$1, \ldots, k$ being the special vertices and let $G^*(n, p)$ be G(n, p) conditioned on this copy. As before we let $P_w(a, b)$ be the expected number of paths of length w between a, b in G^* . Then, as before, there is a constant M so that

$$P_w(a,b) < M n^{w-1} p^w$$

for all a, b while

$$P_w(a,b) = n^{w-1} p^w(1+o(1))$$

if both a and b are not in V. (We will not need the more precise error bound for this problem.)

We split the contribution to $E^*[X]$ into two groups. The a_1, \ldots, a_k which do not overlap V contribute

$$n^{k} \left[n^{w-1} p^{w} (1 + o(1)) \right]^{\binom{k}{2}}$$

to $E^*[X]$. Since k is fixed this is asymptotically $n^v p^e$ which is asymptotically E[X]. There are only $n^{k-1+o(1)}$ different a_1, \ldots, a_k which do overlap V. For each the contribution to $E^*[X]$ is at most

$$\left[Mn^{w-1}p^e\right]^{\binom{k}{2}}$$

Since M and k are constants this only a constant times the contribution to E[X]. Thus the total contribution from these intersecting a_1, \ldots, a_k is $n^{-1+o(1)}E[X]$ and thus $E^*[X] \sim E[X]$ as required.

References.

1. J. Lynch, Probabilities of Sentences about Very Sparse Random Graphs, Random Structures and Algorithms **3** (1992), 33-54 of H^{--} in G^* is then at most $P_w(a_i, a_j)^2 \leq (Mn^{w-1}p^w)^2$. The expected number of extensions from a copy of H^{--} to a copy of H^{-} is then at most $P_w(a_{S0}, a_{S1}) \leq Mn^{w-1}p^w$. Altogether the expected number of copies of H^{-} overlapping V is $O(\ln^3 n)M^3n^{3w-2}p^{3w}$ which is $n^{-1+o(1)}$ times the expected number of copies of H^{-} in G(n,p). Now given a copy a_1, \ldots, a_{3w-1} of H^{-} the expected number of extensions to H in $G^*(n,p)$ is at most M^l times what it is in G(n,p), the extreme case when all A = 0, e.g., all $a_i \in V$. Thus the total contribution to $E^*[X]$ from copies in which H^{-} overlaps V is at most

$$n^{-1+o(1)}M^{l}E[X]$$

Recall $l \sim \epsilon \log n$. Up to now all constants k_1, L, M have depended only on c and not ϵ . Now (and formally this is at the very start of the proof, in the definition of H) we fix K so large that ϵ is so small so that

$$\epsilon(\log M) < 1$$

This assures that $n^{-1+o(1)}M^l$ is *n* to a negative power. Thus this contribution to $E^*[X]$ is only o(E[X]). Hence $E^*[X] \sim E[X]$ which concludes the argument.

5.4 Clean Topological k-Cliques

For the proof of Theorem 6 we require that for every c > 1 and every integer k that G(n, c/n) almost surely contains a CTK_k . Fix c, k. We fix a real k_1 with

 $k_1 \log c > 1$

Set $w = \lceil k_1 \ln n \rceil$. We define $H = H(k, k_1, n)$ to consist of k "special" points and between each pair of special points a path of length w. Set $v = k + \binom{k}{2}(w-1)$, the number of vertices and $t = \binom{k}{2} - k$, e = v + t so that e is the number of edges. Note $e, v = (k_1\binom{k}{2} + o(1))\log n$. We show that almost surely G(n, c/n) contains a copy of H. As the argument is very simpler (and simpler) than that just given, we shall give the argument in outline form. Letting X denote the number of copies of H we have

$$E[X] = (n)_v p^e \sim n^v p^e = c^e n^{-t} = n^{k_1 \binom{k}{2} \log c - t + o(1)}$$

which is a positive power of n. Now we need show $E^*[X] \sim E[X]$ where $E^*[X]$ is the expected number of copies of H conditioning on a fixed copy of H. Let us specify the fixed copy to be on vertex set $V = \{1, \ldots, v\}$ with

that these as (in this order) give a copy of H. For each a_1, \ldots, a_{3w-1} the contribution of *m*-tuples with this start is bounded from above by

$$p^{\alpha} \left[M p^{w} n^{w-1} \right]^{l-A} \left[p^{w} n^{w-1} \left[1 + O\left(\frac{\ln^3 n}{n}\right) \right] \right]^{A}$$

Here α is the number of adjacencies i, j in H^- with a_i, a_j not adjacent in H. A is the number of pairs i, j in H^- which are joined in H by a w-path and for which neither a_i nor a_j is in V. l - A is then the remaining number of pairs i, j in H^- joined in H by a w-path.

