
Logic and Random Structures
Joel Spencer

In the world of randomization almost everything seems to be
possible. – Michael Rabin

1 An Instructive Example

We begin with a rather easy random model which illustrates many of the
concepts we shall deal with. We call it the simple unary predicate with
parameters n, p and denote it by SU(n, p). The model is over a universe Ω
of size n, a positive integer. We imagine each x ∈ Ω flipping a coin to decide
if U(x) holds, and the coin comes up heads with probability p. Here we have
p real, 0 ≤ p ≤ 1. Formally we have a probability space on the possible U
over Ω defined by the properties Pr[U(x)] = p for all x ∈ Ω and the events
U(x) being mutually independent. We consider sentences in the first order
language. In this language we have only equality (we shall always assume we
have equality) and the unary predicate U . (The cognescenti should note that
Ω has no further structure and in particular is not considered an ordered
set.)

This is a rather spartan language. One thing we can say is

Y ES := ∃xU(x),

that U holds for some x ∈ Ω. Simple probability gives

Pr[SU(n, p) |= Y ES] = 1 − (1 − p)n

As p moves from zero to one Pr[Y ES] moves monotonically from zero to
one. We are interested in the asymptotics as n → ∞. At first blush this
seems trivial: for p = 0, SU(n, p) never models Y ES while for any constant
p > 0,

lim
n→∞

Pr[SU(n, p) |= Y ES] = lim
n→∞

1 − (1 − p)n = 1

In an asymptotic sense Y ES has already almost surely occured by the time
p reaches any positive constant.

This leads us to a critical notion. We do not restrict ourselves to p
constant but rather consider p = p(n) as a function of n. What is the
parametrization p = p(n) that best enables us to see the transformation
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of Pr[SU(n, p(n)) |= Y ES] from zero to one. Some reflection leads to the
parametrization p(n) = c/n. If c is a positive constant then

lim
n→∞

Pr[SU(n, p(n)) |= Y ES] = lim
n→∞

1 − (1 −
c

n
)n = 1 − e−c

(Technically, as p ≤ 1 always, this parametrization is not allowable for n < c
- but since we are only concerned with limits as n → ∞ this will not concern
us.) If we think of c going from zero to infinity then the limit probability is
going from zero to one. We are actually less interested (in this exposition)
in the actual limits than in whether the limits are zero or one.

We say that a property A holds almost always (with respect to a given
p(n) if limn→∞ Pr[SU(n, p(n)) |= A] = 1. We say that A holds almost

never if the above limit is zero or, equivalently, if ¬A holds almost surely.
This notion is extremely general. Whenever we have for all sufficiently
large positive integers n a probability space over models of size n then we
can speak of a property A holding almost surely or almost never. For the
particular property Y ES the exact results above have the following simple
consequences:
• If p(n) ≪ n−1 then Y ES holds almost never.
• If p(n) ≫ n−1 then Y ES holds almost surely.
Thus, for example, when p(n) = n−1.01 Y ES holds amost never while when
p(n) = n−0.99 Y ES holds almost surely.

We shall say n−1 is a threshold function for the property Y ES. More
generally, suppose we have a notion of a random model on n vertices with
probability p of some predicate. We say p0(n) is a threshold function for
a property A if whenever p(n) ≪ p0(n) the property A holds almost never
and whenever p(n) ≫ p0(n) then the property A holds almost surely. This
notion, due to Paul Erdős and Alfred Rényi, says roughly that p0(n) is the
“region” around which Pr[A] is moving from near zero to near one. The
threshold function, when it exists, is not totally determined - we could have
taken 5/n as the threshold function for Y ES - but is basically determined
up to constant factors. In a rough way we think of p(n) increasing through
the functions of n - e. g. from n−2 to n−1 to n−1 ln n to ln−5 n - and the
threshold function is that place where Pr[A] changes.

A natural problem for probabilists is to determine the threshold func-
tion, if one exists, for a given property A. For logicians the natural question
would be to determine all possible threshold functions for all properties A
expressible in a given language L. Unfortunately there are technical difficul-
ties (especially with later more complex models) with threshold functions -
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properties A need not be monotone, threshold functions need not exist, and,
worst of all, the limits of probabilities might not exist. Rather, the logician
looks for a Zero-One Law of which the following is prototypical:

Theorem: Let p = p(n) satisfy p(n) ≫ n−1 and 1 − p(n) ≫ n−1. Then
for any first order property A

lim
n→∞

Pr[SU(n, p) |= A] = 0 or 1

Further, the limiting value depends only on A and not on the choice of p(n)
within that range.

Our approach to this theorem, which shall also be used in later more
complex cases, is to find an explicit theory T such that
• Every A ∈ T holds almost surely
• T is complete
Will this suffice? When T |= B finiteness of proof gives that B follows from
some A1, . . . , As ∈ T and hence from A1∧. . .∧As. But the finite conjunction
of events holding almost surely holds almost surely so B would hold almost
surely. By completeness, either T |= B or T |= ¬B, and in the latter case
¬B holds almost surely so that B holds almost never.

In our situation T is given by two simple schema.

1. (For r ≥ 1) There exist distinct x1, . . . , xr with U(xi) for 1 ≤ i ≤ r.

2. (For r ≥ 1) There exist distinct x1, . . . , xr with ¬U(xi) for 1 ≤ i ≤ r.

Note that the number X of x with U(x) has Binomial Distribution with
parameters n, p(n) – that the event X ≥ r holds almost surely follows from
basic probabilistic ideas from the assumption np(n) → ∞. The second
schema follows from n(1 − p(n)) → ∞, reversing the roles of U and ¬U .

Why is this T complete? Proving completeness of a theory T is bread
and butter to the logic community – from the myriad of methods we choose
a combinatorial approach based on the Ehrenfeucht game, as described in
§ 14. Let t ≥ 1 be arbitrary and let M1,M2 be two countable models of T .
It suffices to show that Duplicator wins the game EHR(M1,M2; t).

In our case the Duplicator strategy is simple. A countable model M of
T must have an infinite number of x ∈ M with U(x) (as for all r ≥ 1 it must
have at least r such x) and, similarly, an infinite number of x ∈ M with
¬U(x). Now when Spoiler selects, say, a new x ∈ M1 with U(x) Duplicator
simply selects a new x′ ∈ M2 with U(x′) – as there are only a finite number
t of moves he cannot run out of possible x′.
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In this instance the countable models of T were particularly simple - in-
deed the theory T was ℵ0-categorical, all countable models were isomorphic.
In future more complex situations this will generally not be the case and
indeed we find the study of the countable models of the almost sure theory
T to be quite intriguing in its own right.

2 Random Graphs

A graph G consists of a set of vertices V and an areflexive symmetric binary
relation on V . We write the relation x ∼ y and say x, y are adjacent.
Pictorially, there is an edge from x to y. For the graphtheorists, our graphs
are undirected, with neither loops nor multiple edges. The random graph
G(n, p) (n ≥ 1 integral, p real, 0 ≤ p ≤ 1) is on a vertex set V of size n
where for each distinct x, y Pr[x ∼ y] = p and these events are mutually
independent. We may think of each pair x, y of vertices flipping a coin to
decide whether or not to have an edge between them, where the probability
the coin comes up heads is p.

It is a relatively rare area of mathematics that has an explicit starting
point. The subject of Random Graphs began with a monumental paper by
Paul Erdős and Alfred Rényi in 1960. The very title of their paper, “On
the Evolution of the Random Graph,” speaks to a critical vantagepoint.
As the edge probability p increases the random graph G(n, p) increases in
complexity. For many natural properties A there will be a threshold function
p0(n) for its occurance. As in §1, when p(n) ≪ p0(n) A will hold almost
never while when p(n) ≫ p0(n) A will hold almost always. Finding threshold
functions has been a major preoccupation for researchers in Random Graphs.
Lets give some examples, together with some intuitive justification for the
threshold functions.

• Containing a K4 - i. e. containing four vertices with all six pairs adja-
cent. The threshold function is n−2/3. There are

(n
4

)

∼ n4/24 possible K4s
and each has the six adjacencies with probability p6 so that the expected
number of K4s is ∼ n4p6/24. When p(n) ≪ n−2/3 this expectation goes
to zero so that almost surely there are none of them. When p(n) ≫ n−2/3

this expectation goes to infinity. By itself, this does not imply that almost
surely there is at least one but more refined methods - in particular, an
examination of the variance of the number of K4s - do show that almost
surely there will be a K4.

