
1; . . . ; k being the special vertices and let G�(n; p) be G(n; p) conditioned
on this copy. As before we let Pw(a; b) be the expected number of paths of
length w between a; b in G�. Then, as before, there is a constant M so that

Pw(a; b) < Mnw�1pw

for all a; b while
Pw(a; b) = nw�1pw(1 + o(1))

if both a and b are not in V . (We will not need the more precise error bound
for this problem.)

We split the contribution to E�[X ] into two groups. The a1; . . . ; ak which
do not overlap V contribute

nk
h
nw�1pw(1 + o(1))

i(k
2
)

to E�[X ]. Since k is �xed this is asymptotically nvpe which is asymptotically
E[X ]. There are only nk�1+o(1) di�erent a1; . . . ; ak which do overlap V . For
each the contribution to E�[X ] is at most

h
Mnw�1pe

i(k
2
)

Since M and k are constants this only a constant times the contribution
to E[X ]. Thus the total contribution from these intersecting a1; . . . ; ak is
n�1+o(1)E[X ] and thus E�[X ] � E[X ] as required.

References.
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of H�� in G� is then at most Pw(ai; aj)2 � (Mnw�1pw)2. The expected
number of extensions from a copy of H�� to a copy of H� is then at most
Pw(aS0; aS1) �Mnw�1pw. Altogether the expected number of copies of H�

overlapping V is O(ln3 n)M3n3w�2p3w which is n�1+o(1) times the expected
number of copies of H� in G(n; p). Now given a copy a1; . . . ; a3w�1 of H�

the expected number of extensions to H in G�(n; p) is at most M l times
what it is in G(n; p), the extreme case when all A = 0, e.g., all ai 2 V . Thus
the total contribution to E�[X ] from copies in which H� overlaps V is at
most

n�1+o(1)M lE[X ]

Recall l � � logn. Up to now all constants k1; L;M have depended only on
c and not �. Now (and formally this is at the very start of the proof, in the
de�nition of H) we �x K so large that � is so small so that

�(logM) < 1

This assures that n�1+o(1)M l is n to a negative power. Thus this contribu-
tion to E�[X ] is only o(E[X ]). Hence E�[X ] � E[X ] which concludes the
argument.

5.4 Clean Topological k-Cliques

For the proof of Theorem 6 we require that for every c > 1 and every integer
k that G(n; c=n) almost surely contains a CTKk. Fix c; k. We �x a real k1
with

k1 log c > 1

Set w = dk1 lnne. We de�ne H = H(k; k1; n) to consist of k \special"
points and between each pair of special points a path of length w. Set
v = k +

�k
2

�
(w � 1), the number of vertices and t =

�k
2

�
� k, e = v + t so

that e is the number of edges. Note e; v = (k1
�k
2

�
+ o(1)) logn. We show

that almost surely G(n; c=n) contains a copy of H . As the argument is very
simpler (and simpler) than that just given, we shall give the argument in
outline form. Letting X denote the number of copies of H we have

E[X ] = (n)vp
e � nvpe = cen�t = nk1(

k
2
) log c�t+o(1)

which is a positive power of n. Now we need show E�[X ] � E[X ] where
E�[X ] is the expected number of copies of H conditioning on a �xed copy
of H . Let us specify the �xed copy to be on vertex set V = f1; . . . ; vg with
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that these as (in this order) give a copy of H . For each a1; . . . ; a3w�1 the
contribution of m-tuples with this start is bounded from above by

p�
h
Mpwnw�1

il�A "
pwnw�1[1 +O(

ln3 n

n
)]

#A

Here � is the number of adjacencies i; j in H� with ai; aj not adjacent in
H . A is the number of pairs i; j in H� which are joined in H by a w-path
and for which neither ai nor aj is in V . l�A is then the remaining number
of pairs i; j in H� joined in H by a w-path.