To see this note that for fixed a_1, \ldots, a_{3w-1} and any choice of w-paths P_1, \ldots, P_l that are vertex disjoint the probability that they are all paths in G is simply the product of the probabilities for each path. Adding over all P_1, \ldots, P_l is then at most the product over j of adding the probabilities for each P_j , and these are precisely what the bracketed terms bound. The p^{α} , of course, is the probability that the a_i have the proper edges of H^- .

Now we split the contribution to $E[X^*]$ into two classes. First consider all those a_1, \ldots, a_{3w-1} with no $a_i \in V$. There are at most n^{3w-1} such tuples and each gives p^{3w} with 3w being the number of edges in H^- . For each A = l so this gives a

$$\left[p^w n^{w-1} \left[1 + O\left(\frac{\ln^3 n}{n}\right)\right]\right]^l$$

factor. As $l = O(\ln n)$

$$[1 + O(\frac{\ln^3 n}{n})]^l = 1 + o(1)$$

so this entire contribution is asymptotic to $n^{3w-1+l(w-1)}p^{3w+lw}$ which is asymptotic to E[X], the expectation in G(n,p). That is, the main contribution (among the $a_1 \cdots a_{3w-1}$ that don't overlap V) to $E^*[X]$ is by those copies of H that don't overlap H at all. To show (V2) it now suffices to show that the remaining contributions to $E^*[X]$ are o(E[X]).

There are $O(\ln^3 n)$ choices of a pair $i \leq 3w - 1$ and $a_i \in V$. (We shall see that this loss of $n^{-1} \ln^3 n = n^{-1+o(1)}$ as compared with "free choice" is never recovered.) Fix such a pair and consider the contribution to $E^*[X]$ with a_i this fixed value. Let $j \leq 3w - 1$ be a vertex at distance w from i in H and let H^{--} denote i, j and two vertex disjoint paths of length w from ito j in H^- . (H^{--} consists of S0, S1 and two of the three w-paths between them.) Fix one of the $\leq n$ choices of a_j . The expected number of copies choices of $a_1 \cdots a_k$. Then there are at most n choices of $a_{k+1} \notin V$ and each contributes px_{s-k-1} and at most m choices of $a_{k+1} \in V$ and each contributes py_{s-k-1} .

Now fix a constant M satisfying

$$M > M_1 = L[1 + \sum_{k=1}^{\infty} 50kc^{-k}]$$

We claim that for $1 \leq s \leq w$

$$P_s(a,b) \le 4 + M p^s n^{s-1}$$

By the previous bounds on x_s we bound

$$pnx_{s-1} + \sum_{k=1}^{s-2} 50kpnx_{s-k-1} < M_1 p^s n^{s-1}$$

We bound 3 + 50 sp < 3.01. By induction we bound

$$pmy_{s-1} + \sum_{k=1}^{s-2} 50kpmy_{s-k-1} < 50s^2pm[4 + Mp^sn^{s-1}] < .01 + (M - M_1)p^sn^{s-1}$$

since $50s^2pm = O(\log^4 n/n) = o(1)$, completing the claim. We are really interested in the case s = w. Note $p^w n^{w-1} = c^w/n$ is asymptotically a positive power of n by the choice made of k_1 earlier. Thus the +4 may be absorbed in M and we have that

$$P_w(a,b) < M p^w n^{w-1}$$

for all a, b while if $a, b \notin V$ then we have the better bound

$$P_w(a,b) < p^w n^{w-1} [1 + O(\frac{\ln^3 n}{n})]$$

5.3 Expectation of Copies of H

Now we turn to the full problem of bounding $E^*[X]$. Recall we have labelled H so that $1, \ldots, 3w-1$ are the vertices of H^- . Recall l denotes the number of w-paths in going from H^- to H and recall $l \sim \epsilon \log n$. $E^*[X]$ is the sum over all m-tuples (a_1, \ldots, a_m) of distinct vertices of the probability (in $G^*(n, p)$)