• Containing a triangle. The threshold function is n−1 for reasons similar
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to those above.
• No isolated vertices. In first order language ∀x∃yx ∼ y. Here n−1 ln n is

the threshold function. Roughly a given vertex x has probability (1−p)n−1 ∼
e−pn of being isolated. When pn > (1 + ǫ) ln n this probability is o(n−1)
so that the expected number of isolated vertices is o(1) and almost surely
there are none. When pn < (1 − ǫ) ln n this probability is ≫ n−1 so that
the expected number of isolated vertices goes to infinity and more refined
techniques show that almost surely there are isolated vertices.

• Connectivity. This was one of the most beautiful results in the Erdős-
Rényi paper. It turns out that connectivity has the same behavior as no
isolated vertex. Their result was amazingly precise. Parametrize p = lnn

n + c
n .

For c any real (positive or negative) constant

lim
n→∞

Pr[G(n, p) connected] = e−e−c

• Every two vertices have a common neighbor. In first order language
∀x1

∀x2
∃y1

y1 ∼ x1 ∧ y1 ∼ x2. The threshold function is n−1/2 ln1/2 n. Any
x1, x2 have an expected number (n − 2)p2 ∼ np2 common neighbors. This
would naturally lead us to consider p = n−1/2. Indeed, for p ≪ n−1/2 a
randomly chosen x1, x2 will not have a common neighbor while for p ≫
n−1/2 a randomly chosen x1, x2 will have a common neighbor, indeed many
common neighbors. But this does not suffice for every pair x1, x2 to have a
common neighbor, for that one needs the extra polylogarithmic term.

• Every two vertices are joined by a path of length three. In first order
language ∀x1

∀x2
∃y1∃y2x1 ∼ y1 ∧ y1 ∼ y2 ∧ y2 ∼ x2. The threshold function

is n−2/3 ln1/3 n. Any x1, x2 have
(n−2

2

)

∼ n2/2 potential paths (choices of
y1, y2) of length three and each potential path has its three adjacencies with
probability p3 so that the expected number of paths is ∼ n2p3/2. This would
lead us to consider p = n−2/3 as a threshold function but, as above, an extra
polylogarithmic term is needed to assure that every pair x1, x2 has such a
path.

These threshold functions, and countless others, seemed to this author
to have a common property: the power of n involved was always a rational
number. There might be other, generally polylogarithmic, factors but they
would be of smaller order than the power of n. Nowhere, so it seemed, was
there a natural property with threshold function, say, p = n−π/7. In 1988
this author and Saharon Shelah were able to give a formal justification for
this observation and this result is the centerpiece of our discussions:

Theorem: Let 0 < α < 1, α irrational. Set p(n) = n−α. Then for every
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first order property A

lim
n→∞

Pr[G(n, p) |= A] = 0 or 1

The situation with α > 1 has also been studied. It turns out to be
considerably simpler than the 0 < α < 1 case and will not be considered
here.

Our approach will be that used in §1. We shall find a theory T = Tα

such that each A ∈ Tα holds almost surely and Tα is shown complete,
using countable models and the Ehrenfeucht game. We shall need several
preliminaries.

3 Extension Statements

The examples above: Every vertex has a neighbor, every two vertices have
a common neighbor, every two vertices are joined by a path of length three
are all examples of a vital kind of first order statements that we shall call
extension statements. These statements are of the form “For all x1, . . . , xr

there exist y1, . . . , yv P” where P is that certain adjacencies between some
yi, yj and some xi, yj must exist. P never considers adjacencies between
pairs xi, xj and never demands nonadjacency. We allow the case r = 0, so
that the extension statement reduces to a purely existential statement, but
require v > 0.

To formalize this we define a rooted graph to be a pair (R,H) where H
is a graph (with V (H), E(H) denoting its vertex and edge sets respectively)
and R is a proper subset of the vertices. Labelling the roots x1, . . . , xr and
the nonroots y1, . . . , yv we define the extension statement Ext(R,H) to be
that for all x1, . . . , xr there exist y1, . . . , yr having the edges of H, where
we don’t examine the edges between the roots and we allow extra edges. A
rooted graph (R,H) has three parameters. The number of roots is denoted
by r. The number of nonroots is denoted by v. The number of edges (where
edges between roots are not counted) is denoted by e. Perhaps surprisingly,
r plays a relatively minor role. The key parameter, as the examples below
will indicate, is the sign of v − eα.

We call (R,H) dense if v − eα < 0 and sparse if v − eα > 0. The
irrationality of α comes in at this point, making this a strict dichotomy. We
further call (R,H) rigid if for all S with R ⊆ S ⊂ V (H) the rooted graph
(S,H) is dense. (As S may be R itself, rigid implies dense.) We call (R,H)
safe if for all S with R ⊂ S ⊆ V (H) the rooted graph (R,H|S) is sparse.
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(Here H|S is the restriction of H to S, simply throw all other vertices away.
As S may be V (H) itself safe implies sparse.) Very roughly we think of rigid
as meaning dense through and through and safe as meaning sparse through
and through. We call (R,H|S) a subextension of (R,H) and we call (S,H)
a nailextension (we are nailing down some more roots) of (R,H).

Lets look at several examples with α = π/7 = 0.448 · · ·. We select this
α because it seems to have no special properties whatsoever.

• Every two vertices have a neighbor. H has y1 adjacent to x1, x2.
r = 2, v = 1, e = 2 so v − eα > 0 and (R,H) is sparse and safe.

• Every three vertices have a neighbor. H has y1 adjacent to x1, x2, x3,
r = 3, v = 1, e = 3, and v − eα < 0 and (R,H) is dense and rigid.

• Every vertex lies in a K5. H has y1, y2, y3, y4, x1 with all ten adja-
cencies, r = 1, v = 4, e = 10 and v − eα < 0 and (R,H) is dense and
rigid.

• Every vertex lies in a K4. H has y1, y2, y3, x1 with all six adjacencies,
r = 1, v = 3, e = 10 and v − eα > 0 and (R,H) is dense and rigid.

• Every two vertices lie in a K4 except possibly they are nonadjacent.
H has y1, y2, x1, x2 with five adjacencies (not x1, x2) , r = 2, v = 2, e = 5,
v − eα < 0, (R,H) is dense and rigid.

• Every three vertices have a common neighbor which itself has a (differ-
ent) neighbor. H has y1 adjacent to x1, x2, x3 and y2 adjacent to y1. Here
r = 3, v = 2, e = 4 and v−eα > 0 so that (R,H) is sparse. But (R,H) is not
safe since the subextension “every three vertices have a common neighbor”
(S = {x1, x2, x3, y1}) is not sparse.

• Every four vertices have a common neighbor which itself has a (dif-
ferent) neighbor. H has y1 adjacent to x1, x2, x3, x4 and y2 adjacent to y1.
Here r = 4, v = 2, e = 5 and v− eα < 0 so that (R,H) is dense. But nailing
down y1, setting S = R ∪ {y1}, gives (S,H) with r = 5, v = 1, e = 1 and
v − eα > 0, so that y2 is flapping in the wind and (R,H) is not rigid.

It can be shown that Ext(R,H) holds almost surely if and only if (R,H)
is safe. Let us see the intuitive justification. Given the x1, . . . , xr we have ∼
cnv choices for y1, . . . , yv and each choice will have the needed e adjacencies
with probabiity pe, hence the expected number of extensions is ∼ cnvpe ∼
cnv−eα. When v−eα < 0 this expected number goes to zero so almost surely
a random x1, . . . , xr will not have an extension. If there is a subextension
(R,H|S) which is not sparse (and hence dense) almost surely a random
x1, . . . , xr can not be extended to H|S and hence not to H. The converse
requires more work.