To see this note that for �xed a1; . . . ; a3w�1 and any choice of w-paths
P1; . . . ; Pl that are vertex disjoint the probability that they are all paths in
G is simply the product of the probabilities for each path. Adding over all
P1; . . . ; Pl is then at most the product over j of adding the probabilities for
each Pj , and these are precisely what the bracketed terms bound. The p�,
of course, is the probability that the ai have the proper edges of H�.

Now we split the contribution to E[X�] into two classes. First consider
all those a1; . . . ; a3w�1 with no ai 2 V . There are at most n3w�1 such tuples
and each gives p3w with 3w being the number of edges in H�. For each
A = l so this gives a "

pwnw�1[1 +O(
ln3 n

n
)]

#l

factor. As l = O(lnn)

[1 + O(
ln3 n

n
)]l = 1+ o(1)

so this entire contribution is asymptotic to n3w�1+l(w�1)p3w+lw which is
asymptotic to E[X ], the expectation in G(n; p). That is, the main contri-
bution (among the a1 � � �a3w�1 that don't overlap V ) to E�[X ] is by those
copies of H that don't overlap H at all. To show (V2) it now su�ces to
show that the remaining contributions to E�[X ] are o(E[X ]).

There are O(ln3 n) choices of a pair i � 3w � 1 and ai 2 V . (We shall
see that this loss of n�1 ln3 n = n�1+o(1) as compared with \free choice" is
never recovered.) Fix such a pair and consider the contribution to E�[X ]
with ai this �xed value. Let j � 3w� 1 be a vertex at distance w from i in
H and let H�� denote i; j and two vertex disjoint paths of length w from i

to j in H�. (H�� consists of S0; S1 and two of the three w-paths between
them.) Fix one of the � n choices of aj . The expected number of copies

13



choices of a1 � � �ak. Then there are at most n choices of ak+1 62 V and each
contributes pxs�k�1 and at mostm choices of ak+1 2 V and each contributes
pys�k�1.

Now �x a constant M satisfying

M > M1 = L[1 +
1X
k=1

50kc�k]

We claim that for 1 � s � w

Ps(a; b)� 4 +Mpsns�1

By the previous bounds on xs we bound

pnxs�1 +
s�2X
k=1

50kpnxs�k�1 < M1p
sns�1

We bound 3 + 50sp < 3:01. By induction we bound

pmys�1+
s�2X
k=1

50kpmys�k�1 < 50s2pm[4+Mpsns�1] < :01+(M�M1)p
sns�1

since 50s2pm = O(log4 n=n) = o(1), completing the claim. We are really
interested in the case s = w. Note pwnw�1 = cw=n is asymptotically a
positive power of n by the choice made of k1 earlier. Thus the +4 may be
absorbed in M and we have that

Pw(a; b) < Mpwnw�1

for all a; b while if a; b 62 V then we have the better bound

Pw(a; b)< pwnw�1[1 +O(
ln3 n

n
)]

5.3 Expectation of Copies of H

Now we turn to the full problem of bounding E�[X ]. Recall we have labelled
H so that 1; . . . ; 3w�1 are the vertices ofH�. Recall l denotes the number of
w-paths in going from H� toH and recall l � � logn. E�[X ] is the sum over
all m-tuples (a1; . . . ; am) of distinct vertices of the probability (in G�(n; p))

12



Now to bound the values xs; x�s given by the inductive formulae. Let L
be �xed (dependent only on c) so that

L > 1 +
1X
k=1

50kc�k

and set
Xs = Lpsns�1

X�

s = psns�1(1 + L
ms

n
)

We claim xs � Xs and x�s � X�
s . For this we merely check (recall pn = c)

X�

s +
s�1X
k=1

50kX�

s�k � (1 + L
ms

n
)psns�1(1 +

s�1X
k=1

50kc�k) < Lpsns�1 = Xs

as Lms=n = o(1) and that

pnX�

s�1 + pmXs�1 = X�

s

Thus we have shown
Pw(a; b) � Lnw�1pw

when b 62 V and further

Pw(a; b) � nw�1pw[1 + O(
log3 n

n
)]

when a; b 62 V .
Now (thinking of a; b 2 V ) we seek a general bound ys for Ps(a; b). We

set y1 = 1 (as perhaps a; b are adjacent in H) and de�ne inductively

ys = 3 + pnxs�1 + pmys�1 + 50sp+
s�2X
k=1

50k[pnxs�k�1 + pmys�k�1]