Now to bound the values x_s, x_s^- given by the inductive formulae. Let L be fixed (dependent only on c) so that

$$L > 1 + \sum_{k=1}^{\infty} 50kc^{-k}$$

and set

$$X_s = Lp^s n^{s-1}$$
$$X_s^- = p^s n^{s-1} \left(1 + L\frac{ms}{n}\right)$$

We claim $x_s \leq X_s$ and $x_s^- \leq X_s^-$. For this we merely check (recall pn = c)

$$X_{s}^{-} + \sum_{k=1}^{s-1} 50k X_{s-k}^{-} \le (1 + L\frac{ms}{n})p^{s}n^{s-1}(1 + \sum_{k=1}^{s-1} 50kc^{-k}) < Lp^{s}n^{s-1} = X_{s}$$

as Lms/n = o(1) and that

$$pnX_{s-1}^{-} + pmX_{s-1} = X_s^{-}$$

Thus we have shown

$$P_w(a,b) \le Ln^{w-1}p^w$$

when $b \notin V$ and further

$$P_w(a,b) \le n^{w-1} p^w [1 + O(\frac{\log^3 n}{n})]$$

when $a, b \notin V$.

Now (thinking of $a, b \in V$) we seek a general bound y_s for $P_s(a, b)$. We set $y_1 = 1$ (as perhaps a, b are adjacent in H) and define inductively

$$y_s = 3 + pnx_{s-1} + pmy_{s-1} + 50sp + \sum_{k=1}^{s-2} 50k[pnx_{s-k-1} + pmy_{s-k-1}]$$

We claim $P_s(a, b) \leq y_s$ for $1 \leq s \leq w$. Of the potential paths $aa_1 \cdots a_{s-1}b$ there are at most three which are paths in H and they contributes at most three. There are less than 50s cases where $aa_1 \cdots a_{s-1}$ is a path in H but a_{s-1}, b are not adjacent in H and they each contribute p. The cases with $a_1 \notin V$ contribute at most pnx_{s-1} . The cases with $a_1 \in V$ but not adjacent to a in H contribute at most pmy_{s-1} . Otherwise let $1 \leq k \leq s-2$ be the least k so that a_k, a_{k+1} are not adjacent in H. There are at most 50k

5.2 The Core Calculation: Expectation for Paths

We shall work up to $E^*[X]$ in stages. Let $P_s(a, b)$ denote the expected number of paths of length s between vertices a, b, with the graph distribution $G^*(n, p)$. (As a benchmark note that in G(n, p) this expectation would be $(n-2)_{s-1}p^s \sim n^{s-1}p^s$.) $P_s(a, b)$ is simply the sum over all tuples (a_0, \ldots, a_s) with $a_0 = a, a_s = b$ of distinct vertices of G of p^{α} where α is the number of edges of the path $a_0 \cdots a_s$ which are not in H. Let $P_s^-(a, b)$ denote the expected number of such paths where we further require that a is not adjacent to a_1 in H. (When $a \notin V$ these are the same.) We shall define inductively x_s, x_s^- which provide upper bounds to $P_s(a, b)$ and $P_s^-(a, b)$ respectively under the further assumption that $b \notin V$. (We shall see that $P_s^-(a, b)$ is dominated by paths which do not overlap H but that for $P_s(a, b)$ there is a contribution from those paths which are paths in H for their initial segment.) Clearly we may set $x_1 = x_1^- = p$. Let x_s, x_s^- satisfy the following:

$$x_{s}^{-} = pnx_{s-1}^{-} + pmx_{s-1}$$
$$x_{s} = x_{s}^{-} + \sum_{k=1}^{s-1} 50kx_{s-k}^{-}$$

We claim such x_s, x_s^- provide the desired upper bounds. To bound $P_s^-(a, b)$ split paths $aa_1 \cdots a_{s-1}b$ according to $a_1 \in V$ ($\leq m$ possibilities) and $a_1 \notin V$ ($\leq n$ possibilities). Note we are excluding the case where a, a_1 are adjacent in H. For a given a_1 the expected number of paths is $pP_{s-1}(a_1, b)$ (as we must have a, a_1 adjacent). When $a_1 \notin V$ this is by induction at most px_{s-1}^- and when $a_1 \in V$ this is by induction at most px_{s-1}^- so $P_s^-(a, b) \leq x_s^-$ by induction. Bounding $P_s(a, b)$ is a bit more complex. Those paths for which a, a_1 are not adjacent in H contribute at most x_s^- by induction. Otherwise, let k be the least integer for which a_k, a_{k+1} are not adjacent in H. (As $b \notin V$ this is well defined and $1 \leq k < s$.) We pause for a technical calculation.

We claim that in H for any $k \leq w$ there are at most 50k paths of length k beginning at any particular vertex v. Suppose $a \in H^-$. There are at most four such paths staying in H^- . Once leaving H^- the path is determined (since critically $k \leq w$, the path length) and there are at most 8k ways of determining when and how to leave H^- . The argument with $a \notin H^-$ is similar, we omit the details. Of course 50k is a gross overestimate but we only use that it is a O(k) bound.

