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To determine if E survives at time c we create a tree with root E. If A � E
and xA < c we consider the Q� 1 l-sets E0 � A, E0 6= E, as a brood of children
of E, born at time x. If all these E0 survive at time x then either A is placed in F
at time x or some A0 � E had already been placed in F . Either way E does not
survive at time c.

In Asymptopia this becomes a continuous time birth process. E, now Eve,
has birthdate c. Time goes backwards. Eve gives birth to broods of size Q�1 by a
Poisson process with unit density. Children with birthdate x in turn have broods
in [0; x) by the same process. With probability one a �nite tree T is produced.
Survival is de�ned inductively. Childless E0 survive and E0 does not survive if
and only if she has a brood all of whom survive. Let f(c) be the probability Eve
survives. Some technical work gives limn!1 fn(c) = f(c).

In Asymptopia we estimate f(c)� f(c+ �c). The di�erence for Eve is if she
has no surviving broods born in [0; c), a brood born in [c; c+ �c), and that brood
all survive. For �c small

f(c) � f(c + �c) � f(c)(�c)f(c)Q�1

Here we bring out the most powerful tool of all, Calculus! In the limit the derivative
f 0(c) = �f(c)Q. Eve born at c = 0 is always childless so f(0) = 1. We solve the
di�erential equation

f(c) = [1 + (Q� 1)c]�1=(Q�1)

For any � > 0 we �nd c and then n so that on average fewer than �
�
n
l

�
E survive

at time c. Thus there exists an outcome for which fewer than �
�
n
l

�
E survive. Then

the A 2 Fc must cover (1� �)
�
n
l

�
sets E and

jF j � jFcj � (1� �)

�
n

l

�
=

�
k

l

�

as desired.
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that the proper magni�cation with which to slow down the double jump is

p =
1

n
+

�

n4=3

This narrower range of p is called the Phase Transition. When � = �(n) !�1 the
largest components are all of size o(n2=3), they are all almost the same size and they
are all trees. The Phase Transition has not started. By the time � = �(n) ! +1
there is a dominant component whose size is � n2=3 while all other components
have size o(n2=3). Moreover the complexity (de�ned as edges minus vertices) of the
dominant component goes to in�nity. In Asymptopia the situation at � constant
is given by an in�nite sequence c1 > c2 > . . ., representing components of sizes
c1n

2=3; c2n
2=3; . . . in G(n; p). We think of this as an in�nite asteroid belt with

asteroids of these sizes. The distribution of these sequences is complex. But the
dynamic situation, moving from time � to time �+ d� is easy to describe. Given
components of sizes cin2=3; cjn2=3 there are cicjn4=3 potential edges between them
and n2=3d�=2 random edges are being selected so they are joined with probability
� c1c2d�. In Asymptopia we have a peculiar physics in which with probability
c1c2d� asteroids of sizes c1; c2 merge to form a new asteroid of size c1 + c2. Each
asteroid further has a complexity xi, the complexity of the component. For � large
negative most of the components will be trees so xi = �1. When asteroids of
complexities xi; xj merge the merged asteroid has complexity xi + xj � 1. With �
large negative the asteroids are all tiny but as � increases moderate size asteroids
are created. This physics favors the rich, a larger asteroid is more likely to merge
with others and so become still larger. Computer experiments reveal the process
quite strikingly, when � = �4 the sizes are small while by � = +4 in over 90% of
the cases a clear dominant component has emerged.

4.2 Asymptotic Packing

For 2 � l < k < n let m(n; k; l) denote the maximal size of a family F of k-
element subsets of f1; . . . ; ng so that no l-set E is contained in more than one
A 2 F . We set Q =

�
k
l

�
for notational convenience. Elementary counting gives

m(n; k; l) � �n
l

�
=Q, with equality holding if and only if there is an appropriate

tactical con�guration. (For l = 2; k = 3 these are the Steiner Triple Systems.) In
1963 Paul Erd}os and Haim Hanani [9] conjectured that for all 2 � l < k

lim
n!1

m(n; k; l)Q=

�
n

l

�
= 1

This was �rst proven by Vojtech R�odl [17]. Here we outline a new proof. Indeed,
we show that a random greedy algorithm gives F of desired size.