We claim Ps(a; b) � ys for 1 � s � w. Of the potential paths aa1 � � �as�1b
there are at most three which are paths in H and they contributes at most
three. There are less than 50s cases where aa1 � � �as�1 is a path in H but
as�1; b are not adjacent in H and they each contribute p. The cases with
a1 62 V contribute at most pnxs�1. The cases with a1 2 V but not adjacent
to a in H contribute at most pmys�1. Otherwise let 1 � k � s � 2 be
the least k so that ak; ak+1 are not adjacent in H . There are at most 50k

11



5.2 The Core Calculation: Expectation for Paths

We shall work up to E�[X ] in stages. Let Ps(a; b) denote the expected num-
ber of paths of length s between vertices a; b, with the graph distribution
G�(n; p). (As a benchmark note that in G(n; p) this expectation would be
(n�2)s�1ps � ns�1ps.) Ps(a; b) is simply the sum over all tuples (a0; . . . ; as)
with a0 = a; as = b of distinct vertices of G of p� where � is the number
of edges of the path a0 � � �as which are not in H . Let P�s (a; b) denote the
expected number of such paths where we further require that a is not ad-
jacent to a1 in H . (When a 62 V these are the same.) We shall de�ne
inductively xs; x

�

s which provide upper bounds to Ps(a; b) and P�s (a; b) re-
spectively under the further assumption that b 62 V . (We shall see that
P�s (a; b) is dominated by paths which do not overlap H but that for Ps(a; b)
there is a contribution from those paths which are paths in H for their initial
segment.) Clearly we may set x1 = x�1 = p. Let xs; x�s satisfy the following:

x�s = pnx�s�1 + pmxs�1

xs = x�s +
s�1X
k=1

50kx�s�k

We claim such xs; x
�

s provide the desired upper bounds. To bound P�s (a; b)
split paths aa1 � � �as�1b according to a1 2 V (� m possibilities) and a1 62 V
(� n possibilities). Note we are excluding the case where a; a1 are adjacent
in H . For a given a1 the expected number of paths is pPs�1(a1; b) (as we
must have a; a1 adjacent). When a1 62 V this is by induction at most px�s�1
and when a1 2 V this is by induction at most pxs�1 so P�s (a; b) � x�s by
induction. Bounding Ps(a; b) is a bit more complex. Those paths for which
a; a1 are not adjacent in H contribute at most x�s by induction. Otherwise,
let k be the least integer for which ak ; ak+1 are not adjacent in H . (As b 62 V

this is well de�ned and 1 � k < s.) We pause for a technical calculation.
We claim that in H for any k � w there are at most 50k paths of length

k beginning at any particular vertex v. Suppose a 2 H�. There are at most
four such paths staying in H�. Once leaving H� the path is determined
(since critically k � w, the path length) and there are at most 8k ways of
determining when and how to leave H�. The argument with a 62 H� is
similar, we omit the details. Of course 50k is a gross overestimate but we
only use that it is a O(k) bound.

Back to bounding Ps(a; b). For a given k there are at most 50k choices
for a1 � � �ak and �xing those there is a contribution of P�s�k(ak; b) � x�s�k to
Ps(a; b). Thus Ps(a; b) � xs by induction.
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from the estimates above. We �rst require that

k1 log c > 1

which assures that E[X ] is a positive power of nlogn. The crucial calculation
will be to show

V ar[X ] = o(E[X ]2) (V 1)

From this, by Chebyschev's Inequality X > :99E[X ] (say) almost surely.
True, X counts noninduced copies of H . But let X+ be a count of all
copies of any H+ consisting of H with one additional edge added. There are
�(log4 n) choices of that edge and for a given choice the expected number of
such copies is pE[X ] so that E[X+] = O(log4 n=n)E[X ] = o(E[X ]) and so
by Markov's Inequality almost surely X+ < E[X ]=2, say. So almost surely
there are more than :99E[X ] copies of H and fewer than :5E[X ] total copies
of graphs containing H and one more edge so therefore there is at least one
copy of H with no additional edge, i.e., the desired induced copy.