What about rigid? It is not the case that every three vertices have a
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common neighbor, indeed a random three vertices almost surely will not
have a common neighbor. But some sets of three vertices do have a com-
mon neighbor. (Take a vertex y1, take three of its neighbors x1, x2, x3 -
those three vertices have the common neighbor y1.) When x1, x2, x3 have
a common neighbor that is a special property of the triple. Its not special
when x1, x2 have a common neighbor since every pair of vertices have a
common neighbor. It will turn out that all special properties of bounded
sets of vertices are describable in terms of rigid extensions.

4 Closure

Fix α ∈ (0, 1) irrational and t ≥ 1. Let G be any graph though we’ll be
interested in G ∼ G(n, p) with p = n−α. Let X be any set of vertices of G.
We define the t-closure of X, denoted by clt(X) .

Our first definition of clt(X) is algorithmic. We say y1, . . . , yv form an
(R,H) extension over x1, . . . , xr if they have the required adjacencies of H
between the yi, yj and the xi, yj. We say y1, . . . , yv forms a rigid extension
over x1, . . . , xr if they form an (R,H) extension for some rigid (R,H). Now
begin with X. If any y1, . . . , yv with (critically) v ≤ t form a rigid extension
over X then add those vertices to X. Iterate until there are no further rigid
extensions. The final set is clt(X).

The second definition is that clt(X) is the minimal set Z containing X
which does not have any rigid extensions of at most t vertices.

Justifying that these two definitions are equivalent and indeed that they
are well defined (e. g. that the first doesn’t depend on the order in which
rigid extensions are added on) requires a series of relatively elementary com-
binatorial lemmas which we delete. As an example, cl4(x1, x2) might consist
of x1, x2; y1, y2 adjacent to each other and to both x1, x2; y3, y4, y5, y6 form-
ing a K5 with y2; and y7 common neighbor of x2, y1, y5.

Nonexistence Lemma: For every t ≥ 1 almost surely clt(∅) = ∅ in
G ∼ G(n, n−α).
Proof: When (∅,H) is rigid (or even just dense) it has v vertices and e edges
with v − eα < 0 so that the expected number of copies of H is ∼ cnvpe

which goes to zero. Hence almost surely there is no copy of H. With t fixed
there are only a finite number of such H’s to consider so almost surely none
of them exist as subgraphs of G.

Let x1, . . . , xr ∈ G, x′
1, . . . , x

′
r ∈ G′. We see that their t-closures are

isomorphic, and write clt(x1, . . . , xr) ∼= clt(x
′
1, . . . , x

′
r) if there is a graph
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isomorphism between the t-closures preserving adjacency, nonadjacency and
corresponding xi to x′

i. When H is the restriction of G to clt(x1, . . . , xr) we
write clt(x1, . . . , xr) ∼= H, but with the additional understanding that the
roots x1, . . . , xr are in specified positions in H. For completion we include
the case t = 0: We define the 0-closure of X to be X and say cl0(x1, . . . , xr) ∼=
cl0(x′

1, . . . , x
′
r) if the map sending xi to x′

i is a graph isomorphism on these
sets of r vertices. Observe that stating clt(x1, . . . , xr) ∼= H is a first order
predicate. In the example of the preceeding paragraph it would consist of
stating the existence of the y1, . . . , y7 with their appropriate adjacencies and
then, for each of the finite list of possible (R,H) rigid extension with v ≤ 4,
the nonexistence of z1, . . . , zv having those adjacencies over x1, . . . , y7. A
priori the t-closure might be arbitrarily large and the following lemma plays
an important role in limiting its possibilities.

Finite Closure Lemma: For all α ∈ (0, 1), irrational, r, t ≥ 1 integers
there exists K so that in G ∼ G(n, n−α) almost surely

|clt(x1, . . . , xr)| < r + K for all x1, . . . , xr

Proof: We set ǫ = min(eα − v)/v over all integers v, e with v ≤ t and
v − eα ≤ 0. Note critically the restriction v ≤ t allows us to restrict to a
finite number of cases and thus the min does exist and (as α is irrational)
is positive. We set K = ⌈r/ǫ⌉.

Suppose the result false and there was R = {x1, . . . , xr} with a larger
t-closure. Then there would be a sequence R = R0 ⊂ R1 ⊂ . . . ⊂ Rl with
each Ri+1 rigid over Ri with fewer than t nonroots and Rj having size in
[r + K, r + K + t). (That is, continue taking rigid extensions and stop when
at least r + K vertices are in the set.) Let Hi be the restriction of G to Ri

and set H equal the final Hl. Let (Ri−1,Hi) have parameters vi, ei. Then
H has V = r +

∑l
i=1 vi vertices and at least E =

∑l
i=1 ei edges. Roughly

the r roots are our capital and each extension costs us eα − v. Formally

V − Eα ≤ r +
l

∑

i=1

(vi − ei)α ≤ r − ǫ
l

∑

i=1

vi ≤ r − Kǫ < 0

The existence of such H would then violate the Nonexistence Lemma.

5 The Almost Sure Theory

To describe the almost sure theory T = Tα we require one more somewhat
technical point. When (R,H) is safe we want that every x1, . . . , xr should
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have an (R,H) extension y1, . . . , yv. But we further need that these ys have
no additional properties relative to the xs. We define this in the first order
world via rigid extensions. Roughly we want to say that any rigid extension
over the xs and ys is really just over the xs.

Definition: We say y1, . . . , yv is t-generic over x1, . . . , xr if the following
holds: Consider any z1, . . . , zw distinct from the xs and ys with (critically)
w ≤ t which forms a rigid extension over x1, . . . , xr, y1, . . . , yv. Then there
are no edges between any zi and any yj.

The almost sure theory Tα consists of two schema.
• Nonexistence. For H with v vertices, e edges and v − eα < 0: There

does not exist a copy of H. To express it in slicker form - for all t ≥ 1:
clt(∅) = ∅.

• Generic Extension. For (R,H) safe, t ≥ 0. For all x1, . . . , xr there
exist y1, . . . , yv such that

1. y1, . . . , yv forms an (R,H) extension over x1, . . . , xv.

2. There are no additional edges of the form yi, yj or yi, xj except those
mandated by H.

3. y1, . . . , yv is t-generic over x1, . . . xv. (For t = 0 exclude this condition.)

We’ve seen by the Nonexistence Lemma that the A in the Nonexistence
schema hold almost surely. We indicate the argument for Generic Extension.
Let (R,H) be safe. For any ~x = (x1, . . . , xr) let N(~x) denote the number
of (R,H) extension ~y = (y1, . . . , yv). Let x1, . . . , xr be selected randomly
so that N = N(~x) becomes a random variable. We have seen that the
expectation µ := E[N ] ∼ cnvpe which goes to infinity like a positive power
of n. At heart (and the one fairly technical part of the probability analysis)
is a Large Deviation result: For any fixed ǫ > 0

Pr[|N(~x) − µ| > ǫµ] = o(n−r)

Actually the probability can be bounded by exp[n−λ] for a positive λ but
the above suffices for our purposes. Here N counts extensions and so is the
sum of ∼ cnv indicator random variables (one for each distinct extension)
each of which are one (i. e. , the extension is there) with probability pe. If
we could think of N as the binomial distribution with parameters cnv, pe

then the above large deviation result would follow from standard probability
results, known as the Chernoff bounds. The difficulty arises in that the
indicator random variables are not independent, the potential extensions
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have a complex overlap pattern. Most of the potential extensions (as v is
fixed and n → ∞) do not overlap and so their indicator random variables
are independent. Still, it requires some technical skill, which we omit from
this presentation, to show the large deviation result.

Given the Large Deviation result we easily deduce a Counting Theorem:
Almost surely the number of extensions N(~x) lies between µ(1 ± ǫ) for all

choices of ~x. This follows since there are only O(nr) choices for the roots
and the failure probability is o(n−r) for any particular choice. Now, modulo
some combinatorial work, we can deduce Generic Extension. For each ~x
the number of (R,H) extensions is Θ(nv−eα). How many of these are not
t-generic. There are only a finite number of ways ~y can be not t-generic over
~x. One shows that for each such possibility the number of such extensions
is (using the Counting Theorem upper bound) at most O(nv′−αe′) where
v′ − αe′ is smaller than v − eα. Roughly, the existence of a rigid extension
would add v1 vertices and e1 edges with v1 − e1α < 0 and that would
decrease v − eα. Then the total number of non t-generic extensions over
~x is bounded by a constant times a smaller power of n. For n sufficiently
large this is smaller than the total number of extensions and therefore some
(R,H) extension - indeed, almost all such extensions -will be t-generic.