Back to bounding $P_s(a,b)$. For a given k there are at most 50k choices for $a_1 \cdots a_k$ and fixing those there is a contribution of $P_{s-k}^-(a_k,b) \le x_{s-k}^-$ to $P_s(a,b)$. Thus $P_s(a,b) \le x_s$ by induction. from the estimates above. We first require that

$$k_1 \log c > 1$$

which assures that E[X] is a positive power of $n^{\log n}$. The crucial calculation will be to show

$$Var[X] = o(E[X]^2) \tag{V1}$$

From this, by Chebyschev's Inequality X > .99E[X] (say) almost surely. True, X counts noninduced copies of H. But let X^+ be a count of all copies of any H^+ consisting of H with one additional edge added. There are $\Theta(\log^4 n)$ choices of that edge and for a given choice the expected number of such copies is pE[X] so that $E[X^+] = O(\log^4 n/n)E[X] = o(E[X])$ and so by Markov's Inequality almost surely $X^+ < E[X]/2$, say. So almost surely there are more than .99E[X] copies of H and fewer than .5E[X] total copies of graphs containing H and one more edge so therefore there is at least one copy of H with no additional edge, i.e., the desired induced copy.

Hence it suffices to show (V1).

Remark. To illustrate the complexities suppose we condition G(n,p) on a fixed copy of H^- and let Z be the expected number of extensions to H. The expectation argument above gives that $E[Z] \sim (n^{w-1}p^w)^l = (c^w/n)^l$ which is $n^{\Theta(\log n)}$. However for there to be any extensions each of the at least l/8 vertices of H^- that is supposed to have a path coming out of it must have at least one edge besides those of H^- . Any particular vertex fails this condition with probability e^{-c} and these events are independent so that the probability that $Z \neq 0$ is bounded from above by $(1 - e^{-c})^{l/8}$ which is polynomially small. This illustrates that the expected number of thingees being large does not a priori guarantee that almost surely there is a thingee.

Of course, (V1) is equivalent to showing $E[X^2] \sim E[X]^2$. By the symmetry of copies, $E[X^2]$ is E[X] times the expected number of copies of H given the existence of a particular copy of H. We set $V = \{1, \ldots, m\}$ and specify a particular copy of H on vertex set V with $1, \ldots, 3w - 1$ being the vertices of H^- . Let $G^* = G^*(n, p)$ be the random graph on vertex set $1, \ldots, n$ where for $i, j \in V$ and $\{i, j\} \in E(H)$ we specify that $\{i, j\} \in E(G)$ but all other pairs i, j are adjacent in G with independent probabilities p. (Note that even those i, j with $i, j \in V$ but $\{i, j\} \notin E(H)$ have probability p of being in G^* .) Let $E^*[X]$ denote the expectation of X in G^* . Then it suffices to show

$$E^*[X] \sim E[X] \tag{V2}$$

the property that for all m with (leaving some room) $\log \log n < m < n$ the value $wow^{-1}(m)$ is odd. (Such n exist since wow^{-1} is constant for such a long time.) Here is the crucial random graph fact: There is a $\delta = \delta(c)$ so that in G(n, c/n) almost surely all subconfigurations consisting of two vertices and three paths between them have size at least $\delta \log n$. (This uses a simple expectation argument. The number of configurations of t vertices and t + 1 edges giving the above graph is $O(n^t p^{t+1}) = O(c^{t+1}/n) = o(1)$ when $t < \delta \log n$.) Thus almost surely any AR that satisfies the conditions of A_K will have $|AR| = m > \delta' \log n > \log \log n$. The conditions on double, ... force AR to be arithmeticized so that $\exists_x invwow(x) \cap even(x)$ will not occur when $wow^{-1}(m)$ is odd. Thus almost surely A_K will not be satisfied.

5 A Variance Calculation

We fix c > 1, set p = c/n and let $G \sim G(n, p)$. We consider a graph $H = H(k_1, K, n)$ as defined in §4. We give a description of H suitable for our purposes. Set $w \sim k_1 \log n$. Take two vertices and draw three vertex disjoint paths each of length w. This gives a graph H^- . On H^- a set of pairs of vertices $\{a, a'\}$ are specified, no a lying in more than eight such pairs. We let l denote the precise number of such pairs so that $l \sim \epsilon \log n$. By making K large we can make ϵ as small as desired. Between each such pair a path of length w is placed with new vertices. This gives the graph H. It has $v = \Theta(\ln^2 n)$ vertices and e edges where $e = 3w + lw \sim \epsilon k_1 \log^2 n$ and $e - v = l + 1 \sim \epsilon \log n$. We denote the vertices of H by $1, \ldots, v$ and those of H^- by $1, \ldots, 3w - 1$.