Hence it su�ces to show (V1).
Remark. To illustrate the complexities suppose we condition G(n; p) on

a �xed copy of H� and let Z be the expected number of extensions to H .
The expectation argument above gives that E[Z] � (nw�1pw)l = (cw=n)l

which is n�(logn). However for there to be any extensions each of the at
least l=8 vertices of H� that is supposed to have a path coming out of it
must have at least one edge besides those of H�. Any particular vertex fails
this condition with probability e�c and these events are independent so that
the probability that Z 6= 0 is bounded from above by (1� e�c)l=8 which is
polynomially small. This illustrates that the expected number of thingees
being large does not a priori guarantee that almost surely there is a thingee.

Of course, (V1) is equivalent to showing E[X2] � E[X ]2. By the sym-
metry of copies, E[X2] is E[X ] times the expected number of copies of H
given the existence of a particular copy of H . We set V = f1; . . . ; mg and
specify a particular copy of H on vertex set V with 1; . . . ; 3w � 1 being
the vertices of H�. Let G� = G�(n; p) be the random graph on vertex set
1; . . . ; n where for i; j 2 V and fi; jg 2 E(H) we specify that fi; jg 2 E(G)
but all other pairs i; j are adjacent in G with independent probabilities p.
(Note that even those i; j with i; j 2 V but fi; jg 62 E(H) have probability
p of being in G�.) Let E�[X ] denote the expectation of X in G�. Then it
su�ces to show

E�[X ] � E[X ] (V 2)

9



the property that for all m with (leaving some room) log logn < m < n

the value wow�1(m) is odd. (Such n exist since wow�1 is constant for such
a long time.) Here is the crucial random graph fact: There is a � = �(c)
so that in G(n; c=n) almost surely all subcon�gurations consisting of two
vertices and three paths between them have size at least � logn. (This uses
a simple expectation argument. The number of con�gurations of t vertices
and t + 1 edges giving the above graph is O(ntpt+1) = O(ct+1=n) = o(1)
when t < � logn.) Thus almost surely any AR that satis�es the conditions of
AK will have jARj = m > �0 logn > log logn. The conditions on double; . . .
force AR to be arithmeticized so that 9xinvwow(x)\even(x) will not occur
when wow�1(m) is odd. Thus almost surely AK will not be satis�ed.

5 A Variance Calculation

We �x c > 1, set p = c=n and let G � G(n; p). We consider a graph
H = H(k1; K; n) as de�ned in x4. We give a description of H suitable for
our purposes. Set w � k1 logn. Take two vertices and draw three vertex
disjoint paths each of length w. This gives a graph H�. On H� a set of
pairs of vertices fa; a0g are speci�ed, no a lying in more than eight such
pairs. We let l denote the precise number of such pairs so that l � � log n.
By making K large we can make � as small as desired. Between each such
pair a path of length w is placed with new vertices. This gives the graph H .
It has v = �(ln2 n) vertices and e edges where e = 3w+ lw � �k1 log

2 n and
e� v = l+1 � � logn. We denote the vertices of H by 1; . . . ; v and those of
H� by 1; . . . ; 3w� 1.