We describe a greedy algorithm with a handy parametrization. Assign to each
k-set A a random real xA 2 [0;

�
n�l
k�l

�
]. This orders the k-sets. Consider them in

order accepting A if no B with jA \ Bj � l has already been accepted. Let Fc be
the family of A accepted with xA < c. An l-set E is said to survive at \time" c if
no A 2 Fc contains E.
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ask a precise question. Fix k = 10. Given S1; . . . ; Sn � [n] as above, can the desired
� be found with a polynomial (in n) time algorithm? Even allowing randomized
algorithms the answer is not clear. Though LLL guarantees Pr[^i2IBi] 6= 0 it will
be exponentially small in n so checking random � would take expected exponential
time. As stated the problem remains open. But a recent breakthrough by J. Beck[4]
gives an algorithm when k is somewhat larger.

We outline Beck's idea as a randomized algorithm though it can be, and
originally was, expressed in deterministic fashion. Fix k = 100 for de�niteness.
First [n] is colored randomly. Any Si with more than 80 (say) points in one color
is considered dangerous. All points in dangerous sets are uncolored. If Si still has
red and blue colors, �ne. Otherwise we say Si survives and let S�i be the set of
uncolored points. Then jS�i j � 20 for otherwise it had had more than 80 points
all one color, so it was dangerous and all points were uncolored. Let F� be the
family of S�i . We want a 2-coloring � of F� with no S�i monochromatic. Having
picked 100; 80; 20 appropriately LLL applies and � exists. But isn't this begging
the question. Surprisingly, no. The family F� has, almost surely, a quite simple
structure. Make a graph G with vertices the indices 1 � i � n and adjacency
i � j if Si \ Sj 6= ;. Each i has at most 104 neighbors. For Si to survive one of
its neighbors must be dangerous, and this occurs with probability at most a very
small constant �. Let G� be the restriction of G to the surviving i. Imagine that
each i survived with independent probability �. When i survived it would have
in G� on average  = 104� surviving neighbors who would have on average 2

further neighbors, etc. With  < 1 the neighborhood of i looks locally like a birth
process which will almost surely die. An even better analogy is to components of
the random graph G(n; n ) with  < 1. There, as discussed in x4.1, all components
are of size O(lnn) Of course, the i do not survive independently, when i � j
the dependence can be quite strong. Nonetheless Beck showed that G� almost
surely has all components of size O(lnn). The coloring of F� then breaks into
coloring the at most n components separately. Each component has O(lnn) sets
hence O(lnn) vertices. On each component a coloring � exists. Beck �nds it by
using exhaustive search! This takes exponential time but the problem has only
logarithmic size so the time is polynomial in n. Alon[1] has given an alternate,
parallelizable, version of this algorithm and many applications. Still, the general, if
ill-formed, question of whether LLL always admits an algorithmic implementation
remains open. More likely the opposite is true. A class of problems may well be
found where the existence of solutions are guaranteed by LLL but a polynomial
time algorithm to �nd them would violate usual assumptions in complexity theory.

4 Adventures in Asymptopia

4.1 Inside the Double Jump

In their original [10] Paul Erd}os and Alfred R�enyi discovered what they called the
\double jump" in the evolution of the random graph G(n; p) around p = n�1.
When p = n�1,  < 1, all components of G are small, the largest of size �(lnn),
but when  > 1 a giant component of size �(n) has been created. We now know

7



With care we can ensure the entropy requirement and that 2
P

f(s) = O(n1=4).
This gives a substantial partial coloring of [n] with j�(A)j = O(n1=4) for all A 2 F .
The iteration of this method to get a full coloring � (without losing a logarithmic
factor!) uses interesting but noncombinatorial ideas.

Matou�sek[15] applied entropy to discrepancy of halfplanes. Let P be a set
of n points in the plane and F the family of H \ P , H a halfplane. Here the
decomposition is more di�cult, the end result again being a family G so that all
A 2 F are expressible in terms of B 2 G of distinct cardinalities 2j. Again G has
� n2s�2 sets of size s and the entropy argument gives a partial coloring � { which
again can be extended to a full coloring � { with j�(A)j = O(n1=4) for all A 2 F .
This result is best possible up to constants and the method works for halfspaces in
Rd for any constant d. Indeed discrepancy of halfplanes came �rst and motivated
the reinvestigation of Roth's result.