5.1 The Second Moment Method

Our object in this section is to show that, for appropriate k_1, ϵ , the random G(n, p) almost surely contains an induced copy of H. Let X be the number of v-tuples (a_1, \ldots, a_v) of distinct vertices of G so when $\{i, j\} \in E(H)$ then $\{a_i, a_j\} \in E(H)$. That is, X is a count of copies of H in G though these copies may have extra edges and a given copy may be multiply counted if H has automorphisms. Clearly

$$E[X] = (n)_v p^e \sim n^v p^e = c^e / n^{e-v}$$

which is

$$n^{(\epsilon \log n)(k_1 \log c - 1 + o(1))}$$

which is a path from S0 to x which does not contain y. If $x \in AR \cap P_i$ and $y \in AR \cap P_j$ with $i \neq j$ we define x < y to be i = 1, j = 2 or i = 1, j = 3 or i = 2, j = 3. On AR we define the auxiliary binary predicate next(i, j) by i < j and there does not exist $k \in AR$ with i < k and k < j. We define the unary predicate ONE(i) by $i \in AR$ and there is no j < i and TWO(i) by $i \in AR$ and $j < i \leftrightarrow ONE(j)$. We say there are unique i, j with ONE(i), TWO(j). For convenience we write 1, 2 for these elements henceforth.

Now to arithmetize AR. We say there exists vertex sets DOUBLE, EXP, TOWER and WOW. We define auxilliary binary predicate double on AR by double(x, y) if x < y and there is a path from x to y in DOUBLE; and we similarly define binary predicates exp, tower and wow. We say double(1,2) and $double(x,y) \land double(x,z) \rightarrow y = z$ and $double(x,y) \land$ $next(x,x_1) \land next(y,y_1) \land next(y_1,y_2) \rightarrow double(x_1,y_2)$ and if double(x,y)and $next(x,x_1)$ and there do not exist y_1, y_2 with $next(y,y_1) \land next(y_1,y_2)$ then there does not exist z with double(x',y'). We say exp(1,2) and $exp(x,y) \land exp(x,z) \rightarrow y = z$ and $exp(x,y) \land next(x,x_1) \land double(y,y_1) \rightarrow$ $exp(x_1,y_1)$ and if exp(x,y) and $next(x,x_1)$ and there does not exist y_1 with $double(y,y_1)$ then there does not exist z with exp(x',y'). The properties for tower are in terms of exp exactly as the properties for exp were in terms of double and the properties for wow are in terms of tower in the same way.

On AR we define unary predicates even(x) by $\exists_y double(y, x)$ and invwow(x) by there existing y with wow(x, y) but for all x' > x there do not exist y' with wow(x', y'). The sentence $A = A_K$ concludes by saying there exists x with $even(x) \wedge invwow(x)$.

Now we show that $\lim Pr[G(n,p) \models A_K]$ does not exist, moreover that the lim sup is one and the lim inf is zero. On the integers define $wow^{-1}(y)$ to be the biggest integer x with $wow(x) \leq y$. First let $n \to \infty$ through that subsequence for which $wow^{-1}(w_1)$ is even. (Recall $w_1 = \Theta(\log n)$ was the size of AR.) Suppose G(n,p) contains an induced copy of H. $(k_1, K$ depend only on c and so are already fixed.) On H there do exist the vertices S0, S1, the sets $P_1, P_2, P_3, AR, DOUBLE, EXP, TOWER$ with all the properties of A_K . (Indeed, A_K was created with that in mind.) Under the labelling $1, \ldots, w_1$ the predicates double, ... correspond to the actual numbertheoretic predicates and the $x = wow^{-1}(w_1)$ has invwow(x) and even(x) so A_K holds. But G(n,p) contains an induced copy of H almost surely so the limiting probability on this subsequence is one.

In the other direction, let n go to infinity through a subsequence with

contains a CTK_k on vertices T with endpoints S. Label S by $x_1 \ldots x_k$ arbitrarily. Let U consist of one vertex from T_{x_i,x_j} (not an endpoint) for each pair $\{x_i, x_j\}$ with $\{i, j\} \in H$. Then A^* holds. That is, A^+ holds almost surely.