5.1 The Second Moment Method

Our object in this section is to show that, for appropriate k1; �, the random
G(n; p) almost surely contains an induced copy of H . Let X be the number
of v-tuples (a1; . . . ; av) of distinct vertices of G so when fi; jg 2 E(H) then
fai; ajg 2 E(H). That is, X is a count of copies of H in G though these
copies may have extra edges and a given copy may be multiply counted if
H has automorphisms. Clearly

E[X ] = (n)vp
e � nvpe = ce=ne�v

which is
n(� logn)(k1 log c�1+o(1))
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which is a path from S0 to x which does not contain y. If x 2 AR \ Pi and
y 2 AR \ Pj with i 6= j we de�ne x < y to be i = 1; j = 2 or i = 1; j = 3 or
i = 2; j = 3. On AR we de�ne the auxilliary binary predicate next(i; j) by
i < j and there does not exist k 2 AR with i < k and k < j. We de�ne the
unary predicate ONE(i) by i 2 AR and there is no j < i and TWO(i) by
i 2 AR and j < i $ ONE(j). We say there are unique i; j with ONE(i),
TWO(j). For convenience we write 1; 2 for these elements henceforth.

Now to arithmetize AR. We say there exists vertex sets DOUBLE,
EXP , TOWER and WOW . We de�ne auxilliary binary predicate double
on AR by double(x; y) if x < y and there is a path from x to y in DOUBLE;
and we similarly de�ne binary predicates exp, tower and wow. We say
double(1; 2) and double(x; y) ^ double(x; z) ! y = z and double(x; y) ^
next(x; x1) ^ next(y; y1) ^ next(y1; y2) ! double(x1; y2) and if double(x; y)
and next(x; x1) and there do not exist y1; y2 with next(y; y1) ^ next(y1; y2)
then there does not exist z with double(x1; z) and �nally if double(x; y)
and x0 < x then there exists y0 with double(x0; y0). We say exp(1; 2) and
exp(x; y)^ exp(x; z)! y = z and exp(x; y)^ next(x; x1) ^ double(y; y1)!
exp(x1; y1) and if exp(x; y) and next(x; x1) and there does not exist y1
with double(y; y1) then there does not exist z with exp(x1; z) and �nally
if exp(x; y) and x0 < x then there exists y0 with exp(x0; y0). The properties
for tower are in terms of exp exactly as the properties for exp were in terms
of double and the properties for wow are in terms of tower in the same way.

OnAR we de�ne unary predicates even(x) by 9ydouble(y; x) and invwow(x)
by there existing y with wow(x; y) but for all x0 > x there do not exist y0

with wow(x0; y0). The sentence A = AK concludes by saying there exists x
with even(x)^ invwow(x).

Now we show that lim Pr[G(n; p) j= AK ] does not exist, moreover that
the lim sup is one and the lim inf is zero. On the integers de�ne wow�1(y)
to be the biggest integer x with wow(x) � y. First let n ! 1 through
that subsequence for which wow�1(w1) is even. (Recall w1 = �(logn) was
the size of AR.) Suppose G(n; p) contains an induced copy of H . (k1; K
depend only on c and so are already �xed.) On H there do exist the vertices
S0; S1, the sets P1; P2; P3, AR, DOUBLE, EXP , TOWER with all the
properties of AK . (Indeed, AK was created with that in mind.) Under
the labelling 1; . . . ; w1 the predicates double; . . . correspond to the actual
numbertheoretic predicates and the x = wow�1(w1) has invwow(x) and
even(x) so AK holds. But G(n; p) contains an induced copy of H almost
surely so the limiting probability on this subsequence is one.

In the other direction, let n go to in�nity through a subsequence with
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contains a CTKk on vertices T with endpoints S. Label S by x1 . . .xk
arbitrarily. Let U consist of one vertex from Txi;xj (not an endpoint) for
each pair fxi; xjg with fi; jg 2 H . Then A� holds. That is, A+ holds
almost surely.