The completeness of Tα is shown via the Ehrenfeucht game but requires
a surprisingly subtle strategy for the Duplicator. Let G,G′ be models of
Tα, fix the number of rounds u ≥ 1, and consider the Ehrenfeucht game
EHR(G1, G2; u).

Define integers t0, t1, . . . , tu as follows. Set t0 = 0 and (for convenience)
t1 = 1. Given ti select ti+1 with

1. ti+1 ≥ ti

2. Almost surely in G(n, n−α) for every X of size i + 1 the ti-closure of
X has size at most ti+1 vertices outside of X.

Of course, the existence of ti+1 requires the Finite Closure Lemma. Now
we describe Duplicator’s strategy. Let xj, x

′
j denote the vertices of G,G′

respectively selected in the j-th round. Let 0 ≤ i ≤ u and set s = u − i
for convenience. Duplicator plays so that after the s-th round (equivalently,
with i rounds remaining) the ti-closure of (x1, . . . , xs) and the ti-closure of
(x′

1, . . . , x
′
i) are isomorphic, the isomorphism sending xi to x′

i.
At the start of the game, setting t = tu, the Nonexistence Schema assures

that clt(∅) is the same in G and G′ so Duplicator is fine. At the end of
the game the 0-closures are isomorphic which is precisely the condition for
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Duplicator to have won. It thus suffices to show (the hard part) that if this
condition is satisfied for i then regardless of Spoiler’s move Duplicator has
a response that preserves the condition for i − 1.

To avoid subscripts let us fix i and write BIG := ti, SMALL := ti−1,
~x = (x1, . . . , xs), ~x′ = (x′

1, . . . , x
′
s). By symmetry we can assure Spoiler

plays next in G, let y denote his next move. There are two basic cases that
we dub Inside and Outside.

We say y is Inside if y ∈ clBIG(~x). As SMALL ≤ BIG this then
determines clSMALL(~x, y) which lies entirely inside clBIG(~x). Duplicator
checks the isomorphism between the BIG-closures of ~x, ~x′ and selects y′ the
vertex corresponding to y under the isomorphism.

Otherwise, y is Outside. Let OLD denote the BIG-closure of ~x. Du-
plicator calculates clSMALL(~x, y) and sets NEW equal those vertices of it
which aren’t already in OLD. Our definition of BIG, which in turn de-
pended on the Finite Closure Lemma, assures us that NEW has at most
BIG vertices. Say NEW over OLD forms an (R,H) extension. We need
now a combinatorial lemma (proof omitted) that any nonsafe extension con-
tains a rigid subextension. From this it follows that (R,H) must be safe
since otherwise there would be a nonempty NEW− rigid over OLD but
then it would be in OLD by the closure definition. Duplicator then goes
over to G′ and by t-generic extension (t = SMALL) finds a NEW ′ over
OLD′ = clBIG(~x′) with precisely the same edges and selects y′ the vertex
of NEW ′ corresponding to y. This immediately gives that the SMALL-
closure of ~x′, y′ contains a copy of the SMALL-closure of ~x, y and some
combinatorial lemmas involving t-genericity insure that it contains nothing
more and that the two SMALL-closures are isomorphic.

This shows that Tα is complete and hence the Zero-One Law.

6 The Case p Constant

One of the original motivations for considering this area was a beautiful
result shown independently by Glebskii et. al. and Fagin. Let 0 < p < 1 be
constant. They then showed a Zero-One Law for G(n, p), that every first
order A holds either almost surely or almost never.

With our machinery the proof is quite quick. The theory T is given by
one schema.

(For all r, s ≥ 0:) For all distinct x1, . . . , xr, y1, . . . , ys there exists a
distinct z adjacent to all of the xi and to none of the yj.
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Fix r, s, p. Call z a witness (relative to the xs and ys) if it has precisely
the desired adjacencies. Each z has probability ǫ := pr(1 − p)s of being a
witness. The events of being a witness are independent (involving disjoint
edgesets) so the probability is (1 − ǫ)n−r−s that there is no witness. There
are

(n
r

)(n−r
s

)

≤ nr+s choices for the xs and ys. Hence the probability that
any such choice produces no witness is ≤ nr+s(1 − ǫ)n−r−s. Fixing r, s, p
fixes ǫ > 0 and exponential decay kills off polynomial growth so the failure
probability goes to zero.

The graphs G modelling T are said by Peter Winkler to have the Alice’s
Restaurant property. Members of a certain generation may remember the
refrain: You can get anything you want at Alice’s Restaurant. All possible
witnesses are there.

Let G,G′ model T . Duplicator’s stategy is simplicity itself. Staying alive.
When xi is played in G Duplicator looks for x′

i ∈ G′ with the appropriate
adjacencies to the previously selected vertices. By the Alice’s Restaurant
property she never gets stuck.

7 Countable Models

Whenever we have a Zero-One Law we have the complete theory T of those
sentences holding almost surely. By the Gödel Completeness Theorem such
a theory must have a finite or countable model. The models cannot be finite
since for every r ≥ 1 the sentence “There exist distinct x1, . . . , xr” is in the
almost sure theory since it holds for all n ≥ r. Thus T must have a countable
model - in our case a countable graph G. What does G look like? The first
question is whether G is unique - that is, whether T is ℵ0-categorical.

Consider first the Alice’s Restaurant theory T for p constant. This is
ℵ0-categorical by an elegant argument. Let G,G′ be two countable models
of T , both labelled by the positive integers. We build up an isomorphism
Φ : G → G′ by alternating Left Stages and Right Stages. After n steps the
map Φ will map n elements of G into n elements of G′ preserving adjacency
and nonadjacency. For a Left Stage let x be the least element of G for
which Φ(x) is not defined. We require of Φ(x) that for any a ∈ G for which
Φ(a) has been defined we want Φ(x) to be either adjacent or nonadjacent
to Φ(a) depending on whether x is adjacent or nonadjacent to a. By Alice’s
Restaurant we can find such an x′. In the Right Stage we reverse the roles
of G,G′. Let x′ be the least element of G′ for which Φ−1(x′) is not defined
and find x = Φ−1(x′) with the appropriate adjacencies. By step 2n vertices
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1, . . . , n have been used up in both G and G′ so that at the end of this
infinite process all vertices have been used up and Φ is a bijection giving the
desired isomorphism. The countable graph G satisfying Alice’s Restaurant
is sometimes called the Rado graph in honor of the late Richard Rado.

What about the theory Tα for 0 < α < 1 irrational. This is not ℵ0-
categorical. We indicate two arguments that create (well, prove the exis-
tence) of different countable models.

Consider rigid extensions with r = 1, so of the form ({x},H), with
parameters v, e where (∅,H) is safe. (With α = π/7 an example is H = K5.)
For such H almost surely there exist copies of H but most vertices do not
lie in such copies. Suppose ({x},Hi) is an sequence of such extensions with
parameters vi, ei. For any s define the graph Hs to be the of H1, . . . ,Hs

considered as disjoint vertex sets except for the common vertex x. Suppose
further that there almost surely exists a copy of Hs. Such a sequence can
be shown to exist for any α by employing a little number theory. The key
is to find vi, ei such that vi − eiα is only very slightly negative. Now we can
create a model in which some element is in a copy of Hs for all s. We add a
constant symbol c to our logic and add the infinite schema (for s ≥ 1) that
c is in a copy of Hs. Any finite segment of this system is consistent since in
T itself one has that there exists a copy of Hs. By compactness there exists
a model and the element corresponding to c has the desired property.