Let ~vi = (ai1; . . . ; ain) 2 Rn, 1 � i � n. For � : [n]! f�1;+1g set

~S =
nX
i=1

�(i)~vi = (L1; . . . ; Ln)

with Lj =
P

i �(i)aij. Entropy methods give that if j~vij1 � 1 there exists � with

j~Sj1 � cn1=2. (When aij 2 f0; 1g this reduces to n sets on n points and the same
proof applies.) Linear algebra methods[5] give that if j~vij1 � 1 there exists � with

j~Sj1 � 2. Assume now j~vij2 � 1. Set �2j =
P

i a
2
ij so

P
�2j =

PP
a2ij � n. Let �

be random, Li acts like �iN . For k large ENT (�N; k) < � when � � 1. Further
ENT (�N; k) < ��2 for all �. One calculates

P
ENT (Li; k) < �n so there exists

� : [n] ! f�1; 0;+1g with many �(i) 6= 0 and j~Sj1 � K. Here iteration fails!
More precisely, one may [19] iterate the process O(lnn) times to give � with all

�(i) = �1 and j~Sj1 = O(lnn). Still open is a challenging conjecture of J. Koml�os

that such � exists with j~Sj1 � K.

3 Algorithmic Sieve

Let Bi; i 2 I be events, I �nite. Let � be a symmetric relation on I so that Bi is
mutually independent of all Bj with i 6� j. This includes the Janson scenario of
x1 but is far more general.
Lov�asz Local Lemma[12] (symmetric case). If all Pr[Bi] � p and, for each i 2 I,
i � j for at most d j 2 I and if p < dd(d+ 1)�(d+1) then ^i2IBi 6= ;.

The strength of LLL is that I may be of arbitrary size. With Bi as bad events
it sieves out a good outcome. We'll concentrate on one example. Let S1; . . . ; Sn �
[n] with all jSij = k and all j in precisely k + 1 sets Si. We want a coloring
� : [n] ! fRed;Blueg so that no Si is monochromatic. Let � be random and
let Bi be the event that Si is monochromatic. We naturally de�ne i � i0 when
Si \ Si0 6= ;. Then p = 21�k and d = k2. For k large (k = 10 su�ces) the LLL
conditions hold and � exists.

The probabilistic method has always had a magical quality - just where is the
coloring, graph, tournament or whatever that we have proved exists? Here we can
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and
nX
j=0

�
n

j

�
< 2n(1��)

Then there is a partial coloring � of 
 with

j�(Si)j � bi for all i

and more than 2n points x 2 
 colored.
Proof. Let � : 
 ! f�1;+1g and de�ne

L(�) = (Rb1(�(S1)); . . . ; Rbv(�(Sv))

Entropy, critically, is subadditive so L has entropy at most �n. Therefore some
value of L obtained with probability at least 2��n, and some 2(1��)n colorings �
have the same L-value. Colorings � can be considered points on the Hamming
Cube f�1;+1gn. A classic result of D. Kleitman[11] gives that some two �1; �2
of these must di�er in at least 2n coordinates. Then � = (�1 � �2)=2 gives the
desired partial coloring. 2

Its best to consider ENT (n; b) under the parametrization b = �n1=2. Then
Rb(Sn) is roughly R�(N ), with N standard Gaussian. For � large ENT (n; b) <

e�c�
2

, the terms R = 0;�1 dominating. In particular, for � a large constant
ENT < �. For � small ENT (n; b) < c ln(��1), the dominating factor being that
R is roughly uniform for jij = O(��1).

Suppose F consists of n sets on an n-set 
, so all sets have size at most n. For
� a large constant (six will su�ce) the Theorem gives a coloring with only a small
(but �xed) fraction of the points uncolored and all j�(A)j � �n1=2. Appropriately
iterating this author[19] showed that for suitable constant � one can �nd � as
above with no points uncolored.