A decision procedure that could separate somtog B with fB(c) = 1 from
those with fB(c) = 0 could, when applied to B = A+, be used to determine
if A held for some �nite graph, and this would contradict the Trakhtenbrot-
Vought Theorem.
Nonconvergence. To prove Theorem 4 we use a somewhat complicated
graph. Let k1 be a positive real and K a positive integer. (k1 = 5; K = 100
is a good example.) We de�ne, for all su�ciently large n, a graph H =
H(k1; K; n). Let w be the nearest integer to k1 logn divisible by K (a tech-
nical convenience) so that w � k1 logn. (Asymptotics are in n for �xed
k1; K. Begin with two points S0; S1 and three vertex disjoint paths, each
of length w, between them. Call this graph H�. Let AR (which stands for
arithmetizable) consist of every K-th vertex on each of the paths, excluding
the endpoints. Thus AR will have w

K � 1 points from each path, a total
of w1 = 3[ wK � 1] points. Order the three paths arbitrarily and order the
points of AR on a path from S0 to S1 so that the points of AR are labelled
1; . . . ; w1. Now, using this labelling, between every pair i; 2i add a path of
length w. (These paths all use new vertices with no additional adjacencies.)
Now between every pair i; 2i add a path of length w. Now between every
pair i; tower(i) add a path of length w. (The function tower(i) is de�ned
inductively by tower(1) = 2,tower(i + 1) = 2tower(i).) Finally between ev-
ery pair i; wow(i) add a path of length w. (The function wow(i) is de�ned
inductively by wow(i) = 2, wow(i+ 1) = tower(wow(i)).) This completes
the description of the graph H = H(k1; K; n).

In x5 we prove that for every c > 1 there exist k1; K so that G(n; c=n)
almost surely contains an induced copy of H = H(k1; K; n). We assume
that here, and with H in mind construct a somtog sentence A = AK which
shows nonconvergence.

The sentence A = AK will be built up in stages. First we say there
exist vertices S0; S1 and sets P1; P2; P3 so that each Pi gives a path from
S0 to S1, the Pi overlap only at S0; S1, and there are no edges between
Pi and Pj except at the endpoints. Second we say there exists a set AR �
P1 [ P2 [ P3 � fS0; S1g so that for any path x1 � � �xK in any Pi that AR
contains exactly one of the x1; . . . ; xK. (Here the sentence depends on the
choice of the �xed integer K.) We de�ne an auxilliary binary relation < on
AR. If x; y 2 AR \ Pi we de�ne x < y by the existence of a subset of Pi

6



appears Poisson �(c) times in G(n; c) where � 2 F . Each R-equivalence class
of G occurs with probability f(c) 2 F . Then Pr[A] is the �nite sum of such
f(c) and is also in F .

3 The Second Order Monadic World Before the

Double Jump

Here we prove Theorem 5 and hence the weaker Theorem 3. Fix c > 0 and
� > 0. There areK;L so that with probability at least 1�� all components of
G(n; c=n) are either trees or unicylic components of size at mostK, and there
are less than L of the latter. Each possible family of unicyclic components
holds with a calculatable limit probability. Knowing the precise unicyclic
components and that G(n; c=n) has \all" trees and no other components
determines the veracity of A. Hence Pr[A] is determined within �.

4 The Second Order Monadic World After the

Double Jump

We prove Theorem 6 by a reduction to the Trakhtenbrot-Vought Theorem,
which states that there is no decision procedure which separates those fotog
A which hold for some �nite graph from those which do not. By a clean
topological Tk(CTKk) in a graph G we mean an induced subgraph consisting
of k vertices, one path between every pair of points, and nothing else. In x5
we show for all c > 1 and all integers k that G(n; c=n) almost surely contains
a CTKk. For any fotog A we de�ne a somtog A+ of the form

A+ : 9S;T;Uclean(S; T )^ A
�

Here clean(S; T ) represents that S is the vertex set of a CTKk on T . That
is
(i) S � T
(ii) Every x; y 2 S have a unique Tx;y � T with part(x; y; Tx;y) and Tx;y\S =
fx; yg.
(iii) There is no edge between any Tx;y and Tx0;y0 except at the endpoints.

Now we transform A to A� by
(i) replacing 8x and 9y by 8x2S and 9y2S
(ii) replacing x � y by Tx;y \ U 6= ;, with Tx;y de�ned above.