Now we create a special countable graph Gα that models Tα. The ver-
tices will be the positive integers. For every safe rooted graph (R,H) and
every r = |R| distinct integers ~x = (x1, . . . , xr) consider the witness demand

that there must exist ~y = (y1, . . . , yv) forming an (R,H) extension over ~x.
Witness demands would include, continuing with our standard α = π/7 ex-
ample, that there exists y1 adjacent to 167, 233 or that there exist y1, y2, y3

forming a K4 with 26. We include the case R = ∅ so that one demand is
that there exist y1, y2 forming an edge. Turn the witness demands into a
countable list. Now satisfy them one by one using new points in a minimal
way . That is, when we need y1 adjacent to 167, 233 pick a vertex, say 23801
that has not been touched before (at any stage only a finite number of points
have been touched) and join it to 167, 233 and nothing else. There are two
very nice properties of this construction. First Gα is a model of Tα. (As you
might expect these minimal extensions are t-generic for all t.) Second, and
quite surpisingly, Gα is unique. That is, it does not depend on the ordering
of the witness demands nor on the choice of new points to satisfy them.
These graphs Gα seem quite intriguing objects worthy of study simply as
countable graphs. For any finite set X of vertices let us define the closure
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cl(X) as the union of the t-closures of X over all t, noting this is not a
first order concept. In this procedure at some finite time all vertices of X
have been touched. Let Y be the value of cl(X) at that moment. After this
time all extensions of Y are via safe extensions and one can show that cl(X)
remains the same. That is, in Gα all finite sets have finite closure.

The two models created are different since in the first there is an x with
cl({x}) infinite while in the second there is no such x.

8 A Dynamic View

We have seen that for fixed irrational α ∈ (0, 1) any first order A holds
almost surely or almost never in G(n, n−α). Now we consider A fixed and
vary α - thinking roughly of the evolution of the random graph as we consider
p = n−α with α decreasing from one to zero. To study that evolution we
define

fA(α) = lim
n→∞

Pr[G(n, n−α) |= A]

To avoid the problems at rational α we simply define the domain of fA to
be the irrational α ∈ (0, 1). Our goal is to describe the possible functions
fA. Note that fA(α) = 1 when A is in the theory Tα, otherwise fA(α) = 0.
We have given an explicit description of the theories Tα. In this sense the
function fA is described independently of probabilistic calculation. We seek
to understand the relationships between the continuum of theories Tα.

We begin with a continuity result. Fix A and irrational α. We claim
that fA(β) is constant in some interval (α− ǫ, α+ ǫ) around α. Suppose A is
in Tα (otherwise take ¬A). Then A follows from a finite number of axioms
of Tα. These in turn depend on notions of dense and sparse rooted graphs
which depend on whether v − eα is positive or negative. For any particular
v, e whatever the sign of v − eα that sign remains constant in some interval
around α. The finite number of axioms leads to a finite number of pairs v, e
and so all signs remain constant in some interval. For β in that interval Tβ

has these same axioms and so A is in Tβ. (It is known, however, that the
theories Tα are all different. Between any two α,α′ lies a rational a/b and
it is known that there is a graph H such that the existence of a copy of H
has threshold function n−a/b.)

The discontinuities of fA must therefore come at the rational a/b ∈ (0, 1).
We define the spectrum Sp(A) to be those rational points of discontinuity.
The classical theory of Random Graphs gives natural examples. Existence
of a K4 has spectrum {2/3}. Existence of a K5 has spectrum {1/2}. We can
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put these together: “There exists a K4 and there does not exist a K5” to
give spectrum {2/3, 1/2} - here as G evolves Pr[A] starts near zero, jumps
to one at n−2/3 when K4 appear and back down to zero at n−1/2 when K5

appear. With some technical work it is not difficult to get any finite set of
rationals in (0, 1) as a spectrum in this way. This author once conjectured
that all spectra were such finite sets. That proved not to be the case.

9 Infinite Spectra via Almost Sure Encoding

Here we will describe a first order A with an infinite spectrum. The central
idea will be to take a second order sentence and give it an almost sure
encoding in the first order language.

For definiteness we will work near α = 1
3 . By a K3,k is meant a set

x1, x2, x3; y1, . . . , yk with all yj adjacent to all three xs. Basic random graph
theory gives that the sentence “There exists a K3,k” has threshold function
n−1/3−1/k. (There are e = 3k edges and v = 3 + k vertices and (∅,K3,k)
is sparse and safe if and only if v − eα > 0.) Let N(x1, x2, x3) denote the
set of common neighbors of x1, x2, x3. Then for 1

3 + 1
k > α > 1

3 + 1
k+1 the

maximal size |N(x1, x2, x3)| is k. Consider then the property, call it A∗, that
the maximal size |N(x1, x2, x3)| is even. This would have all values 1

3 + 1
k

as spectral points. It is not possible to write this property in the first order
language. We shall, however, give an almost sure encoding, a first order
sentence that almost surely has the same truth value as A∗.

Lets look in the second order world. How can we say that a set S (which
will be N(x1, x2, x3) in our application) has even size. We write:

EV EN(S) : ∃R∀x¬R(x, x) ∧ ∀x,yR(x, y) ↔ R(y, x) ∧ ∀x∈S∃!y∈SR(x, y)

That is, there exists an areflexive symmetric binary relation on S (i. e. a
graph) which is a matching - each vertex has precisely one neighbor. How
can we say that S is bigger (or equal) in size to T . Similarly we write
BIGGER(S, T ) that there exists an areflexive symmetric binary relation R
that yields an injection from T −S to S −T . For every y ∈ T −S there is a
x ∈ S−T with R(y, x) and we do not have R(y1, x) and R(y2, x) for distinct
y1, y2 ∈ T − S and x ∈ S − T . Now we can write A∗ in second order:

A∗ : ∃x1,x2,x3
EV EN [N(x1, x2, x3)]∧

∧∀z1,z2,z3
BIGGER[N(x1, x2, x3), N(z1, z2, z3)]
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Now for the almost sure encoding. Define the first order ternary predi-
cate (considering u as a variable symbol)

Ru(x, y) := ∃v[v ∼ x ∧ v ∼ y ∧ v ∼ u],

that u, x, y have a common neighbor. Our basic (though it will need mod-
ification) idea is to replace the second order ∃R with the first order ∃u and
then to replace all instances of the binary R with the now binary Ru.

Representation Lemma: For any s and any symmetric areflexive R
on 1, . . . , s that holds for l pairs with l < k

3

∀x1,...,xs
∃u

∧

1≤i<j≤s

(Ru(xi, xj) ↔ R(i, j))

is a theorem of T = Tα for all 1
3 + 1

k > α > 1
3 + 1

k+1 .
Consider the rooted graph, call it (S,H) with roots 1, . . . , s, nonroot u,

and then for each 1 ≤ i < j ≤ s nonroot vij with edges from vij to i, j, u.
(S,H) has v = 1 + l nonroots and e = 3l edges. Our bound on l assures
that v − eα > 0 so that (S,H) is sparse, and some easy combinatorial work
shows that it is safe as well. In Tα we have the 1-Generic Extension axiom
for (S,H). For all x1, . . . , xs there exists u and the vij having the above
edges and no more so that when R(i, j) we do have Ru(xi, xj). Suppose
now ¬R(i, j), can u, xi, xj have a common neighbor? A common neighbor
to three vertices is a rigid extension in our range α > 1

3 so this would violate
1-genericity.

We outline a second argument more for those in random graphs. Set
p = n−1/3−ǫ so that 1

k > ǫ > 1
k+1 . Any particular Ru(x, y) holds with

probability roughly np3 ∼ n−3ǫ, that being the expected number of common
neighbors. Say u is a witness if Ru(x, y) holds for the l needed pairs. Then
u would be a witness with probability roughly n−3lǫ. There are n potential
witnesses so the expected number of witnesses would be roughly n1−3lǫ. As
3lǫ < 1 this expected number goes to infinity and almost surely for every
choice of the xs there is one. There are a number of questions here (for
one thing, u, u′ being witnesses are no longer fully independent events) that
need to be fleshed out but this can be turned into a full proof.

We have a small technical problem. We want to say EV EN(S) where
S = N(x1, x2, x3) has at most k elements by saying there is a matching R.
Such an R would have perhaps k/2 edges while our representation lemma
only gives us Ru with at most k/3 edges. We puff up the representation
lemma by replacing ∃R with ∃u1,u2

and replacing R with Ru1
∨ Ru2

. Now
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we represent all R with up to just less than 2k/3 edges. To write it out in
full, “N(x1, x2, x3) is even” is replaced by

There exist u1, u2 such that for all y adjacent to x1, x2, x3 there exists a
unique y′ 6= y adjacent to x1, x2, x3 with either y, y′, u1 or y, y′, u2 having a

common neighbor.