Let 
 = [n] and F be the arithmetic progressions on [n]. The discrepency
disc(F) is the least g(n) for which there is a � : 
 ! f�1;+1g with j�(A)j � g(n)
for all A 2 F . In 1964 K. F. Roth[18] used analytic methods to show disc(F) >
cn1=4. The upper bound has been lowered from n:5+o(1) to n1=3+o(1) to n1=4 lnc n [3]
over the decades and just recently to c0n1=4 by Jiri Matou�sek and this author[16].
Beck[3] provided a key decomposition. For each d � n, 0 � i < d and j � 0
with 2j � n split fx 2 [n] : x � i mod dg into consecutive intervals of length 2j,
leaving out the excess. Let G be the family of sets obtained. Any A 2 F can be
written A = B � C with C � B and both B;C the disjoint union of S 2 G of
distinct cardinalities. Thus a coloring � for which all S 2 G with jSj = 2j have
j�(S)j � f(2j ) would have the property that j�(A)j � 2

P
j f(2j) for all A 2 F .

Calculation gives that G has roughly n2s�2 sets of size s = 2j . To get a substantial
partial coloring with j�(A)j � f(jAj) for A 2 G the entropy requirement becomes

X
n2s�2ENT (s; f(s)) � �n

When s � n1=2 we may take f(s) = kn1=4. For larger s the savings in s�2 allows for
a smaller f(s) and for smaller s the savings in s1=2 also allows for a smaller f(s).
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coordinates outside of I. Let y0 agree with y on I and agree with z outside of I.
By the certi�cation h(y0) � b. Now y0; z di�er in at most t

p
f(b) coordinates and

so, by Lipschitz,
h(z) > h(y0)� t

p
f(b) � b� t

p
f(b)

but then z 62 A, a contradiction. So Pr[X > b] � 1� Pr[At] so

Pr[X < b� t
p
f(b)] Pr[X � b] � e�t

2=4

As the right hand side is continuous in t we may replace < by � giving the
Corollary. 2

Letting b (or b � t
p
f(b)) be the median of X the Corollary gives a sharp

concentration result. For example, let 
 = [0; 1]n with uniform distribution and
let X(x1; . . . ; xn) be the length of the longest monotone subsequence of x1; . . . ; xn.
X is Lipschitz and f-certi�able with f(s) = s as a monotone subsequence certi�es
itself. It is known that X � 2

p
n almost surely. Therefore X almost surely lies

within n1=4!(n) (!(n) !1) of its median.
In G(n; :5) let X be, as before, the maximal number of edge disjoint k-

cliques. X is Lipschitz and f-certi�able with f(s) =
�
k
2

�
s as the s k-cliques certify

themselves. While medians are notoriously di�cult to calculate tight concentra-
tion yields that the median b � � > cn2k�4 as previously discussed. Setting
t = bf(b)�1=2

Pr[!(G) < k] = Pr[X = 0] = Pr[X � b� t
p
f(b)] < 2e�t

2=4 < ce�c
0n2 ln�6 n

2 Entropy

Let F be a family of subsets of 
. A two-coloring is a map � : 
 ! f�1;+1g.
For A � 
 de�ne �(A) =

P
a2A �(a) so that j�(A)j is small if the coloring is

\nearly balanced" on A. An object of discrepancy theory is to �nd � so all j�(A)j,
A 2 F , are small. Its convenient to also de�ne partial colorations as maps � : 
 !
f�1; 0; 1g, a is called colored when �(a) 6= 0, �(A) is as before.

Under random coloring of an n-set A, �(A) has distribution Sn, roughly
Gaussian with zero mean and standard deviation n1=2. Cherno� bounds give
Pr[j�(A)j > �n�1=2] < 2e��

2=2. When F consists of m sets, each of size n, one
sets � = (2 ln(2m))1=2 so these \failure events" each have probability less than 1

m
and thus there exists � with all j�(A)j � �

p
n. With entropy we can sometimes

do better.
De�ne the roundo� function Rb(x) as that integer i with 2bi closest to x. Note

Rb(Sn) = 0 when jSnj < b. De�ne ENT (n; b) to be the entropy of the random
variable Rb(Sn).
Theorem: Let F = fS1; . . . ; Svg with j
j = n and jSij = ni. Suppose bi; � and
 < 1

2
are such that

vX
i=1

ENT (ni; bi) � �n
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Bi. Let � be an upper bound for all Pr[Bi]. Set

M =
Y

Pr[Bi] and � =
X
i�j

Pr[Bi ^Bj ]