A decision procedure that could separate somtog B with $f_B(c) = 1$ from those with $f_B(c) = 0$ could, when applied to $B = A^+$, be used to determine if A held for some finite graph, and this would contradict the Trakhtenbrot-Vought Theorem.

Nonconvergence. To prove Theorem 4 we use a somewhat complicated graph. Let k_1 be a positive real and K a positive integer. $(k_1 = 5, K = 100)$ is a good example.) We define, for all sufficiently large n, a graph H = $H(k_1, K, n)$. Let w be the nearest integer to $k_1 \log n$ divisible by K (a technical convenience) so that $w \sim k_1 \log n$. (Asymptotics are in n for fixed k_1, K . Begin with two points S0, S1 and three vertex disjoint paths, each of length w, between them. Call this graph H^- . Let AR (which stands for arithmetizable) consist of every K-th vertex on each of the paths, excluding the endpoints. Thus AR will have $\frac{w}{K} - 1$ points from each path, a total of $w_1 = 3\left[\frac{w}{K} - 1\right]$ points. Order the three paths arbitrarily and order the points of AR on a path from S0 to S1 so that the points of AR are labelled $1, \ldots, w_1$. Now, using this labelling, between every pair i, 2i add a path of length w. (These paths all use new vertices with no additional adjacencies.) Now between every pair $i, 2^i$ add a path of length w. Now between every pair i, tower(i) add a path of length w. (The function tower(i) is defined inductively by tower(1) = 2, $tower(i+1) = 2^{tower(i)}$.) Finally between every pair i, wow(i) add a path of length w. (The function wow(i) is defined inductively by wow(i) = 2, wow(i+1) = tower(wow(i)).) This completes the description of the graph $H = H(k_1, K, n)$.

In §5 we prove that for every c > 1 there exist k_1, K so that G(n, c/n) almost surely contains an induced copy of $H = H(k_1, K, n)$. We assume that here, and with H in mind construct a sometry sentence $A = A_K$ which shows nonconvergence.

The sentence $A = A_K$ will be built up in stages. First we say there exist vertices S0, S1 and sets P_1, P_2, P_3 so that each P_i gives a path from S0 to S1, the P_i overlap only at S0, S1, and there are no edges between P_i and P_j except at the endpoints. Second we say there exists a set $AR \subset$ $P_1 \cup P_2 \cup P_3 - \{S0, S1\}$ so that for any path $x_1 \cdots x_K$ in any P_i that ARcontains exactly one of the x_1, \ldots, x_K . (Here the sentence depends on the choice of the fixed integer K.) We define an auxilliary binary relation < on AR. If $x, y \in AR \cap P_i$ we define x < y by the existence of a subset of P_i appears Poisson $\lambda(c)$ times in G(n,c) where $\lambda \in \mathcal{F}$. Each *R*-equivalence class of *G* occurs with probability $f(c) \in \mathcal{F}$. Then Pr[A] is the finite sum of such f(c) and is also in \mathcal{F} .

3 The Second Order Monadic World Before the Double Jump

Here we prove Theorem 5 and hence the weaker Theorem 3. Fix c > 0 and $\epsilon > 0$. There are K, L so that with probability at least $1 - \epsilon$ all components of G(n, c/n) are either trees or unicylic components of size at most K, and there are less than L of the latter. Each possible family of unicyclic components holds with a calculatable limit probability. Knowing the precise unicyclic components and that G(n, c/n) has "all" trees and no other components determines the veracity of A. Hence Pr[A] is determined within ϵ .

4 The Second Order Monadic World After the Double Jump

We prove Theorem 6 by a reduction to the Trakhtenbrot-Vought Theorem, which states that there is no decision procedure which separates those fotog A which hold for some finite graph from those which do not. By a clean topological $T_k(CTK_k)$ in a graph G we mean an induced subgraph consisting of k vertices, one path between every pair of points, and nothing else. In §5 we show for all c > 1 and all integers k that G(n, c/n) almost surely contains a CTK_k . For any fotog A we define a somtog A^+ of the form

$$A^+: \exists_{S,T,U} clean(S,T) \land A^*$$

Here clean(S,T) represents that S is the vertex set of a CTK_k on T. That is

(i) $S \subset T$

(ii) Every $x, y \in S$ have a unique $T_{x,y} \subset T$ with $part(x, y, T_{x,y})$ and $T_{x,y} \cap S = \{x, y\}$.

(iii) There is no edge between any $T_{x,y}$ and $T_{x',y'}$ except at the endpoints. Now we transform A to A^* by

(i) replacing \forall_x and \exists_y by $\forall_{x \in S}$ and $\exists_{y \in S}$

(ii) replacing $x \sim y$ by $T_{x,y} \cap U \neq \emptyset$, with $T_{x,y}$ defined above.