Similarly, BIGGER(S, T ) may require an injection R of k edges. We there-
fore replace ∃R with ∃u1,u2,u3,u4

and R with Ru1
∨ Ru2

∨ Ru3
∨ Ru4

. With
this BIGGER(N(x1, x2, x3), N(x′

1x
′
2x

′
3)) becomes a first order predicate.

We have given an almost sure encoding that transforms second order A∗

into a totally first order [though hardly natural to those in graph theory!]
sentence A which has the desired infinite spectrum.

The notion of almost sure encoding is an intriguing one and will appear
several more times. One is given a property P in some large language L+

and one wishes to find (or, in one example later, to disprove the existence
of) a sentence A in a given smaller language L which is an almost sure
encoding of it. By this we mean that the probability of P,A differing in
truth value goes to zero as the model size goes to infinity. Of course, one
also has to fix the probability measure, in our case G(n, p(n)) with some
particular p(n). Hella, Kolaitis and Luosto have called two languages L,L′

almost everywhere equivalent if for every P in one language there is an A
in the other where, as above, the probability of P,A differing in truth value
goes to zero as the model size goes to infinity. One particularly intriguing
problem they give involves G(n, p) with p = 1

2 : Is monadic existential second
order logic almost everywhere equivalent to monadic universal second order
logic? They conjecture that the answer is no but it does seem difficult to
show negative results about the existence of an almost sure encoding.

10 The Jump Condition

We have already mentioned that the theories Tα are all distinct. However,
if we fix the quantifier depth u of the sentences we are examining then the
fall into definite intervals. Lets recall the sequence t0, . . . , tu from § 5. We
had t0 = 0, t1 = 1 and ti+1 = max[ti, ⌈(u− i)ǫ−1⌉] where ǫ was the minimum
value of v−1(eα−v) over all integers v, e with v ≤ ti and v−eα ≤ 0. We try
to define this sequence for rational α as well. It doesn’t always work. Take,
for example, u = 5 and α = 1

3 + 10−6. With t1 = 1 we take v = 1, e = 3
to give ǫ = 3 · 10−6. This yields a t2 roughly 4

3106 which is bigger than the

18



numerator of 106 + 1 of α. Now in trying to define t3 we have v, e with
v ≤ t2 and v − eα = 0 so that ǫ = 0 and the process explodes.

This isn’t a surprise, the Zero-One Law isn’t supposed to hold for rational
α. But it will hold on sentences of quantifier depth u if the rational α is not
too rational. To be precise, let XPLu denote the set of rational α for which
the sequence t0, . . . , tu is not well defined together (a technical point) with
those α for which the sequence is well defined and α has numerator at most
tu. For α 6∈ XPLu we do get a Zero-One Law. It turns out that XPLu is
a well ordered set under the ordering >. (There is a lot of pretty number
theory involved in studying XPLu which is quite remniscent of continued
fractions. The example above actually shows 1

3 + 1
m ∈ EXP5 for all large

integers m so that EXP5 is infinite. Here 1
3 is an accumulation point of

EXP5 but only from larger values.) That is, for every a/b ∈ XPLu (except
the smallest) there is an (a/b)− ∈ XPLu which is the biggest element of
XPLu smaller than a/b. Then XPLu splits the unit interval into intervals
I from (going down) a/b to (a/b)−. (We include the I from the smallest
value of XPLu to zero.) Inside each interval the sequences t0, . . . , tu are the
same. Further, the truth value of any A of quantifier depth u remains the
same as α ranges over such an I. (Basically, one only needs notions of safe
and dense rooted graphs up to v = tu and these notions are the same for all
α in the interval.) To rewrite as a condition on possible fA:
Jump Condition: If f = fA for some first order A then there is a u such
that f is constant on each interval I defined by the splitting set XPLu.

11 The Complexity Condition

For α ∈ (0, 1] rational let us define gA(α) to be the limiting value of fA(α−ǫ)
as ǫ approaches zero from above. Since EXPu is well ordered under > this
is well defined. Indeed, for α ∈ EXPu this gives the value of fA on the
interval from α to the next α−. Since the intervals I defined above partition
the unit interval gA will determine fA.

For α ∈ (0, 1] we define a theory T−
α . This will be the limiting theory

of the Tα+ǫ as ǫ approaches zero from above. Recall that the splitting into
dense and sparse rooted graphs was not a strict dichotomy for α rational
because of the possibility that v − eα = 0. In T−

α we simply consider such
rooted graphs as sparse, as that is their status in Tα+ǫ with ǫ positive. This
can be shown to give a complete theory and gA(α) = 1 precisely when A
lies in this theory.
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We have a most surprising complexity condition on the functions gA.
Complexity Condition:

{0a1b : A ∈ T−

a/b} ∈ PH

To see this, let us fix the quantifier depth u and consider how difficult
it is to find if A ∈ T−

a/b as a function of the denominator b. We can as
before define the sequence t0, . . . , tu. Here having defined ti we define ǫ by
only looking at those v, e with v ≤ ti and v − e(a/b) strictly negative. But
then v−e(a/b) has denominator at most tib and so ǫ ≥ (tib)

−1. Other terms
(considering u fixed) supply bounded factors, basically ti goes up by at most
a factor of b as i increases. That is, ti = O(bi).

We can write any A of quantifier depth u in the form

A : Qx1
Qx2

· · ·QxuP (x1, . . . , xu)

where Q is either ∃ or ∀, very possibly taking different values at different
times, and P is a Boolean expression of the atoms xi = xj and xi ∼ xj. The
truth value of A in T−

a/b can now be turned into a game between two players.
We’ll call them Spoiler and Duplicator as before, though this game is not
the Ehrenfeucht Game. Duplicator’s object is to show A is a consequence
of T−

a/b, Spoiler tries to show it is not.
The Game Board. The game board has levels 0, 1, . . . , u. Each level has

a finite set of positions. At level 0 are the possible values of cl0(x1, . . . , xu).
[Recall that these are determined by the graph on {x1, . . . , xu} and, to be
formally correct, the equalities amongst the xi.] At level i are the possible
values of the ti-closure of x1, . . . , xu−i. When i = u, the top level, there is
only one possible tu-closure of ∅, namely ∅ so there is only a single position.

The Initial Position. The top level position ∅.
The Winning Final Positions. The 0-position determines the truth

value of P (x1, . . . , xu) - call a 0-position winning if P is true, otherwise
losing.

The Permitted Moves. All moves go down one level. Let H,H ′ be
positions on the i and i − 1 level respectively. Moving from H to H ′

is permitted if and only if in T−

a/b the following is a theorem: Given any
x1, . . . , xu−i with ti-closure H there exists xu−i+1 such that the ti−1-closure
of x1, . . . , xu−i, xu−i+1 is H ′. We had argued that the Tα are complete via
the Ehrenfeucht game but it could have been done syntactically. The key re-
sult is that in Tα for any positions H,H ′ on the i, i−1 level either the above
is a theorem or it is a theorem that: Given any x1, . . . , xu−i with ti-closure H
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there does not exists xu−i+1 such that the ti−1-closure of x1, . . . , xu−i, xu−i+1

is H ′.
The Rules of the Game. There are u rounds. On the i-th round when

xi is quantified existentially (i. e. Q = ∃) it is Duplicator’s move, when it
is quantified universally it is Spoiler’s move. In either case the permitted
moves are given above so that the position moves through the levels and at
the end of the u rounds is on the bottom level. Those positions have been
designated winning and losing, and Duplicator wins or loses accordingly.

This game description works for any Tα or T−

a/b. But with T−

a/b we can
bound the game complexity by noting that each position is given by a graph
(together with designated vertices) of size polynomial in b, certainly O(bu),
and hence can be described by a sequence of bits of length O(b2u). Therefore
winning the game has complexity in the Polynomial Heirarchy at level u.