Janson's Inequality:

M � Pr[^Bi] �Me
1

1��

�

2

Generalized Janson Inequality: If � � �(1� �) then

Pr[^Bi] � e��
2(1��)=�

In many cases �! 0, � ! 0 and M � e�� so that Janson's Inequality gives
Pr[X = 0] � e��. In this sense Janson's Inequality acts as a Poisson approximation
for X, though with particular emphasis at X = 0. For example, when p = c=n
and Aijk = ffi; jg; fi; kg; fj; kgg range over all triangles these conditions hold
and G(n; p) is trianglefree with probability � exp(�c3=6), as known to Erd}os and
R�enyi. Sweeping generalizations of this are given in [13] where the �rst proof of
Janson's Inequality may be found. Other proofs and generalizations are given in
[14][2].

Applying Janson to Pr[!(G(n; :5)) < k] we let AS = [S]2, S ranging over
the k-sets of vertices. Then � ! 0, � = f(k). � is the expected number of edge
overlapping k-cliques, calculation gives domination by cliques overlapping in a
single edge and � � �2(2k4n�2). The Poisson approximation does not apply but
the Extended Janson Inequality gives

Pr[!(G(n; :5)) < k] < e�c�
2=� = e�c

0n2 ln�4 n

The newest result, Talagrand's Inequality, has a similar framework to Azuma.
Let 
 =

Qm
1 
i be a product probability space. For A � 
, x = (x1; . . . ; xt) 2 


de�ne a \distance" �(A; x) as the least t so that for any real �1; . . . ; �m withP
�2i = 1 there exists y = (y1; . . . ; yt) 2 A with

P
xi 6=yi

�i � t. Note critically
that y may depend on �1; . . . ; �m. Set At equal the set of all x 2 
 with �(A; x) � t.
Talagrand's Inequality[20]:

Pr[A] Pr[At] � e�t
2=4

Call X : 
 ! R f-certi�able (f : N ! N ) if whenever X(x) � s, x =
(x1; . . . ; xm), there is a set of at most f(s) indices I that certify X � s in that if
y = (y1; . . . ; ym) has yi = xi for i 2 I then X(y) � s.
Corollary: If X is Lipschitz and f-certi�able then for all t � 0, b

Pr[X � b� t
p
f(b)] Pr[X � b] � e�t

2=4

Proof. Set A = fx : h(x) < b� t
p
f(b)g. Now suppose h(y) � b. We claim y 62 At.

Let I be a set of indices of size at most f(b) that certi�es h(y) � b as given above.
De�ne �i = 0 when i 62 I, �i = jIj�1=2 when i 2 I. If y 2 At there exists a
z 2 A that di�ers from y in at most t

p
f(b) coordinates of I though at arbitrary
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be more accurate attributions) bound the \large deviation"

Pr[X > a] < e��aE[e�X ] = e��a
Y
i

E[e�Xi ]

(See, e.g., the appendix of [2].) The power in the inequality is that it holds for all
� > 0 and one chooses � = �(a) for optimal results. Suppose, for example, that
jXij � 1. One can show E[e�Xi ] � cosh(�) � exp(�2=2), the extreme case when
Xi = �1 uniformly. Then Pr[X > a] < exp(��a + �2m=2) = exp(�a2=2m) by
the optimal choice � = a=m. Intuition is guided by comparison to the Gaussian,
in the above example V ar(Xi) � 1 so V ar(X) � m and the probability of being
more than a = �

p
m of the mean should, and here does, drop like the chance of

being � standard deviations o� the mean, like exp(��2=2).
The new inequalities are used when the Xi exhibit slight depencies. To il-

lustrate them, let G � G(n; :5). Let f(x) =
�
n
x

�
2�(x2) be the expected number

of x-cliques and let k0 = k0(n) satisfy f(k0) > 1 > f(k0 + 1). Calculation gives
k0 � 2 log2 n and its long been known that !(G) is almost surely very close to k0.
Now set k = k0 � 4 so that f(k) > n3+o(1) is large. We show thrice that

Pr[!(G) < k] < 2�n
2 ln�c n

(As G may be empty the probability is at least 2�cn
2

.) The proof via Azuma's
Inequality, given below, was given by B�ela Bollob�as[7] and was essential to his
discovery that the chromatic number �(G) � n=(2 log2 n) almost surely.
Azuma's Inequality: Let � = X0; X1; . . . ; Xm = X be a martingale in which
jXi+1 �Xij � 1. Then Pr[X > �+ a] < exp(�a2=2m).