If A holds for no finite graph then A^+ holds for no finite graph. Suppose A holds for a finite graph H on, say, k vertices $1 \dots k$. Almost surely G

 $B(C,R)\cong H.$ When H has v vertices, and hence v edges, with w vertices not at depth R

$$E[X_H] = \binom{n}{v} p^v (1-p)^{wn} / |Aut(H)| \sim \lambda_H$$

where

$$\lambda_H = c^v e^{-wc} / v! \mid Aut(H) \mid$$

Moreover, the X_H act as independent Poisson distributions in that for any $H_1, \ldots H_s \in \mathcal{H}$

$$\lim_{n \to \infty} \Pr[X_{H_i} = c_i, 1 \le i \le s] = \prod_{i=1}^s \lambda_{H_i}^{c_i} e^{-\lambda_{H_i}} / c_i!$$

The values B(C, R) can be generated as follows. For each $3 \le i \le R$ the number of *i*-cycles is Poisson with mean $c^i/2i$. We generate these cycles and then from each vertex generate a pure birth process with Poisson *c* births.

To check the veracity of a fotog A one needs only examine B(x, R) and further one doesn't need to be able to count higher than R. Lets say two numbers are R-same if they are either equal or both at least R. Say two rooted trees of depth 1 are R-equivalent if the degrees of their roots are R-same. Clearly there are R + 1 equivalence classes. Suppose by induction R-equivalent has been defined on rooted trees of depth i. A rooted tree of depth i + 1 may be identified naturally with a set of rooted trees of depth i. We call two rooted trees of depth i + 1R-equivalent if every R-equivalence class of rooted trees of depth i appears the R-same number of times as a subtree. We say $H, H' \in \mathcal{H}$ are R-equivalent if their cycles are the same size and the vertices can be ordered about the cycles so that the rooted trees emenating from the corresponding vertices are R-equivalent. We say graphs G, G' are R-equivalent if every equivalence class of $H \in \mathcal{H}$ appears the R-same number of times as a B(C, R).

We use the following result about fotog. For every fotog A there is an R with the following property. Let G, G' be R-equivalent, both with all B(x, R) either trees or unicylic. Suppose further that every R-equivalence class of rooted trees of depth R appears at least R times as a B(x, R) in both graphs. Then

$$G \models A \iff G' \models A$$

With R fixed and c fixed the rooted trees above certainly appear. By induction on the depth we may show that every R-equivalence class of $H \in \mathcal{H}$

we define path(x, y, S) to be that $x, y \in S$ and every $z \in S$ is adjacent to precisely two other $w \in S$ except for x and y which are each adjacent to precisely one point of S. This has the interpretation that S gives an induced path between x and y. The statement $\exists_S path(x, y, S)$ holds if and only if xand y lie in the same component since if they do a minimal path S would be an induced path. We write conn(x, y, R) for $\exists_S S \subset R \land path(x, y, S)$ which means that in the restriction to R, x and y lie in the same component. The property "G is connected" is represented by the somtog sentence $\forall_x \forall_y \exists_S path(x, y, S)$. This ability to express x and y being joined by some path of arbitrary size seems to give the essential strength of somtog over fotog. Now we can prove Theorem 2. Let circ(S) be the sentence that S is connected and that every $v \in S$ is adjacent to precisely two $w \in S$. Consider the sentence

 $A: \exists_{S,T,R} circ(S) \land circ(T) \land S \cap T = \emptyset \land S \subset R \land T \subset R \land \forall_{x,y \in R} conn(x, y, R)$

This has the interpretation that the graph contains a component (R) with two disjoint circuits. For this A it is well known that $f_A(c) = 0$ when c < 1 and $f_A(c) = 1$ when c > 1.

2 The First Order World

The results of this section were done independently and in more complete detail in Lynch[1]. Here we attempt to give a more impressionistic picture of G(n, c/n) through First Order glasses.