Well, not quite. We also have to examine whether a move H to H ′ is
permissible. To “prove” that the move is permissible Duplicator draws the
picture of H and H ′. When the move is Inside she simply designated the
new move xu−i+1 and the set H ′ which is the new closure. When the move
is Outside she gives which vertices of H are still in H ′ plus adds the new
vertices (called NEW in the completeness proof) with all edges and desig-
nated vertex xu−i+1. She further lists the sequence of rigid extensions that
give the ti+1-closure. All this can be done with a polynomial length string.
Now Spoiler is allowed a polynomial length string to show that Duplicator
has been duplicitous. He can show that one of the rigid extensions is not
really rigid by nailing down some vertices so that the extension becomes
sparse. He can show (in the Outside case) that NEW is not really safe
over H by demonstrating a dense subextension. Finally, he can show that
the ti+1 closure is more that H ′ by exhibiting, inside Duplicator’s picture of
H ∪H ′, a dense extension. (There is a theorem that dense extensions must
contain rigid subextensions so he need not show that his extension is rigid.)
This shows that the permissibility of a move is in the second level of the
Polynomial Heirarchy.

Remarkably, the Jump Condition and the Complexity Condition charac-
terize the possible functions fA. We have seen, albeit in outline form, that
these conditions are necessary. That there are sufficient is technically quite
challenging. This result is due to Gabor Tardos.
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12 Nonconvergence via Almost Sure Encoding

Let us turn to the random ordered graph G<(n, p). The underlying model
is still a vertex set Ω of size n and a probability space of graphs on Ω where
each pair of vertices is adjacent with independent probability p. In addition,
the set Ω is totally ordered by a built-in relation <. This relation is part
of the language. For convenience we can assume Ω = {1, . . . , n}. Now 1 is
uniquely defined as that element with nothing less than it and 2 is uniquely
defined as that element with only 1 less than. We can that express 1 ∼ 2 by
the first order sentence:

∃x∃y(x 6= y) ∧ (x < y) ∧ [∀zz < y → z = x] ∧ x ∼ y

This event (for n ≥ 2) has probability p. We shall write y = x + 1 if x < y
and there is no z in between them. When y 6= 1 we write x = y − 1 when
y = x + 1. Note, however, that addition and subtraction are in general not
defined in this language.

We shall restrict our attention to p = 1
2 . The example above shows that

there is no Zero-One Law, that Pr[A] need not converge to zero nor one.
We aim for the following stronger negative result of Compton, Hansen and
Shelah.

Theorem: There is an A for which limn→∞ Pr[G<(n, 1
2) |= A] does not

exist.
The central idea is to encode arithmetic on an ordered set S, first using

second order language and then in first order with an almost sure encoding.
The second order encoding is standard. We say that on S there exist ternary
relations +(x, y, z), ∗(x, y, z) (with the interpretations x+y = z and x ·y = z
respectively) such that

1. +(x, 1, z) if and only if z = x + 1 as described above.

2. When y 6= 1, +(x, y, z) if and only if +(x, y − 1, z − 1)

3. ∗(x, 1, z) if and only if z = x

4. When y 6= 1, ∗(x, y, z) if and only if there exists u with ∗(x, y − 1, u)
and +(x, u, z)

When this occurs we say S is arithmetizable. Now for the almost sure
encoding. For c ≤ d we write Rc,d(x, y, z) if x, y ≤ z and (critically) there
exists e with c ≤ e < d such that e is adjacent to x, y, z and no other elements
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of S. We say S is first order arithmetizable if there exist c, d and c′, d′ such
that Rc,d, Rc′,d′ have the properties of plus and times enumerated above. For
our specific purposes we shall consider only S of the form {1, . . . , u} though
one could give similar results for more general S with a bit more technical
work. We make all logarithms to base 2 in what follows for definiteness.

Representation Lemma: Let u ≤ 0.9 log1/3 n Then almost surely
there exist c ≤ d such that Rc,d is the ternary relation + on {1, . . . , u} and
also c ≤ d such that Rc,d is ∗.

Let + have s instances so that s < u2. Consider a pair c, d with u < c
and d = c + s. Call c a witness if Rc,d is indeed + on {1, . . . , u} There
is an arrangement (indeed, many such) of the edges between {1, . . . , u}
and {c, . . . , d − 1} such that c is a witness. This occurs if us pairs have
a particular set of adjacencies (and no more) and so has probability 2−us of
occurring. There are ∼ n potential witnesses c so that the expected num-
ber of witnesses is bigger than roughly n2−us. We’ve bounded u so that
us < u3 < (0.9)3 log n and so this expected number goes to infinity. Some
technical work shows that almost surely there is a witness. [Actually, the
technical work isn’t so difficult here. We can pick ∼ c′n log−1/3 n values c so
that the intervals [c, d) are disjoint and so the events that c is a witness are
mutually independent over those different c.] Representing ∗ is the same.
Indeed, with further technical work (perhaps modifying the bound on u)
one could almost surely represent every ternary, even k-ary, relation R.

Similar arguments, which we exclude, show that when u > C log1/3 n
(C a computable absolute constant) than the representation lemma almost
surely fails and {1, . . . , u} is not first order arithmetizable. For definiteness
let us take C = 900. Now the maximal u such that {1, . . . , u} is determined
up to a factor of 1000.

Once we have arithmetized {1, . . . , u} we are off to the races. We can
say that u is prime, that u is a Fermat prime, there is a large spectra here.
Certainly we can talk about log u.

Now we can give our first order sentence A: There exists u such that

1. {1, . . . , u} is first order arithmetizable

2. {1, . . . , u + 1} is not first order arithmetizable

3. log u modulo 40 is one of 1, 2, . . . , 20.

Why does this work? The size n of the model almost surely determines
u up to a factor of 1000 and so log u is almost surely determined up to an
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additive term of 10. For some n this range of log u will all be in 1, . . . , 20
modulo 40 while for other n this range will all be in 21, . . . , 39, 0 modulo
40. This gives infinite subsequences of n on which our sentence has limiting
probility one and zero respectively, the worst kind of nonconvergence.

The almost sure encoding can be used to show nonconvergence by encod-
ing arithmetic in other contexts. We examine, in outline form, G(n, n−1/4).
Note that we do not include < as a built in predicate here. We arithmetize
a set S in the second order language by saying that there exists a binary
< and ternary +, ∗ with the desired first order properties. For u 6∈ S we
define a ternary Ru on S letting Ru(x, y, z) be the first order property that
u, x, y, z have a common neighbor. Also for u, x 6∈ S we have the binary
relation Ru,x(y, z) = Ru(x, y, z). [ We actually need further technical work
here in that such relations are symmetric while < is not.] We say S is first
order arithmetizable if there exist u1, u2, u3, u4 such that Ru1,u2

, Ru3
, Ru4

play the role of <, +, ∗. At p = n−1/4 any four vertices have probability
(1 − p4)n−4 ∼ e−1 of having no common neighbor. Basically, each Ru acts
like an independent (this part takes some technical work) random ternary
predicate with probability of occurance 1−e−1. Key here is that both 1−e−1

and e−1 are bounded away from zero. Letting S have size s, a given u wit-
nesses a particular ternary R with probability at least e−t where t =

(s
3

)

is
the number of triples. The expected number of witnesses is at least ne−t.
For s ≤ ln1/3 n this goes to infinity and one can show that almost surely
+, ∗, < are represented. We cannot quantify over all subsets S in the first
order language but instead look at sets S = N(x1, x2, x3, x4), the set of
common neighbors of x1, x2, x3, x4. One can show that there are such S of
all sizes up to roughly ln n/ ln ln n. On sets S, T of size O(ln1/3 n) we can
say BIGGER(S, T ) in the first order language (as done in § 9) by saying
there exist u1, u2 so that Ru1,u2

gives an injection from T to S. It is then
a first order property of x1, x2, x3, x4 that S = N(x1, x2, x3, x4) is arithme-
tizable but there is no “bigger” arithmetizable S′ = N(x′

1, x
′
2, x

′
3, x

′
4). Such

S would almost surely have size Θ(ln1/3 n). But when S is arithmetizable
we can say a wide variety of things about its size u. In particular, we get
a nonconvergent sentence by saying that there exist x1, x2, x3, x4 such that
the size u = |N(x1, x2, x3, x4)| has log u between 1 and 20 modulo 40.
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13 No Almost Sure Representation of Evenness

In this section we restrict ourselves to the random ordered graph G<(n, p)
with p = 1

2 . Set, for any property A,

fA(n) = Pr[G<(n, p) |= A]

We shall outline the proof of the following result of Saharon Shelah:
Theorem: For any first order A

lim
n→∞

fA(n + 1) − fA(n) = 0

This provides an interesting counterpoint to the Compton, Hansen, She-
lah result discussed earlier. There are A for which fA(n) does not converge
but it cannot oscillate back and forth too fast. There is a very nice corollary:
There is no first order sentence that provides an almost sure representation
for the property that the number n of vertices is even. For such an A would
have fA(2n) → 1 and fA(2n + 1) → 0 which would contradict the slow os-
cillation of Shelah’s Theorem. We find in general that it is quite difficult to
prove negative results about almost sure representation and in this context
Shelah’s result is particularly striking.