In application we use an isoperimetric version. Let 
 =
Qm

i=1 
i be a product
probability space and X a random variable on it. Call X Lipschitz if whenever
!; !0 2 
 di�er on only one coordinate jX(!) �X(!0)j � 1. Set � = E[X].

Azuma's Perimetric Inequality: Pr[X � �+ a] < e�a
2=2m.

The connection is via the Doob Martingale, Xi(!) being the conditional
expectation of X given the �rst i coordinates of !. The same inequality holds
for Pr[X � � � a]. The random graph G(n; :5) can be viewed as the product
of its m =

�
n
2

�
coin ips. Bollob�as set X equal the maximal number of edge

disjoint k-cliques. From probabilistic methods he showed E[X] > cn2k�4. (One
may conjecture that the true value is �(n2k�2).) Then !(G) < k if and only if
X = 0 and

Pr[X = 0] = Pr[X � � � �] < e��
2=2m = e��(n

2 ln�8 n)

For Janson's Inequalities let 
 be a �xed set and Y � 
 a random subset
(so, formally, 2
 is the probability space) where the events y 2 Y are mutually
independent over y 2 
.G(n; p) �ts this perfectly with 
 = [n]2 the set of potential
edges and Pr[y 2 G(n; p)] = p for every y 2 
. Let A1; . . . ; Am � 
. Let Bi be the
event Y � Ai, Ii its characteristic function, X =

P
Ii and � = E[X]. Write i � j

if i 6= j and Ai \Aj 6= ;. Roughly � represents dependence of the corresponding
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Probabilistic Methods in Combinatorics

Joel Spencer

In 1947 Paul Erd}os[8] began what is now called the probabilistic method.

He showed that if
�
n
k

�
21�(k

2
) < 1 then there exists a graph G on n vertices with

clique number !(G) < k and independence number �(G) < k. (In terms of the
Ramsey function, R(k; k) > n.) In modern language he considered the random
graph G(n; :5) as described below. For each k-set S let BS denote the \bad"

event that S is either a clique or independent set. Then Pr[BS ] = 21�(k
2) so thatP

Pr[BS ] < 1 hence ^BS 6= ; and a graph satisfying ^BS must exist.
In 1961 Erd}os with Alfred R�enyi[10] began the systematic study of Random

Graphs. Formally G(n; p) is a probability space whose points are graphs on a
�xed labelled set of n vertices and where every pair of vertices is adjacent with
independent probability p. A graph theoretic property A becomes an event. While
in the probabilistic method one generally requires only Pr[A] > 0 from which one
deduces the existence of the desired object, in Random Graphs estimate of Pr[A]
is the object itself. Let A denote connectedness. In their most celebrated result
Erd}os and R�enyi showed that if p = p(n) = lnn

n
+ c

n
then Pr[A] ! exp(�e�c). We

give[2][6] as general references for these topics.
While pure probability underlies these �elds most of the basic results use

fairly straightforward methods. The past ten years (our emphasis here) have seen
the use of a number of more sophisticated probability results. The Cherno� bounds
have been enhanced by inequalities of Janson and Talagrand and new appreciation
of an inequality of Azuma. Entropy is used in new ways. In its early days the
probabilistic method had a magical quality { where is the graph that Erd}os in 1947
proved existed. With the rise of Theoretical Computer Science these questions take
on an algorithmic tone, having proven the existence of a graph or other structure
can it be constructed in polynomial time. A recent success of J. Beck allows the
Lov�asz Local Lemma to be derandomized. Sometimes. We close with two forays
into a land dubbed Asymptopia by David Aldous. There the asymptotic behavior of
random objects are given by an in�nite object, allowing powerful noncombinatorial
tools to be used.

1 Cherno�, Azuma, Janson, Talagrand

Let X = X1+. . .+Xm with the Xi mutually independent and normalized so that
E[X] = E[Xi] = 0. The so-called Cherno� bounds (Bernstein or antiquity might
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