What does G(n, p) look like? To begin with, there are lots of trees. More precisely, for any tree T and any r there are almost surely more than r copies of T as components of the graph. (This includes the trivial case where Tis a single vertex.) What about more complicated structures. Let B(x, R)denote the set of vertices within distance R of x, where we use shortest path as the metric. The veracity of a fotog A depends only on the values B(x, R) for a fixed (dependent on A) R. (This is most certainly not the case for somtog.) For any fixed c and R almost surely all B(x, R) will be either trees or unicylic graphs. (For c > 1, G(n, c/n) will have many cycles in the giant component but they will be far apart.) To make things a bit bigger let's define $\mathcal{H} = \mathcal{H}_R$ to be the set of graphs H consisting of a cycle of size at most R and trees of depth at most R rooted at each vertex of the cycle. For $C \subset G$ let B(C, R) denote the set of vertices within distance Rof some $x \in C$. For any $H \in \mathcal{H}$ let X_H denote the number of cycles C with be "there exists an isolated triangle", i.e., a triangle with none of the three vertices adjacent to any other vertices besides themselves. Then

$$f_B(c) = e^{-c^3 e^{-3c}/6}$$

Finally, call a triangle x, y, z unspiked if there is no point w which is adjacent to exactly one of x, y, z and no other point. Let C be the property that there is no unspiked triangle. Then

$$f_C(c) = e^{-c^3 e^{-3ce^{-c}}/6}$$

Since 1 is not a special value for these f we say, roughly, that the double jump is not detectible in fotog. Our remaining results all concern somtog. **Theorem 2.** There is a somtog A with

$$f_A(c) = \begin{cases} 0 & \text{if } c < 1\\ 1 & \text{if } c > 1 \end{cases}$$

Theorem 3. For all somtog A and c < 1 the value $f_A(c)$ is well defined.

Theorem 4. For all c > 1 there is a sometog A with $f_A(c)$ not defined.

Theorem 5. For any c < 1 and $\epsilon > 0$ there is a decision procedure that will determine $f_A(c)$ within ϵ for any sometog A.

Theorem 6. Let c > 1. Then there is no decision procedure that separates the somtog A with $f_A(c) = 0$ from those with $f_A(c) = 1$.

Certainly the situation with c=1 is most interesting but we do not discuss it in this paper.

Description of Theories: The First Order Theory of Graphs (fotog) consists of an infinite number of variable symbols (x, y, z ...), equality (x = y)and adjacency (denoted $x \sim y$) symbols, the usual Boolean connectives $(\land, \lor, \neg ...)$ and universal and existential quantification $(\forall_x, \exists_y, ...)$ over the variables which represent vertices of a graph. Second Order Monadic Theory of Graphs (somtog) also includes an infinite number of set symbols (S, T, U ...)which represent subsets of the vertices and membership (\in) between vertices and sets $(x \in S)$. The set symbols may be quantified over $(\forall_S, \exists_T ...)$ as well as the variables. As an example, in fotog we may write

$$\forall_x \forall_y \exists_z \exists_w [x \sim z \land z \sim w \land w \sim y]$$

which means that all pairs of vertices are joined by a path of length three. However, one cannot say in fotog that the graph is connected. In somtog

CAN YOU FEEL THE DOUBLE JUMP Saharon Shelah Joel Spencer

1 Summary of Results

In their fundamental work Paul Erdős and Alfred Renyi considered the evolution of the random graph G(n,p) as p "evolved" from 0 to 1. At p = 1/n a sudden and dramatic change takes place in G. When p = c/n with c < 1 the random G consists of small components, the largest of size $\Theta(\log n)$. But by p = c/n with c > 1 many of the components have "congealed" into a "giant component" of size $\Theta(n)$. Erdős and Renyi called this the *double jump*, the terms phase transition (from the analogy to percolation) and Big Bang have also been proferred.

Now imagine an observer who can only see G through a logical fog. He may refer to graph theoretic properties A within a limited logical language. Will he be able to detect the double jump? The answer depends on the strength of the language. Our rough answer to this rough question is: the double jump is not detectible in the First Order Theory of Graphs but it is detectible in the Second Order Monadic Theory of Graphs. These theories will be described below. We use the abbreviations *fotog* and *somtog* for these two theories respectively.

For any property A and any c > 0 we define

$$f(c) = f_A(c) = \lim_{n \to \infty} \Pr[G(n, c/n) \models A]$$

Here $G \models A$ means that G satisfies property A. Beware, however, that we cannot presuppose the existence of f(c) as the limit might not exist.

Theorem 1. Let A be a *fotog* sentence. The $f_A(c)$ exists for all c and f_A is an infinitely differentiable function. Moreover f_A belongs to the minimal family of functions \mathcal{F} which contain the functions 0, 1 and c, are closed under addition, subtraction, and multiplication by rationals and are closed under base e exponentiation so that $f \in \mathcal{F} \Rightarrow e^f \in \mathcal{F}$.

Examples. Let A be "there exists a triangle". Then $f(c) = e^{-c^3/6}$. Let B