
k -core. Then 2µ(T ) = t(T ) and

z(T )
πk(z(T ))

=
t(T )

2µ(T )
z(T )

πk(z(T ))

=(1 + O(n−β))J3(w(G(n, m)))

=c
[
1 + O(n−β + n−(1−b1)/2)

]
=c(1 + O(n−2θ)).
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Now, z(T )/z(T − 1) = 1 + O(n−1), because ‖w(T ) − w(T − 1)‖ = O(1), and
w(T − 1), w(T ) ∈ W(a); therefore

z(T − 1)
πk(z(T − 1))

= c(1 + O(n−2θ)),

as well. Since 2θ > η , we see that, for n large enough

ẑ

πk(ẑ)
>

z(T )
πk(z(T ))

.

The last inequality certainly implies existence of τ that satisfies (6.32). (At this
moment of the proof, we do not know yet that is very unlikely that z(T ) is close
not to ẑ , but to z̃ < ẑ defined by z̃/πk(z̃) = ẑ/πk(ẑ).)

2. T (a) < T . Then, for some τ < T , we have w(τ) ∈ W(a), but either
v(τ + 1) < an or t(τ + 1) < (k + a)v(τ + 1). In the first case,

v(τ)
pk(z(τ))

=(1 + O(n−1))
v(τ + 1)

pk(z(τ + 1))

≥(1 + O(n−β))(1 + O(n−(1−b1)/2))n

≥n(1 + O(n−2θ)).

So, by the definition of a ,

1
1 + νn−η

pk(ẑ)
pk(z(τ))

≥ 1 + O(n−2θ);

It follows then pk(ẑ) > pk(z(τ)), whence ẑ > z(τ), if n is large enough. In the
second case,

z(τ)πk(z(τ))
pk(z(τ))

=(1 + O(n−1))
z(τ + 1)πk(z(τ + 1))

pk(z(τ + 1))

=(1 + O(n−1))
t(τ + 1)
v(τ + 1)

≤(1 + O(n−1))(k + a) ≤ 1 + O(n−1)
1 + n−1/2

ẑπk(ẑ)
pk(ẑ)

<
ẑπk(ẑ)
pk(ẑ)

,

which shows that z(τ) < ẑ since zπk(z)/pk(z) is strictly increasing (see (5.10)).
Thus,

(6.33)

P{∃τ̂ < T (a) : z(τ̂ − 1) > ẑ, z(τ̂) ≤ ẑ}

≥1−O(e−nρ

),

ρ = min {α− β, b, b1},

(see (6.23)).
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We extend the definition of τ̂ setting τ̂ = T (a) if z(τ) never falls below ẑ .
Observe that τ̂ is a stopping time adopted to {w(τ)} .

Let us have a close look at the sequence {w(τ)}τ≥τ̂ , conditioned on the event
A ∩B ∩ C . First of all,

z(τ̂) = (1 + O(n−1))ẑ.

So,

(6.34)

t(τ̂)
2µ(τ̂)

=(1 + O(n−β))J3(w(G(n, m)))÷ z(τ̂)
πk(τ̂)

=(1 + O(n−2θ))c ÷ c(1 + O(n−η))

=1 + O(n−η),

that is
s(τ̂) := 2µ(τ̂)− t(τ̂) = O(n1−η).

(Recall that s(τ) is the total degree of light vertices of G(τ).) However, v(τ̂), the
total degree of heavy vertices of G(τ̂) is still of order n . More precisely,

(6.35)

v(τ̂) =pk(z(τ̂))
v(0)

pk(z(0))
(1 + O(n−β))

=(1 + O(n−2θ))npk(ẑ)

=(1 + O(n−θ))npk(λk(c)).

What remains to show is that, with high probability, the deletion process will
end within at most nσ, (σ ∈ (0, 1)), steps, delivering a giant k -core having about
npk(λk(c)) vertices.

We will specify σ shortly. Whatever σ is, it is clear that for τ̂ ≤ τ ≤ τ̂ + nσ ,

|µ(τ)− µ(τ̂)|, |v(τ)− v(τ̂)|, |t(τ)− t(τ̂)| = O(nσ),

so that µ(τ), v(τ), and t(τ) are all of order n , while

s(τ) = O(nσ1), σ1 = max {1− η, σ}.

A little reflection based on the equation zπk(z)/pk(z) = t/v (see (4.20)) and (5.10)
shows then that

z(τ) = ẑ + O(n−(1−σ)).

So, comparing with (6.28),(6.29), and remembering that δ/2 < θ ,

z(τ)− λk ≥χn−δ/2 + O(n−(1−σ))

≥χ3n
−δ/2,(6.36)

if we require that

(6.37)
δ

2
< 1− σ1.
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Denoting
∆s(τ) = s(τ + 1)− s(τ),

and using (5.12), we have then: for s(τ) > 0,

Eq[∆s(τ)|w(τ)] ≤− s(τ)t(τ)πk(z(τ))
2µ(τ)v(τ)

(
z

πk(z)

)′∣∣∣∣∣
z=z(τ)

+ O(n−1)

(
s(τ)
v(τ)

≥ 1)

≤− χ4n
−δ/2.(6.38)

We notice that ∆s(τ) ≤ 2(k − 1) always. So, invoking (6.6) and the estimate that
follows it, we get from (6.38)

(6.39) E[∆s(τ)|w(τ)] ≤ χ5n
−δ/2.