If A holds for no �nite graph then A+ holds for no �nite graph. Suppose
A holds for a �nite graph H on, say, k vertices 1 . . .k. Almost surely G
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B(C;R) �= H .When H has v vertices, and hence v edges, with w vertices
not at depth R

E[XH] =

 
n

v

!
pv(1� p)wn= j Aut(H) j� �H

where
�H = cve�wc=v! j Aut(H) j

Moreover, the XH act as independent Poisson distributions in that for any
H1; . . .Hs 2 H

limn!1Pr[XHi
= ci; 1 � i � s] =

sY
i=1

�ciHi
e��Hi =ci!

The values B(C;R) can be generated as follows. For each 3 � i � R the
number of i-cycles is Poisson with mean ci=2i. We generate these cycles and
then from each vertex generate a pure birth process with Poisson c births.

To check the veracity of a fotog A one needs only examine B(x;R) and
further one doesn't need to be able to count higher than R. Lets say two
numbers are R-same if they are either equal or both at least R. Say two
rooted trees of depth 1 are R-equivalent if the degrees of their roots are
R-same. Clearly there are R + 1 equivalence classes. Suppose by induction
R-equivalent has been de�ned on rooted trees of depth i. A rooted tree of
depth i+1 may be identi�ed naturally with a set of rooted trees of depth i.
We call two rooted trees of depth i + 1R-equivalent if every R-equivalence
class of rooted trees of depth i appears the R-same number of times as a
subtree. We say H;H 0 2 H are R-equivalent if their cycles are the same
size and the vertices can be ordered about the cycles so that the rooted
trees emenating from the corresponding vertices are R-equivalent. We say
graphs G;G0 are R-equivalent if every equivalence class of H 2 H appears
the R-same number of times as a B(C;R).

We use the following result about fotog. For every fotog A there is an
R with the following property. Let G;G0 be R-equivalent, both with all
B(x;R) either trees or unicylic. Suppose further that every R-equivalence
class of rooted trees of depth R appears at least R times as a B(x;R) in
both graphs. Then

G j= A() G0 j= A

With R �xed and c �xed the rooted trees above certainly appear. By
induction on the depth we may show that everyR-equivalence class ofH 2 H
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we de�ne path(x; y; S) to be that x; y 2 S and every z 2 S is adjacent to
precisely two other w 2 S except for x and y which are each adjacent to
precisely one point of S. This has the interpretation that S gives an induced
path between x and y. The statement 9Spath(x; y; S) holds if and only if x
and y lie in the same component since if they do a minimal path S would
be an induced path. We write conn(x; y; R) for 9SS � R ^ path(x; y; S)
which means that in the restriction to R, x and y lie in the same compo-
nent. The property \G is connected" is represented by the somtog sentence
8x8y9Spath(x; y; S). This ability to express x and y being joined by some
path of arbitrary size seems to give the essential strength of somtog over
fotog. Now we can prove Theorem 2. Let circ(S) be the sentence that S is
connected and that every v 2 S is adjacent to precisely two w 2 S. Consider
the sentence

A : 9S;T;Rcirc(S)^circ(T )^S\T = ;^S � R^T � R^8x;y2Rconn(x; y; R)

This has the interpretation that the graph contains a component (R) with
two disjoint circuits. For this A it is well known that fA(c) = 0 when c < 1
and fA(c) = 1 when c > 1:

2 The First Order World

The results of this section were done independently and in more complete
detail in Lynch[1]. Here we attempt to give a more impressionistic picture
of G(n; c=n) through First Order glasses.

What does G(n; p) look like? To begin with, there are lots of trees. More
precisely, for any tree T and any r there are almost surely more than r copies
of T as components of the graph. (This includes the trivial case where T
is a single vertex.) What about more complicated structures. Let B(x;R)
denote the set of vertices within distance R of x, where we use shortest
path as the metric. The veracity of a fotog A depends only on the values
B(x;R) for a �xed (dependent on A) R. (This is most certainly not the
case for somtog.) For any �xed c and R almost surely all B(x;R) will be
either trees or unicylic graphs. (For c > 1; G(n; c=n) will have many cycles
in the giant component but they will be far apart.) To make things a bit
bigger let's de�ne H = HR to be the set of graphs H consisting of a cycle
of size at most R and trees of depth at most R rooted at each vertex of the
cycle. For C � G let B(C;R) denote the set of vertices within distance R
of some x 2 C. For any H 2 H let XH denote the number of cycles C with
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be \there exists an isolated triangle", i.e., a triangle with none of the three
vertices adjacent to any other vertices besides themselves. Then