We link G<(n, p) and G<(n + 1, p) be the following procedure. Take a
random graph on 2n+1 ordered vertices, call it G ∼ G<(2n+1, p). Restrict-
ing to a random subset S of size precisely n gives G(n), with distribution that
of G<(n, p). Restricting to a random set S of size precisely n + 1 similarly
gives G(n+1) ∼ G<(n + 1, p). We thus have

fA(n + 1) − fA(n) =
∑

G

µ(G)
[

Pr[G(n+1) |= A] − Pr[G(n) |= A]
]

where µ(G) is the probability G<(2n + 1, p) is G. Shelah actually shows
that for every G on 2n + 1 ordered vertices

∣

∣

∣Pr[G(n+1) |= A] − Pr[G(n) |= A]
∣

∣

∣ → 0

Fix G and a property A. Consider the property that G restricted to S
satisfies A as a function of S . For example, a sentence such as

∃x∀y∃zz ∼ y ∧ y ∼ x

would turn into

∃x(x ∈ S) ∧ [∀y(y ∈ S) → ∃z(z ∈ S) ∧ (z ∼ x) ∧ (z ∼ y)]
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Such an property A∗ is a Boolean function of the variables x ∈ S for x =
1, . . . , 2n + 1. Here we turn to circuit complexity - the function may be
represented by a circuit with primitives x ∈ S. Each ∃x is an OR-gate with
fan-in 2n + 1 (that is, all x) and each ∀x is an AND-gate with fan-in also
2n + 1. The statements x ∼ y and x < y then have definite truth values
and so do not appear in the circuit. A∗ is then represented by a bounded
depth polynomial size circuit. It is a deep theorem of circuit complexity
(due originally to Razborov) that such a circuit cannot determine majority
- that is, cannot be true if and only if at least half of the 2n + 1 inputs are
true. Some further technical work shows that no such circuit can distinguish
between a random n and n + 1 inputs being true - that the difference of the
probability the circuit yields true in the two experiments must tend to zero.
This gives Shelah’s result.

14 The Ehrenfeucht Game

The Ehrenfeucht Game is a powerful and very general method for showing
that two models have (or do not have) the same first order properties. We
consider first the specific example of graphs. Let G,H be two graphs and let
t be a positive integer. We describe the Ehrenfeucht Game EHR(G,H; t).

The Board: A copy of G and a copy of H on disjoint vertex sets.
The Players: Spoiler and Duplicator.
The Play: There are t rounds. On the i-th round Spoiler goes first. He

selects either a vertex from G or a vertex from H. Then Duplicator goes.
She selects a vertex from the graph that Spoiler did not select from. We
let xi denote the vertex selected from G in the i-th round and yi the vertex
selected from H in the i-th round, regardless of who selected them. We note
that Spoiler’s choice of which graph to choose from can change from round
to round.

The Winner: Duplicator wins if and only if the map from xi to yi pre-
serves adjacency and equality. That is: xi, xj are adjacent in G precisely
when yi, yj are adjacent in H. Further xi = xj precisely when yi = yj.

We note that when the graphs both have at least t vertices there is no
point in Spoiler selecting an xj equal to a previous xi as then Duplicator
would simply select yj = yi. Hence we could add the requirement that
Spoiler always picks a new vertex. Then Duplicator would also always pick
a new vertex.

Theorem: Duplicator wins EHR[G,H; t] if and only if G,H have the
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same truth values on all first order sentences of quantifier depth t.
We illustrate this fundamental result with an example. Suppose G has

an isolated vertex and H does not. The property ∀x∃yx ∼ y has quantifier
depth t = 2. Spoiler selects the isolated vertex x1 ∈ G and Duplicator must
select some y1 ∈ H. As y1 is not isolated Spoiler moves over to H and
selects a y2 ∈ H adjacent to y1. Now Duplicator is stuck, there is no x2 ∈ G
adjacent to x1 for her to select.

As an immediate corollary: G,H are elementarily equivalent if and only
if Duplicator wins EHR[G,H; t] for every positive integer t. Note, however,
that this is not the same as Duplicator winning a game with an infinite
number of moves.

Corollary: Let T be a consistent theory with no finite models. Then
T is complete if and only if for every two countable models G,H of T and
every positive integer t Duplicator wins EHR[G,H; t].

If T is complete the models G,H are necessarily elementarily equivalent
so that Duplicator wins. If T is not complete there is a sentence A so
that T + A and T + ¬A are both consistent and so they have countable
models G,H. Letting t be the quantifier depth of A, Spoiler would win
EHR[G,H; t].

Let us generalize to first order languages (we could go even further) with
a finite numer of relation symbols R of varying arity. This would include the
ordered graph (with < as well as adjacency) or the simple unary language
(with only one unary U and equality) of § 1. Let G,H be two models of the
language. Then EHR[G,H; t] is played as described above, with Spoiler and
Duplicator selecting x1, . . . , xt ∈ G and y1, . . . , yt ∈ H. For Duplicator to
win she now has to preserve all the relations. That is, let R be any relation
symbol of arity, say, l. Then R(xi1 , . . . , xil) must have the same truth value
as R(yi1, . . . , yil) for every choice of i1, . . . , il from 1, . . . , t.
About the references

Among the other surveys of this area we recommend those of Compton
[3], Winkler [26], Lynch [15], and this author [23]. The Ehrenfeucht game
was first given in [5]. (It was essentially found in earlier work by Fraisse
and is sometimes referred to as the Ehrenfeucht-Fraisse game.) The clas-
sic Zero-One law for random graphs with p = 1

2 (often called the uniform
distribution) are due to Glebskii et. al. [8] and Fagin [7]. The classic paper
that began the theory of random graphs is by Paul Erdős and Alfred Rényi
[6]. The basic text on random graphs is Bollobás [2].

The Zero-One Law for p = n−α appeared first in Shelah, Spencer [17]. An
approach using the Ehrenfeucht game is given in Spencer [21]. A syntactic
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proof of the completeness of the Tα is given in Spencer [22]. An examination
of the countable models of Tα is given in Spencer [20]. The Alon, Spencer
text [1] also includes some of this material.

In this brief paper we have only examined a few examples of random
structures. Among the many others we mention Lynch [14] on unary func-
tions; Shelah and Spencer [18] and StJohn and Spencer [24] on random
unary predicates with order (considerably different from §1!);  Luczak [11]
on random partially ordered sets.  Luczak and Shelah [12] consider an in-
teresting random graph model on vertex set 1, . . . , n where the adjacency
probability between i and j depends on |i − j|.

While we have here restricted ourselves to first order logic there are a
number of papers considering stronger logics. Generally, these give negative
results that a Zero-One Law or convergence does not always hold. A nice
example is given by Kaufman and Shelah [10], giving a nonconvergent second
order sentence on G(n, p) with p = 1

2 . Many such results, including those
on the random ordered graph given in the text, can be found in Compton,
Henson, Shelah [4]. Shelah [16] shows that on the random ordered graph
no first order sentence can almost surely encode the evenness of the model.
Hella, Kolaitis and Luosto [9] consider the general problem of almost sure
equivalence.

Spencer [19] examines the random graph theory of extension statements
in some detail.  Luczak and Spencer [13] use some detailed random graph
theory to give a near characterization of those p = p(n) (not just those of
form n−α) for which the Zero-One Law holds. Spencer and Tardos [25] give
the necessary conditions on the function fA(α) defined in the text. The
proof of sufficiency by Tardos is in preparation.
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