(δ < min {1/2, 1− 3b} , see (6.22),(6.24).)

The rest is short. For y > 0, it follows from (6.39) that

E[eys(τ+1)|w(τ)] =eys(τ) exp[yE(∆s(τ)|w(τ))]

· E {exp[y(∆s(τ)− E(∆s(τ)|w(τ)))]|w(τ)}

≤ eys(τ) · exp
(
−yχ5n

−δ/2 + 2y2k2
)

.(6.40)

(We have used a well-known estimate

E(eyY ) ≤ ey2d2/2,

provided that |Y | ≤ d and E(Y ) = 0.) Set

y = yn =
χ5n

−δ/2

4k2
;

yn minimizes the second exponent on the right in (6.40). Then (6.40) becomes

E(eyns(τ+1)|w(τ)) ≤ eyns(τ) · e−χn−δ

, χ :=
(χ5)2

8k2
.

Therefore, the sequence

{S(τ)}τ≥τ̂ :=
{

exp [yns(τ) + (τ − τ̂)χn−δ]
}

τ≥τ̂

is a supermartingale, as long as s(τ) > 0. Hence (the Optional Sampling Theorem
again !)

E [S(τ̂ + nσ ∧ (T − τ̂))|w(τ̂)] ≤S(τ̂)

=eyns(τ̂)

= exp [χ∗n1−η−δ/2].
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Thus

(6.41)
P{T − τ̂ ≥ nσ|w(τ̂)} ≤ exp [χ∗n1−η−δ/2 − χnσ−δ]

≤ exp [−χ∗∗nσ−δ],

if we require
σ − δ > 1− η − δ/2, (η = δ/2 + θ),

or equivalently

(6.42) σ > 1− θ.

For the estimate (6.41) to be useful, we also have to satisfy

(6.43) δ < σ.

Using (6.33), (6.41), and collecting the constraints (6.22),(6.24),(6.35), (6.37),
(6.42), and (6.43), we can state now the following result.

With probability ≥ e−nζ

,

(6.44) ζ := min {α− β, b, b1, σ − δ},

the edge deletion process finds a giant k -core of size npk(λk(c)) + O(nφ),

(6.45)
φ := max {1− θ, σ},
(θ = min {β/2, (1− b1)/4}).

Here

(6.46)

b < 1/3, b1 < 1/2, β < α < min {1/2, 1− 3b},
δ <σ < 1,

δ < 2(1− σ) < min {β, (1− b1)/2}.

It is easy to see that, for every δ < 1/2 and σ ∈ (3/4, 1 − δ/2), we can sat-
isfy the restrictions (6.46) by choosing b, b1, α sufficiently close to (but less than)
1/6, min {1/2, 4σ−3}, 1/2 respectively, and β sufficiently close to (but more than)
2(1 − σ). This way, we can make ζ in (6.44) arbitrarily close from below to
min {2σ − 3/2, 1/6} , and φ in (6.45) arbitrarily close from below to σ .

This observation completes the proof of Theorem 2. �

Finally,

Proof of Theorem 3. Let σ ∈ (3/4, 1) and ε ∈ (0, pk(λk)) be given. Denote
by P (n, m) the probability that the random graph G(n, m) has a k -core of size in
the interval [nε, npk(λk)−nσ] . We need to show that P (n, m) is subexponentially
small, uniformly for m ≤

(
n
2

)
.
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Fix δ ∈ (2(1 − σ), 1/2). According to Theorems 1 and 2, it suffices to consider
m = cn/2 with

|c− γk| = O(n−δ).

Suppose G(n, m) has a k -core of size in question, ≥ nε in particular. Following
line by line the proof of Theorem 1, we obtain: on the event A ∩B ∩ C ,

z(T )
πk(z(T ))

=c
[
1 + O(n−min{β,(1−b1)/2})

]
=γk

[
1 + O(n−min{β,(1−b1)/2,δ})

]
=γk[1 + O(n−δ)],

provided that

(6.47) δ < β, and δ <
1− b1

2
.

Consequently,
|z(T )− λk| = O(n−δ/2),

and

(6.48)
pk(z(T ))
pk(λk)

= 1 + O(n−δ/2).

Furthermore,
v(T )

pk(z(T ))
= J2(w(T )) =[1 + O(n−β)] · J2(w(0))

=n
[
1 + O(n−min{β,(1−b1)/2})

]
.

Since v(T ) ≤ npk(λk)− nσ , the previous estimate yields

pk(λk)
pk(z(T ))

≥[1 + χn−(1−σ)] · [1 + O(n−min{β,(1−b1)/2})]

=1 + χ′n−(1−σ).(6.49)

(We know that 1− σ < δ/2 < min {β, (1− b1)/2} .)
The relations (6.48) and (6.49) are incompatible since 1− σ < δ/2. Therefore

(6.50)

P (n, m) ≤P{A ∩B ∩ C}

=O(e−nρ

),

ρ = min {α− β, b, b1}.
Recall also that

(6.51)
β <α < min {1/2, 1− 3b},

b < 1/3, b1 < 1/2.

Like two times before, it is easy to choose—subject to constraints δ > 2(1 −
σ), (6.47), (6.51)—the values of δ, α, β, b and b1 such that ρ gets arbitrarily close
(from below) to min {2σ − 3/2, 1/6} . �
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