fB(c) = e�c
3e�3c=6

Finally, call a triangle x; y; z unspiked if there is no point w which is adjacent
to exactly one of x; y; z and no other point. Let C be the property that there
is no unspiked triangle. Then

fC(c) = e�c
3e�3ce�c

=6

Since 1 is not a special value for these f we say, roughly, that the double
jump is not detectible in fotog. Our remaining results all concern somtog.
Theorem 2. There is a somtog A with

fA(c) =

(
0 if c < 1
1 if c > 1

Theorem 3. For all somtog A and c < 1 the value fA(c) is well de�ned.
Theorem 4. For all c > 1 there is a somtog A with fA(c) not de�ned.
Theorem 5.For any c < 1 and � > 0 there is a decision procedure that will
determine fA(c) within � for any somtog A.
Theorem 6. Let c > 1. Then there is no decision procedure that separates
the somtog A with fA(c) = 0 from those with fA(c) = 1.

Certainly the situation with c=1 is most interesting but we do not dis-
cuss it in this paper.
Description of Theories: The First Order Theory of Graphs (fotog) con-
sists of an in�nite number of variable symbols (x; y; z . . .), equality (x = y)
and adjacency (denoted x � y) symbols, the usual Boolean connectives
(^;_;: . . .) and universal and existential quanti�cation (8x; 9y; . . .) over the
variables which represent vertices of a graph. Second Order Monadic Theory
of Graphs (somtog) also includes an in�nite number of set symbols(S; T; U . . .)
which represent subsets of the vertices and membership (2) between vertices
and sets (x 2 S). The set symbols may be quanti�ed over (8S ; 9T . . .) as
well as the variables. As an example, in fotog we may write

8x8y9z9w[x � z ^ z � w ^ w � y]

which means that all pairs of vertices are joined by a path of length three.
However, one cannot say in fotog that the graph is connected. In somtog
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CAN YOU FEEL THE DOUBLE JUMP

Saharon Shelah
Joel Spencer

1 Summary of Results

In their fundamental work Paul Erd}os and Alfred Renyi considered the evo-
lution of the random graph G(n; p) as p \evolved" from 0 to 1. At p = 1=n a
sudden and dramatic change takes place in G. When p = c=n with c < 1 the
random G consists of small components, the largest of size �(logn). But by
p = c=n with c > 1 many of the components have \congealed" into a \giant
component" of size �(n). Erd}os and Renyi called this the double jump, the
terms phase transition (from the analogy to percolation) and Big Bang have
also been proferred.

Now imagine an observer who can only see G through a logical fog. He
may refer to graph theoretic properties A within a limited logical language.
Will he be able to detect the double jump? The answer depends on the
strength of the language. Our rough answer to this rough question is: the
double jump is not detectible in the First Order Theory of Graphs but it is
detectible in the Second Order Monadic Theory of Graphs. These theories
will be described below. We use the abbreviations fotog and somtog for these
two theories respectively.

For any property A and any c > 0 we de�ne

f(c) = fA(c) = lim
n!1

Pr[G(n; c=n) j= A]

Here G j= A means that G satis�es property A. Beware, however, that we
cannot presuppose the existence of f(c) as the limit might not exist.
Theorem 1. Let A be a fotog sentence. The fA(c) exists for all c and fA
is an in�nitely di�erentiable function. Moreover fA belongs to the minimal
family of functions F which contain the functions 0; 1 and c, are closed under
addition, subtraction, and multiplication by rationals and are closed under
base e exponentiation so that f 2 F ) ef 2 F .
Examples. Let A be \there exists a triangle". Then f(c) = e�c

3=6. Let B
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